
Visual Tracking of Humanoid
Robots

Honoursproject

Authors:
Nick de Wolf, 10165401
Steve Nowee, 10183914

Supervisor:
Dr. Arnoud Visser

January 22, 2013

Acknowledgements

We would like to thank our supervisor, Arnoud Visser, and also Bas Terwijn and
Ninghang Hu for helping us throughout this project. We would like to thank
Raquel Fernandez also, for coordinating the honours program and spending her
time on it.

1

Contents

Introduction 3
The Project . 3
The Purpose . 3

Getting Started 3
The Search Space and Camera . 3
Calibrating the Camera . 4

Intrinsic Calibration . 4
Extrinsic Calibration . 5
Background Model . 7
Prior . 7

Making the Distinguishment 8
Used Software . 8
Theoretical Approach . 9
Practical Implementation . 10

Conclusion 11

Collaboration 11

Project Course 12

References 12

Appendix A: User’s Guide 13
General Options . 13
Preparing the system . 13

Dependencies . 13
Intrinsic Calibration . 15
Extrinsic Calibration . 17
Building the background model 18
Creating the prior . 19
Localization . 19

2

Introduction

The Project

This project is about detecting and tracking humans, as well as Nao’s at the
same time. The Nao is a humanoid robot, that is also used in the soccer matches
of the RoboCup. This detection will be executed with a fisheye camera that
hangs above a Nao soccer field. This setting can be seen as a simulation of a
RoboCup soccermatch. During such a match, Nao’s and referees will be moving
on and next to the field. So the main goal of the project is to tell the difference
between Nao’s and humans, and then to track all of the detected moving and
non-moving Nao’s and humans.

The Purpose

The Nao’s that compete in the RoboCup, have an internal localization module.
Although, this module can be inaccurate. The data, resulting from the tracking
with a fisheye camera, can be used to cross validate with the internal localization
of the Nao’s. With such a cross-validation, the Nao can get an affirmation as
to where it is, or the Nao may find that it’s position is incorrect. By combining
the external localization with the fisheye camera and the internal localization
of the Nao, improvements to the Nao’s own internal localization can be made.

Getting Started

The Search Space and Camera

The search space in this project, will be the soccer field. This field is green with
white markings on it and it measures four meters in width and six meters in
length. The camera itself is suspended approximately 2.8 meters in height. The
camera is not entirely above the center of the field, it is shifted vertically along
the field by 15 centimeters. Looking at Figure 1, below, the camera is shifted
towards the upper line of the field.

3

Figure 1: Image of the search space, the field.

The fisheye camera is built, using multiple lenses to distort a larger amount of
light rays that fall onto the outermost lens. Because of these multiple distortions
a very large area can be recorded, using just one camera. Although, these
distortions bring some complications as well. The straight lines of the soccer
field, for example, will become curved, because of all the distortions that the
multiple lenses cause. The definition of localization is knowing where something
is. To accomplish this goal, a coordinate system has to be created for the field.
This cannot be easily achieved with curved lines, however. That is why the
curved lines should be straightened. This will be discussed in more detail in a
further paragraph.

Calibrating the Camera

Calibration is a comparison between measurements, where one of the measure-
ments is known and is considered correct (the standard) and the other mea-
surement is considered wrong and is the to-be-tested measurement. The goal
of calibration is to make the differences between the measurements as small as
possible. In the case of the fisheye camera, straight lines will be considered as
the standard and the curved lines (how the camera perceives the world) will
be considered the to-be-tested measurement. The calibration process has muti-
ple stages, the intrinsic calibration and the extrinsic calibration. To succesfully
perform the calibration, one has to start with the intrinsic calibration.

Intrinsic Calibration

The intrinsic calibration is a calibration of the camera itself, that does not have
anything to do with the search space. It is a way of undistorting the images

4

made by the fisheye camera. In other words, straightening the curved lines in
the recorded frames. This is done, using a chessboard pattern. The pattern is
printed out on an A0 sized sheet of paper. The measurements, e.g. the size of
its squares, are known.
Next, this pattern is recorded. This is done in such a way, that when looking
at all the recorded frames the pattern has covered almost every part of the
perceivable area, at different angles. Because the measurements are known,
one can calculate the transformation that is needed, to transform the distorded
chessboard pattern into its original form. This is why the pattern has to have
covered as much of the perceivable area as possible, and at different angles.
Because then the optimal tranformation can be found to undistort the images.
Below in Figure 2 is an example of an original image and the undistorted version
of that image.

Figure 2: Distorted image (left) and the undistorted version of that image
(right).

As can be seen in the above images, all the curved lines in the distorted image do
indeed get straightened by the intrinsic calibration. A side effect of straightening
the lines, is that the image looks to be somewhat stretched out. But the field
itself does get more right-angled, which is the goal of the process.

Extrinsic Calibration

This part of the calibration of the camera is very important for the localiza-
tion process, and works together with the intrinsic calibration. Note, that after
calibrating the camera extrinsically, the camera must remain in the exact same
position. Briefly, the extrinsic calibration makes a coordinate system in the
images. Every frame the camera makes can be described using two dimensions,
which are the horizontal and vertical pixels in the image. To make the local-
ization understandable, these two dimensional positions should be transformed
into a three dimensional coordinate system of our world.
To establish such a transformation, one must pair some of the two dimensional
coordinate points, with the corresponding three dimensional coordinate points.

5

The space in which the localization takes place, in this case the soccer field,
has to be marked. The best way to mark the field, is at a one meter interval.
Starting in one corner of the field, multiple tape markers are placed every meter,
around the edges of the field. These tape markers will also be placed over the
middle line of the soccer field, so there will be a sufficient amount of paired
points. And last, some height points have to be marked. We have used some
pieces of furniture around the lab for these points, like the elbow rest of a chair
and a peg. All of these marked points have to be noted, three dimensionally, in
a text file. Then a program can be used to click every marked point in the field,
which creates another text file but now with the two dimensional coordinates
of the points clicked. It is important that the marked points are clicked in the
same sequence as they where noted three dimensionally. Otherwise, the points
do not correspond to each other. In combination with the intrinsic calibration,
this creates a straight three dimensional coordinate system that can be used for
localization. Because this coordinate system is created for the specific position
the camera is in, it is important that the camera should not shift after complet-
ing this section.

Below, in Figure 3, are some images that illustrate the extrinsic calibration
process. The first images are the result of a first try.

Figure 3: Image of the field with markers at the edges (left), the result of using
the markers in the left image for the extrinsic calibration (right).

The red circles in the left image clarify the locations of the markers, of which
eleven are on the ground and one is above the ground. The right image shows
the result of the calibration process, using the extrinsic calibration that follows
from using these particular markers. As can be concluded from the right image,
these markers do not result in a correct calibration.
Below, in Figure 4, are two images of a second try, but this time with more
markers.

6

Figure 4: Image of the field with a larger amount of markers at the edges (left),
the result of using the markers in the left image for the extrinsic calibration
(right).

In this second try, more markers were put on the ground, as can be seen. But
also, there are more markers up in the air. This larger amount of markers is
needed to create an (accurate) coordinate system. The result, following from
using these markers, is visibly better than in the first try. There are three
examples of a Nao template in the image. The origin of the coordinate system
depends on the order in which the markers are noted in the text file. In this
project, the lower left corner is the origin of the coordinate system.

Background Model

To make the localization and recognition work correctly, a background model
has to be made. This is done by taking a set of snapshots with the camera.
These snapshots will then be used to produce the background model. This
background model will be made, by taking the average of all the pixels from
each picture. The background model will be used as a reference for the detection
and localization of the program. As it records what color each pixel should have.
So every value that diverges from the value it should have, will be seen as an
object that is on the field. The background model is an important part of the
localization, because it is used to calculate the possibility of something being on
the field. So it is important that the field is completely empty and preferably
the space around the field as well.

Prior

Before the camera can be used for localization, a prior has to be made. A prior
is, in short, the area where in this case the Nao’s can walk, and thus where the
localization has to take place. This prior is created by clicking around the edges
of the area in which you want the localization to take place. The selection that
follows from this process is converted into a text file, which is used later on.
In our case, the prior is the soccer field itself. Although, we have seen some

7

noise around the edges when the prior is exactly on the lines of the soccer field.
The definition of noise, in this case, is when something is localized but there
is nothing at that location. By making the prior a little bit smaller than the
soccer field itself, this noise is removed. The Nao’s that walk outside of the
smaller prior will still be found, if the prior is not too small. The Nao’s have
a certain height and if it stands just outside the prior but inside the field, the
camera will still detect it as if it was standing on the edge of the prior.

Making the Distinguishment

Used Software

The software that has been used in the project, has originated from the Accom-
pany project [1]. In this project, the software is more focused on the localization
of humans. To track the Nao’s instead of humans, some changes had to be made.
To track a human, a human’s measurements have to be known. So to track a
Nao, its measurements have to measured first. The software tracks entities that
have approximately the same size as the measurements that are given as input.
These measurements are stored in an XML-file, params.xml. A part of this file
can be seen below.

<personHeight>600</personHeight>

<wg>230</wg>

<wm>280</wm>

<wt>140</wt>

<midRatio>.83</midRatio>

<persDist>70</persDist>

Some of the XML tags above can be logically derived, like personHeight which
is the average height of the to be detected entity. The tags wg,wm and wt are
respectively, the width on the ground, the width at the middle and the width
of the head. The last two tags, midRatio and persDist, correspond respectively
to the ratio between shoulderheight and total height and the minimal distance
between two detected entities. These parameters can be adjusted to the mea-
surements of a Nao, after which the Nao’s are tracked. The measurements you
can see above, are already of a Nao. The problem with this, is that a human
will be detected as multiple Nao’s. If, during a RoboCup soccer match, a referee
walks onto the field, you do not want all those non-existing Nao’s to be tracked
and give a lot of false detections. Possible solutions to solve this problem, will
be discussed later on. Below are three images of how people get recognized as
multiple Nao’s.

8

Figure 5: Three examples of how people get recognized as multiple Nao’s.

As can be seen in the above images, parts of a human body get recognized as a
Nao, like legs and arms. But not all of the limbs get detected as Nao’s. This is
probably because of the minimal distance between two detected entities.

The localization procedure itself is based on the paper: Fast Bayesian Peo-
ple Detection [2]. In the following paragraph, this procedure will be explained.
The prior, that is created before running the localization, is the area where it is
possible to detect something. This can be seen as a set of possible locations for
detecting entities. For each of these locations a probability will be calculated.
This probability denotes the chance that an entity, of the right parameters, is
at a location. This probability is based mostly on the differences with the back-
ground model. The highest of these probabilities is chosen and at that location
should be an entity that is to be detected. That location is then added to a list
of locations where something exists, called existing. Depending on the number
of entities in the prior, which can be either given manually, or calculated by
chance, the program will search on. The locations that are listed in existing
will not be used in the calculation of the new probabilities. So the next best
probable location, where something can be detected, will be found. This process
runs untill it reaches the maximum number of entities to be found.
This process is repeated for every frame that is taken by the camera. This way,
the movement of the to be found entities can be tracked, as long as a large
enough number of frames is taken each second.

Theoretical Approach

Returning to the main goal of the project, the simultaneous tracking of people
and Nao’s. The code, as it is, will not achieve this goal, as was stated before.
If only one template of parameters is used, only one type of entities can be
detected. Now that the environment and code have been explained to some
extent, we can elaborate on solving this problem. In this section, a theoretical
solution will be discussed.

In the previous section was explained that in each recorded frame all entities of
one sort would be detected, were it people or robots. But instead of finding that
one type of entities, an extra step should be built in. This extra step involves a

9

second template of parameters. Following is an explanation for the simultaneous
detection in one single frame. This should be considered for every frame that
is recorded by the camera. Firstly, the people will have to be detected in the
frame. As mentioned before, all the locations where someone is detected will be
set apart in a list (existing). So these locations will not interfere with the po-
tential other locations. If all the people are found though, instead of moving on
to the next recorded frame, the detection of the Nao’s should start. The idea is
that the Nao’s will be tracked with the same technique as the people. Although,
another parameter template will be used and the list existing should be passed
on for the detection of the Nao’s. This way, a mask will cover all the areas where
humans were detected and thus will not be detected as multiple Nao’s. Using
this method, the locations of only the Nao’s can be extracted. These locations
can be used as necessary, e.g. for cross-validation with the internal localization
of the Nao’s.

Another option that was thought about, is making the distinguishment by color.
Since the field is always green, any change of color on the field should be easily
distinguishable. Nao’s are mostly white. So by searching in the field for a shape,
about the size of a Nao or human, a distinguishment can be made by getting
the average color of that shape. If the average is close enough to white, it will
be identified as a Nao. The official referees for the RoboCup wear a black shirt.
So a referee can be distinguished if the average of the upper part of the shape
is close enough to black. These thresholds will have to be determined for each
individual pairing of field and camera. This is due to the fact that there will
be different lighting, different fields and the environment will not always be the
same.

Practical Implementation

To be able to localize different sized objects, different parameter files will have
to be loaded after each other. So the first thing that should be changed in
the code, is the part where the parameter file is loaded. After looking through
the source code, it was concluded that the part where such a file is loaded,
is located in multiple places. It is basically embedded into the code at more
than one location, making it hard to load extra parameter files or to make any
changes to it. This made the first idea, of having two parameter files, very hard
to accomplish.
The part, where we thought the parameter file was loaded, can be seen below.

10

params_file = path + "/" + "params.xml";

intrinsic_file = path + "/" + "camera_intrinsic.xml";

extrinsic_file = path + "/" + "camera_extrinsic.xml";

loadCalibrations(params_file.c_str(), intrinsic_file.c_str(),

extrinsic_file.c_str());

This piece of code is embedded in the main function of the localization program.
We tried adding a params file with the measurements of a Nao. But even
after changing and removing the function call loadCalibrations the program
still loaded a standard parameter file. This was the reason for our thoughts of
another loading location, which we tried to look for but never found.

Conclusion

The conclusion of this project would be, that we had too little experience and
knowledge. Many times, we were severely slowed down, or halted in our progress.
In the first weeks we had a lot of obstacles following from the calibration. This
slowed the progess down and thus we got behind on the schedule a couple of
weeks into the project (e.g. manual not working correctly). In the end, this
time could not be made up later on in the project. So in other words, a lot of
time was wasted on the calibration, due to the lack of knowledge and the lack
of documentation. We had to mail and meet with Ninghang Hu (one of the
writers of the program that was used), to get problems fixed or to get an idea
on where to look for a solution. Though, this took quite some time. Still, we
learned a lot about the calibration process this way, as we were busy with the
code for quite some time. Although we did understand quite a bit about the
code, and which file was used when, we still stranded at some point.

Collaboration

The collaboration between the two of us was quite good. We had the advantage
that we have the same schedule. So when we wanted to, we could both work
on the project after our shared lectures. We have not had any real cooperation
issues. The thing we probably should have done more consistently, was keeping
contact with the supervisor of our project, Arnoud Visser. He might have been
able to help us sometimes, if we had contacted him. Another problem we found
after talking with Arnoud, is that our labjournal was not detailed enough in the
beginning. Also, we did not always document all the errors we encountered, as
we thought it would not add anything of value to the journal. But he made us
see that writing down your mistakes is a good thing, as you can use it to see
your previous thought processes later on. We tried to apply the advises given
to the labjournal.
This journal can be found at: https://sites.google.com/site/2012robottracking/.
Though, this journal was made in Dutch.

11

https://sites.google.com/site/2012robottracking/

Project Course

The project could be divided into several stages. It was partly installing, prepar-
ing and setting up the system. After this preparatory stage, we could start
looking at the real goal of the project and how we were going to achieve it.
Both of the stages had some setbacks. The main problem we had is probably,
that we did not have a lot of experience with some of the used packages and
programming languages like ROS and C++. We could work through it to some
degree, but it still left a certain black box feeling in certain parts. Some parts
of the code worked, but we did not fully understand why, even after some ex-
planation. Though, some of the code was clear. In the preparatory stage, we
had a lot of trouble with the calibration of the camera. In theory, this was just
following steps from a manual. But since the software we were working with was
still experimental, some of these steps did not work the way they were supposed
to. The commands that were in these steps produced errors that we could not
explain, which might originate from the fact that we did not fully understood
some of the code. Eventually, these problems were solved with some help. But
this still resulted in some backlog. We finished this stage later than we would
have liked.
The second stage, let us call it the experimenting stage, started in the second
week of the second period. We realized that we had a lot less time than we
would have liked for this stage. This was because the curricular courses that we
had in the second period, were a lot more demanding. So we lost time in the
preparatory stage with the calibration and we had some catching up to do, with
less time than planned. We tried to come together as much as possible, through
the other deadlines. Mostly, we were looking through the code and just trying
to grasp the idea of the implementations. We also had some meetings with one
of the programmers from the Accompany Project, Ninhang Hu, who had also
helped us with parts of the calibration before. He tried to walk us through the
code, explaining it. We also had contact with Bas Terwijn and Arnoud, talking
about possibilities of achieving the goal of detecting multiple different shapes.
One of the solutions offered, was the idea of multiple templates. We started
looking more purposefully at the code, for a way to implement that idea of the
multiple templates. This is the point where we stranded. We started by trying
to load two templates after each other, to see if it would be possible. Though the
piece of code where we thought the template was loaded, actually did nothing.
As said before, we changed that specific line, but the same standard template
was loaded. And after that, we deleted the whole line and still a standard tem-
plate was loaded. This loading of the parameter file was happening somewhere
else, and we did not know where. We tried looking for it, but did not succeed.
At this point, about three weeks before the deadline of the report, we had to
start with the report, or we might not be able to finish it. So the priorities
shifted a bit. We still looked, but we never found the location where the file
was loaded.

12

References

[1] Accompany Project Website, http://www.accompanyproject.eu/.

[2] G. Englebienne, B.J.A. Kröse, Fast Bayesian People Detection. University
of Amsterdam, 2010.

Appendix A: User’s Guide

General Options

This section elaborates on the multiple actions, that can be executed after the
complete installation of the system and calibration of the camera.

The only thing that can be done after the installation of the system, but before
the calibration of the camera, is watching the live feed of the camera. Also, this
live feed can be saved to an .AVI file or published directly to a ROS thread.
If the video feed is directly published to a ROS thread, the localization can be
performed real-time. The corresponding commands, to these actions, can be
found at the end of the section ‘Dependencies’.

After the calibration of the camera, the localization itself can be executed. This
can be done in two ways. Either, the live video feed is directly published to a
ROS thread and the localization is performed on this live feed. Or a video is
recorded with the camera and the localization is performed on that file. Both
of these methods for localization, can be found in the section ‘Localization’.

Preparing the system

This section will describe how to build and use the UvA modules of the Ac-
company Project. This guide has been made for installation on Ubuntu 11.10
(Oneiric). In this guide, the preparations of the camera are explained step by
step, specific for the desktop computer and the fisheye camera that are in the
Robolab, at the UvA.

Dependencies

ROS (Robot Operating System) provides libraries and tools to help soft-
ware developers create robot applications. But in this case it will be used for the
UvA module. ROS can be downloaded and installed by following the instruc-
tions on their wiki, in this case ‘ros-electric-desktop-full’ will be needed and its
instructions are found at: http://www.ros.org/wiki/electric/Installation.

VXL is a multi-platform collection of C++ software libraries for Computer
Vision and Image Understanding. The version that was used in this project

13

http://www.ros.org/wiki/electric/Installation

is v1.17.0. It can be acquired at: http://sourceforge.net/projects/vxl/

files/vxl/1.17/vxl-1.17.0.zip/download.

To install VXL, execute the following instructions (Be aware, this might take
some time):

1. Open a terminal, in the folder you installed VXL, and type:

2. unzip vxl-1.17.0.zip

3. cd vxl-1.17.0/

4. mkdir build

5. cd build

6. cmake .. -DBUILD BRL=OFF

7. make -j 4

8. sudo make install

For those new to Ubuntu or terminals, the above commands translate to:
First you unzip te file you have downloaded. You then enter the map that was
made by unzipping the file. You then make a new folder ‘build’ using ‘mkdir
build’ and enter it using ‘cd build’. Using cmake will create an executable file
from source code files. You then execute this file, and perform the installation.
The software package ubuntu-restricted-extras allows the user to install es-
sential software that is not already included due to legal or copyright reasons.
It can be aquired by doing the following:

1. Open a terminal and type:

2. sudo apt-get -y install ubuntu-restricted-extras

The script ‘installUvA.sh’ has to be executed to get the remaining depen-
dencies. This script will get serveral of the dependencies at once, and put them
in their own server. It can be invoked by doing the following:

1. Open a terminal and type:

2. ./ installUvA.sh

After this, all dependencies should have been installed. To test if the camera is
working as well, one of the following actions can be executed.

1. Open a terminal and type:

2. gst-launch rtspsrc location=rtsp://admin:admin@192.168.1.222:8554/CH001.sdp
! decodebin ! videoscale ! videorate ! video/x-raw-yuv, width=512,
height=486, framerate=15/1 ! xvimagesink sync=false

14

http://sourceforge.net/projects/vxl/files/vxl/1.17/vxl-1.17.0.zip/download
http://sourceforge.net/projects/vxl/files/vxl/1.17/vxl-1.17.0.zip/download

This will bring up a window that shows a live feed of the camera. The part ‘rtsp-
src location’ can also be referred to as the camera’s IP, in this case 192.168.1.222:8554,
is the IP of the camera in the Robolab. If this guide were to be used for an-
other camera, with another IP-adress, this part should be changed to the right
IP-adress. The width and height variables will determine what the resolution
of these frames will be. The framerate 15/1 means, that it will show 15 frames
per second.

1. Open a terminal and type:

2. gst-launch rtspsrc location=rtsp://admin:admin@192.168.1.222:8554/CH001.sdp
! decodebin ! videoscale ! videorate ! video/x-raw-yuv, width=512,
height=486, framerate=15/1 ! jpegenc ! avimux ! filesink location=video.avi

This will record the live feed of the camera to a file. The part ‘rtspsrc location’
can also be referred to as the camera’s IP, in this case 192.168.1.222:8554, is
the IP of the camera in the Robolab. If this guide were to be used for another
camera, with another IP-adress, this part should be changed to the right IP-
adress. The width and height variables will determine what the resolution of
these frames will be. The framerate 15/1 means, that it will record 15 frames
per second. The part ‘filesink location’ is the location and name of where the
file will be saved. Change this name before running the code, because if the
name already exists, the existing file will be overwritten.

1. Open a terminal and type:

2. export GSCAM CONFIG=”rtspsrc location=rtsp://admin:admin@192.168.1.222:8554/CH001.sdp
! decodebin ! videoscale ! videorate ! video/x-raw-yuv, width=512,
height=486, framerate=15/1 ! ffmpegcolorspace” rosrun gscam gscam –
sync false

This will publish the live feed of the camera to a ros thread. The part ‘rtspsrc lo-
cation’ can also be referred to as the camera’s IP, in this case 192.168.1.222:8554,
is the IP of the camera in the Robolab. If this guide were to be used for an-
other camera, with another IP-adress, this part should be changed to the right
IP-adress. The width and height variables will determine what the resolution of
these frames will be. The framerate 15/1 means, that it will pubilsh 15 frames
per second. The command ‘rosrun gscam gscam – sync false’ will publish the
feed to a ros thread.

Intrinsic Calibration

For the intrinsic calibration, a checkerboard pattern is needed. As is known,
the lines of a checkerboard are straight. So the program can calculate a trans-
formation from the distorted pattern, to the original pattern it knows. Such
a transformation can be found for all points in the view of the camera, as
long as it has enough images of the checkerboard placed throughout the cam-
era’s view. The checkerboard has to have black and white blocks, and prefer-
ably a large white border around the pattern itself. A good checkerboard pat-
tern can be downloaded at: http://www.ros.org/wiki/camera_calibration/

15

http://www.ros.org/wiki/camera_calibration/Tutorials/MonocularCalibration?action=AttachFile&do=view&target=check-108.pdf

Tutorials/MonocularCalibration?action=AttachFile&do=view&target=check-108.

pdf. The best thing to do is to print this in an A0 format and then secure it to
a board. This board should not be able to bend easily, to ensure the lines stay
straight. So a thick board is recommended.

Intrinsic calibration can be started with the following actions:

1. Open a terminal and type:

2. export GSCAM CONFIG=”rtspsrc location=rtsp://admin:admin@192.168.1.222:8554/CH001.sdp
! decodebin ! videoscale ! videorate ! video/x-raw-yuv, width=512,
height=486, framerate=15/1 ! ffmpegcolorspace”

3. rosrun gscam gscam -s 0

4. roscd accompany static camera localisation/res/calib frames

5. rosrun image view image view image:=/gscam/image raw

6. rosrun accompany static camera localisation image saver -n 5000 -p ./ -t
/gscam/image raw

This will start recording images. While the program is recording, the checker-
board should be slowly moved around in the view of the camera. The board
with the checkboard should also be tilted at different locations, and it should
reach all parts of the camera’s view. If done correctly, there should be a lot
of similiar images at about the same location in each picture. To remove these
abundant pictures, perform the following actions.

1. Open a terminal and type:

2. ./modPics.sh

3. mkdir OLD

4. mv *jpg OLD OLD/

5. eog *.jpg

This makes a new folder, then eog *.jpg is used to check the pictures.
After that step an image list has to be created. This is done by the following
actions:

1. Open a terminal and type:

2. roscd accompany static camera localisation/res/calib frames

3. rosrun accompany static camera localisation create calibration list calib list.xml
*.jpg

4. cat calib list.xml

16

http://www.ros.org/wiki/camera_calibration/Tutorials/MonocularCalibration?action=AttachFile&do=view&target=check-108.pdf
http://www.ros.org/wiki/camera_calibration/Tutorials/MonocularCalibration?action=AttachFile&do=view&target=check-108.pdf

5. rosrun accompany static camera localisation calibration intrinsic -w 6 -
h 8 -m ../mask large.png -k 5 -a 1 -rm -p -zt -o ../camera intrinsic.xml
calib list.xml

After these steps, it should be possible to take a distorted image, made by the
camera, and turn it into a corresponding straightened image. To show if the
intrisic calibration was successful and to see if nothing went wrong, the following
actions can be performed:

1. roscd accompany static camera localisation/res/calib frames

2. rosrun accompany static camera localisation undistortion test -s [image]
-i [camera intrinsic] -f

In this last command, the [image] part should be substituted for the name of
a distorted image. The [camera intrinsic] part should be substituted for the
name of the XML file, that was created with the intrinsic calibration above.
Normally, this file is just called ‘camera intrinsic.xml’.

Extrinsic Calibration

A preparation that has to be made to perform extrinsic calibration, is to put
markers on the floor and possibly even on objects and walls. These markers
should be placed 1 meter apart. Choosing a smaller distance is also possible,
but since all of these points have to be clicked on, it could be time consuming
if the chosen distance is too small. A file called points3D.txt, should be made.
The markers represent the coordinate system of our world. Every marker that
is put down, should be rewritten into the text file in an (X, Y, Z)-system of
coordinates. The coordinates of these markers should be noted according to
these axes in millimeters, an example is:

0,0,0

1000,0,0

2000,0,0

0,1000,0

The order in which these points are put into the text file for 3D points, will
also be the order in which the 2D-points will have to be selected in the image.
Executing the following code will start the program to select these markers in
the 2D-image:

1. Open a terminal and type:

2. roscd accompany static camera localisation/scripts

3. ./fisheye marker images.sh

By right-clicking a frame, it can be saved.

17

1. roscd accompany static camera localisation/res/marker/

2. rosrun accompany static camera localisation create background list marker list.txt
*.jpg

The above will create an image list of the markers.

1. roscd accompany static camera localisation/res

2. rosrun accompany static camera localisation annotate image points marker/marker list.txt
points2D.txt

This is the actual part where the locations of the markers will get selected.
Again, please make sure that the order of the points selected, matches with the
order in the file points3D.txt. Points can be selected by right clicking them in
the image viewer. To make the clicking more precise, you can press ‘SHIFT’
and ‘+’ to zoom in, up to four times. If you try to zoom in more than four
times, the image viewer will crash and you have to start over.
Once this is done, press ‘ENTER’ to save the results.
Now that these points are annotated, a file called points2D.txt has been made.
For the algorithm to work correctly, the file points3D.txt is also needed in de
/res folder. This file can be moved, by typing the following command in a
terminal:

1. cp [location]/points3D.txt .

The final step in the extrinsic calibration is made by typing the following com-
mand in a terminal:

1. rosrun accompany static camera localisation calibration extrinsic -i cam-
era intrinsic.xml -o camera extrinsic.xml -p points2D.txt -q points3D.txt

After this params.xml will be created, and now this file can also be modified.
Interesting things to change here are the parameters for the size of humans or
Nao’s, and the scale in which you would want everything to be recorded from
that point onwards.

Building the background model

To build a background model, some scripts have to be executed. These scripts
can be accessed performing the following actions:

1. Open a terminal and type:

2. roscd accompany static camera localisation/scripts/

3. export GSCAM CONFIG=”rtspsrc location=rtsp://admin:admin@192.168.1.222:8554/CH001.sdp
! decodebin ! videoscale ! videorate ! video/x-raw-yuv, width=512,
height=486, framerate=15/1 ! ffmpegcolorspace”

4. ./fisheye capture background images.sh

18

The viewer of the live-feed will be opened. To save an image as a background
frame, right click it. About 25 frames will be enough.
To then build the background model, type the following code into a terminal, but
note that this should be done in the same folder. ./create background model.sh

Creating the prior

The prior is the area in which the localization will be performed. It can be
considered the area where things have to be tracked. The following actions
have to be executed to create the prior:

1. Open a terminal and type:

2. roscd accompany static camera localisation/res

3. rosrun accompany static camera localisation create prior -l background images/background list.txt
-p params.xml -o prior.txt -i camera intrinsic.xml -e camera extrinsic.xml

Then right click on points of the image. A line will be made, drawn between
the points and thus marking your prior. Press ENTER to finish the prior once
you think it is good enough.
Now that everything is done, you will probably want to see if it worked correctly
or not. The following actions will show you a distorted image, and in the image
you can see the prior as well. If anything does not look right, look for the step
that seems to cause the problem. When you find this wrong step, try to redo it
and check the calibration again afterwards. The actions to check the calibration
are as follows:

1. Open a terminal and type:

2. roscd accompany static camera localisation/res

3. rosrun accompany static camera localisation annotate pos -l background images/background list.txt
-p params.xml -r prior.txt -i camera intrinsic.xml -e camera extrinsic.xml
-a temp.txt

If everything looks fine, the calibration of the camera is now completed. The
only thing that has to be changed, is the background model. The smartest thing
is to do this everytime something in the background has been changed, or even
every time you run the localization. This way, you reduce the amount of noise
detected.

Localization

The last step is to use localization, this is done by the following actions:

1. Open a terminal and type:

2. export GSCAM CONFIG=”rtspsrc location=rtsp://admin:admin@192.168.1.222:8554/CH001.sdp
! decodebin ! videoscale ! videorate ! video/x-raw-yuv, width=512,
height=486, framerate=15/1 ! ffmpegcolorspace”

19

3. roslaunch accompany static camera localisation fisheye localization.launch

Localization can also be performed on a video file. This can be done by ope-
nening the folder in which the video is located and opening one or serveral
terminals. When using one terminal add a ’&’ after each line of code, without
the quotes. This will ensure the parts will run in the background and you can
continue using the terminal. The lines of code are as followed:

1. rosrun accompany static camera localisation video publisher -s 0.3 -i ex-
amplevideo.avi

2. rosrun accompany static camera localisation camera localization -v -p.

3. rostopic echo /humanLocations

If roscore is not actived the localization will not work. This can be solved by
starting roscore manually before executing the code. This can be done by typing
‘roscore’ in a terminal.

20

	Introduction
	The Project
	The Purpose

	Getting Started
	The Search Space and Camera
	Calibrating the Camera
	Intrinsic Calibration
	Extrinsic Calibration
	Background Model
	Prior

	Making the Distinguishment
	Used Software
	Theoretical Approach
	Practical Implementation

	Conclusion
	Collaboration
	Project Course
	References
	Appendix A: User's Guide
	General Options
	Preparing the system
	Dependencies
	Intrinsic Calibration
	Extrinsic Calibration
	Building the background model
	Creating the prior
	Localization

