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Abstract. The abilities of mobile robots depend greatly on the per-
formance of basic skills such as vision and localization. Although great
progress has been made in the 4-Legged league in the past years, the
performance of many of those approaches completely depends on the
artificial environment conditions established on a 4-Legged soccer field.
In this article, an algorithm is introduced that can provide localization
information based on the natural appearance of the surroundings of the
field. The algorithm starts making a scan of the surroundings by turning
head and body of the robot on a certain spot. The robot learns the ap-
pearance of the surroundings at that spot by storing color transitions at
different angles in a panoramic index. The stored panoramic appearance
can be used to determine the rotation (including a confidence value) rel-
ative to the learned spot for other points on the field. The applicability of
this kind of localization for more natural environments is demonstrated
in two environments other than the official 4-Legged league field.

1 Introduction

1.1 Context

Mobile robots need to know where they are. Robot localization is therefore an
important basic skill of mobile robots, e.g. when playing robot soccer. Many other
processes of the robot’s cognition - like world modeling and action planning -
strongly depend on fast, accurate and robust position estimates.

In the 4-Legged league3 of the RoboCup, teams consisting of four Sony Aibo
robot dogs play soccer fully autonomously against each other on a field of 6x4m.
Colored flags, goals and various field lines can be used to achieve localization
accuracies below six centimeters [1, 2].

The price that these approaches pay is their total dependency on artificial
landmarks of known shape, positions and color. Most algorithms even require
manual calibration of the actual colors and lighting conditions used on a field
and still are quite susceptible for disturbances around the field, as for instance
produced by brightly colored clothes in the audience.

3RoboCup Four Legged League homepage, last accessed in April 2006,
http://www.tzi.de/4legged
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The interest in more general solutions has been (and still is) growing over the
past few years. The almost-SLAM challenge4 of the 4-Legged league and the up-
coming challenges in natural environments of the newly founded RoboCup @ home
league5 reflect this growing interest within the robotics community.

1.2 Related Work

As many teams of the 4-Legged league use similar approaches for vision and
localization (from the raw camera image to the robot’s pose), we briefly want to
point out typical main processing steps and their corresponding considerations.

1. In the image processing step, the image pixels are divided into color
classes. Coarse scanning through the image then yields object candidates
that need to be post-processed by object specialists for object recognition.
Finally the complete set of detected objects is filtered by a second-order
sanity checker to remove invalid percepts. Representative and well-working
implementations can be found in [1, 3].

2. In the localization step, the perceived landmarks are filtered over time and
merged with the data from the robot’s body odometry. Common approaches
include Kalman Filters, Monte-Carlo approaches or combinations thereof.
For a good comparison see [4].

Other interesting approaches can be found in the Mid-Size league6 : as the
hardware of a Mid-Size robot is only limited to what it can carry, both different
types of sensors as well as different classes of algorithms become feasible. Most
Midsize robots use omni-directional high-quality cameras whereof each camera
image carries enough information to localize the robot almost perfectly [5]. These
approaches are not applicable on an Aibo with its limited camera angle; therefore
panorama images have to be constructed of several images.

Also inspiring, but also only partially transferable to the 4-Legged league is
the work that has been done on the SLAM problem in general, for instance on
panoramic pictures [6–9]. One of these approaches [10] divides the panoramic
image in multiple sectors, but uses as characteristic feature the average color
of the sector. Our approach combines sectors with as characteristic feature the
frequency of colortransitions.

2 Approach

The main idea is quite intuitive: we would like the robot to generate and store a
360o panorama image of its environment while it is in the learning phase. After

4Details about the Simultaneous Localization and Mapping challenge can be found
at http://www.tzi.de/4legged/pub/Website/Downloads/Challenges2005.pdf

5RoboCup @ Home League homepage, last accessed in March 2006,
http://www.ai.rug.nl/robocupathome/

6RoboCup Mid-Size league homepage, last accessed in April 2006,
http://www.idt.mdh.se/rc/Mid-Size/



that, it should align each new image with the stored panorama, and from that
the robot should be able to derive its relative position (in the localization phase).
This alignment is not trivial because the new image can be translated, rotated,
stretched and perspectively distorted when the robot does not stand anymore
at the point where the panorama was originally learned.

Of course, the Aibo is not able (at least not in real-time) to compute this
alignment on full-resolution images. Therefore a reduced feature space is designed
so that the computations become tractable7 on an Aibo. Figure 1 gives a quick
overview of the algorithm’s main components.

Fig. 1. Architecture of our algorithm

The Aibo performs a calibration phase before the actual learning can start.
In this phase the Aibo first decides on a suitable camera setting (i.e. camera
gain and the shutter setting) based on the dynamic range of brightness in the
autoshutter step. Then it collects color pixels by turning its head for a while
and finally clusters these into 10 most important color classes in the color clus-
tering step using a standard implementation of the Expectation-Maximization
algorithm assuming a Gaussian mixture model [11]. The result of the calibra-
tion phase is an automatically generated lookup-table that maps every YCbCr
color onto one of the 10 color classes and can therefore be used to segment in-
coming images into its characteristic color patches (see figure 2(a)). As these
initialization steps are not in the focus of this article we kept the explanation
short.

7Our algorithm consumes per image frame approximately 16ms, therefore we can
easily process images at the full Aibo frame rate (30fps).



(a) Unsupervised learned
color segmentation.

(b) Sectors and strong color
transitions visualized.

Fig. 2. Image processing: from the raw image to sector representation. This conversion
consumes approximately 6ms/frame on an Sony Aibo ERS7.

2.1 Sector signature correlation

Every incoming image is now divided into its corresponding sectors8. Using the
lookup table from the unsupervised learned color clustering, we can compute the
sector features by counting per sector the transition frequencies between each
two color classes in vertical direction. This yields 10x10 transition frequencies
per sector, which we subsequently discretize into 5 logarithmically scaled bins.
In figure 2(b) we displayed the strongest color transitions (bin 5) for each sector.

In the learning phase we estimate these 80x(10x10) distributions9. We
define a single distribution for a currently perceived sector by

Pcurrent (i, j, bin) =
{

1 discretize (freq (i, j)) = bin
0 otherwise

(1)

and the distribution learned from many frequency count samples of a certain
sector by

Plearned (i, j, bin) =
countsector (i, j, bin)∑

bin∈frequencyBins

countsector (i, j, bin)
(2)

Now we can simply multiply the current and the learned distribution to get
the correlation between a currently perceived and a learned sector:

Corr(Pcurrent, Plearned) =
∏

i,j∈colorClasses,
bin∈frequencyBins

Plearned (i, j, bin) ·Pcurrent (i, j, bin)

(3)

880 sectors corresponding to 360o; with an opening angle of the Aibo camera of
approx. 50o, this yields between 10 and 12 sectors per image (depending on the head
pan/tilt)

9When we use 16bit integers, a complete panorama model can be described by (80
sectors)x(10 colors x 10 colors)x(5 bins)x(2 byte) = 80 KB of memory.



(a) robot looking straight ahead (b) robot looking 45o to the left

Fig. 3. Resulting sector correlation matrix between the 12 seen sectors of the current
image and the 80 stored panorama model sectors. The bright diagonal line corresponds
to a minimum in the correlation and constitutes the alignment we want to find.

2.2 Alignment

After all the correlations between the stored panorama and the new image signa-
tures were evaluated, we would like to get an alignment between the stored and
seen sectors so that the overall likelihood of the alignment becomes maximal. In
other words, we want to find a diagonal path with the minimal cost through the
correlation matrix.

We consider the fitted path to be the true alignment and extract the ro-
tational estimate ϕrobot from the offset from its center pixel to the diagonal
(∆sectors):

ϕ̂robot =
360◦

80
∆sectors (4)

Further, we try to estimate the noise by fitting again a path through the
correlation matrix far away from the best-fitted path.

SNR =

∑
(x,y)∈minimumPath

Corr(x, y)∑
(x,y)∈noisePath

Corr(x, y)
(5)

The results of eq. 4 and eq. 5 can be found in figure 4.

3 Results

3.1 Environments

We selected five different environments to test our algorithm under a variety of
circumstances. The first two experiments were conducted at home on a sunny
afternoon and in an office environment10 to measure performance under real-
world circumstances. Furthermore, we conducted exhaustive tests on a (classical)
4-Legged field to test the performance under RoboCup circumstances. Then,
we repeated the same measurements on a Midsize field10, which could become
interesting for future 11-against-11 games. Even more challenging, we took an
Aibo to a real-world soccer field outdoors. This could be interesting especially
for public demonstrations because until now all demonstrations had to be given
in closed rooms with artificial lights.

10results omitted due to the lack of space, both located at Delft



(a) Robot standing on the
trained spot (matching line is
just the diagonal)

(b) Robot turned right by 45
degrees (matching line dis-
placed to the left)

Fig. 4. Visualization of the alignment step while the robot is scanning with its head.
The green line marks the minimum path (assumed true alignment) while the red line
marks the second-minimal path (assumed peak noise). The grey line represents the
diagonal, while the orange line illustrates the distance between the found alignment
and the center diagonal (∆sectors).

3.2 Measured results

Figure 5(a) illustrates the results of a rotational test in a normal living room.
As the error in the rotation estimates ranges between -4.5 and +4.5 degrees,
we may assume an error in alignment of a single sector; moreover, the size of
the confidence interval can be translated into one and two sectors respectively,
which corresponds to the maximal angular resolution of our approach.

The next experiments were conducted on different types of soccer fields,
exemplarily we present the measurements recorded on a real outdoor soccer
field (fig. 5(b)) and a regular 4-Legged field indoor (fig. 6(a)). We developed
a suitable visualization that resembles a magnetic field where we can display
estimated rotations and confidence ranges in an intuitive way. The direction of
an arrow shows the estimated rotation (with respect to the trained spot) and the
grey arc shows the 80%-confidence interval around this estimate. Interestingly,
it can be seen that the (imaginary) elongations of the arrows all run together in
a single spot corresponding to the intersection point with the panoramic index.

In both cases it can be seen intuitively that the rotation estimates are within
acceptable range, in the sense that all arrows point in the direction of the orig-
inal 0-sector. This can also be shown quantitatively (see figure 6(b))): both the
rotational error and the width of the confidence interval increase slowly and in
a graceful way when the robot is moved away from the training spot.

4 Conclusion

Although at first sight the algorithm seems to rely on specific texture features
of the surrounding surfaces, in practice no dependency could be found. This can
be explained by two reasons: firstly, as the (vertical) position of a color transi-
tion is not used anyway, the algorithm is quite robust against (vertical) scaling.



(a) Rotational test in natural environment
(living room, sunny afternoon)

(b) Outdoor human soccer field
(80x64m)

Fig. 5. Results of a rotational experiment conducted in a regular living room (left
picture) and a translational test conducted on an outdoor soccer field.

Secondly, as the algorithm aligns on many color transitions in the background
(typically more than a hundred in the same sector), the few color transitions
produced by objects in the foreground (like beacons and spectators) have a mi-
nor impact on the match (because their sizes relative to the background are
comparably small).

The lack of absolute position estimates seems to be a clear drawback with
respect to the other methods, but bearing information alone can already be very
useful for certain applications. For example, an attacking robot can highly benefit
from a robust bearing estimation towards the goal. With this bearing estimating
the robot can rush into the right direction. After 3 seconds the robot has to shoot,
at that moment an additional distance estimation could be advantageous.

Further, this approach of panoramic localization is actually interesting for a
broader spectrum than soccer. The requirements for both the robot as well as
for its environment are quite moderate (on a Sony Aibo ERS7, the computation
time is below 20ms/frame). The robot itself needs only a simple camera and
medium computational power, while most natural environments (both indoors
and outdoors) carry, as shown, enough panoramic information the algorithm
can lock on to. Therefore, this method becomes for example interesting for the
newly established RoboCup @ Home league, where fast localization information
is needed in natural but completely unknown environments.

As the training on a single spot can be completed in less than one minute on
a Sony Aibo in an arbitrary place, small demonstrational games (for example
a striker versus a goalkeeper) could be set up more easily especially at non-
prepared places. Progress in this domain facilitates the advancement of mobile
robots - and thereby robotics research itself - into more natural environments.



(a) 4-Legged field (6x4m) (b) Signal degradation as a function of the distance
to the learned spot (measured on a 4-Legged field)

Fig. 6. Test results on an official field of the 4-Legged league.
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