
Feature Detection and Localization for the
RoboCup Soccer SPL
Amogh Gudi (23408036), Patrick de Kok (5640318), Georgios K. Methenitis (10407537), Nikolaas Steenbergen
(10333681)

University of Amsterdam

February 5, 2013

In this project we propose a basic code for the
RoboCup Soccer Standard Platform League for the
Dutch Nao Team. We focused on the problem of

visual feature recognition and the localization of the
robot in a tournament setup. This project contains
a detailed description of our implementation together
with a conclusion and a brief evaluation. Since this re-
port only covers feature detection and localization we
give an outlook on what parts are to be implemented
in addition to make the robots play soccer.

1 Introduction

By mid-21st century, a team of fully autonomous humanoid
robot soccer players shall win the soccer game, comply with the
official rule of the FIFA, against the winner of the most recent
World Cup.

– RoboCup Initiative, objective statement [6, 9]
RoboCup encompasses a set of competitions, stimulating inno-

vation and research towards reaching one of the grand challenges
within both the robotics and AI community – defeating the most
recent World Cup winning soccer team by a team of robots in
2050. This demands for systems which can deal with a dynamic
environment with a continuous, incompletely observable state
space, with non-symbolic sensor readings and with cooperation.

The best known competition of RoboCup is RoboCup Soccer.
This competition encompasses 5 leagues, each with different rules
imposed on the game as well as on the participating robots [7].
These differences induce a different research focus within each
league. One of those leagues is the Standard Platform League,
where all teams use identical robots. The Robocup Federa-
tion states that “[t]herefore the teams concentrate on software
development only, while still using state-of-the-art robots. Omni-
directional vision is not allowed, forcing decision-making to trade
vision resources for self-localization and ball localization.” [7]

To keep on pushing research forwards and the community of
participating teams motivated to implement and design new
methods, the RoboCup Soccer competition updates the rules
each year. One of the more recent updates in the rules is that
all goal posts should be yellow, whereas before there were two
differently colored goal posts. This puts an emphasis on the
implementation and enhancement of localization algorithms as
the field is completely symmetrical.
The Dutch Nao Team has participated since 2010 in the

RoboCup Standard Platform League (SPL) [24, 21, 22] and
plans doing so for 2013 as well [23]. The software package
used during the previous cup has been written in Python. Its
localization algorithm was very heuristic and course-grained; it
did not made explicit where the robot was placed, but indicated

whether the robot should kick the ball1. Currently, the Dutch
Nao Team is transitioning its code from Python to C++ for
speed gains.

The subject of this report can be split in two parts. Section 3
describes the first part, where we have implemented modules
which extract several visual features located on the field. We
describe which features are extracted and how the images coming
from the NAO’s camera are processed.

These features and their locations with respect to the robot are
passed to the localization module from section 4. We first give a
general description of the algorithm (i.e. Monte Carlo Localiza-
tion) in section 4.1, and describe how the sensory information
is processed and modeled (section 4.3 and 4.2). Section 4.4 and
section 4.5 describe extensions implemented to the standard
Monte Carlo Localization to improve the performance of the
system on common problems in a RoboCup Soccer tournament
situation. After the description we give a short evaluation of
those approaches in section 5 and a conclusion in section 7. In
the last section we will sketch future work, that needs to be
done to have a functioning robot soccer team in a tournament
situation.

2 Related Work

Canas et al. [2] propose algorithms to detect only the goal
from the robot’s camera based on geometrical planes and based
on color and edge filters and Hough transformations. However,
these algorithms make the assumption that the goal is completely
visible to the robot, but we know that this is not the case in
most of the situations. This approach self localizes the robot
only based on goal detection, which we might say is not a robust
way.

Schulz and Behnke [18] give a method for line-based localiza-
tion. This method recovers lines from images and dechyphers
features from it, which are then used by localization algoritms
like Monte-Carlo localization. This method appears to reduce
dependance on colour-coded robot soccer environment.
Deng [5] explores triangulation techniques on the detected

features on the robot’s horizon. However, although theoretically
robust, this technique fails in the practical implementation
because of noise in the image caused by movement.
Ashar et al. [1] present a well tested hierarchy of modules

implementing perception, world modelling and behaviour gener-
ation, incorporating a simpler self-localization system. Due to
time constraints we limited ourselves to feature detection and
localization.

1The robot would kick the ball in the direction of a goal post when in
sight. The behaviour has not been changed since the field has been
made symmetrical.

NAO Localization • University of Amsterdam page 1 of 10

Figure 1: HSV colorspace. (Image source)

3 Feature Extraction

Visual object recognition is a key ability for autonomous robotic
agents, especially in dynamic and partially observable environ-
ments. A reliable landmark detection process is really crucial
for achieving self-localization, which can be easily considered as
the stepping stone for having a functional robot soccer team.
In this section, we describe the whole procedure of processing
input images from the NAO’s camera, outputting features that
are informative to be used by the core of our localization system.
Using a variety of image processing techniques, we successfully
detect field landmarks. In general, we have to deal with noisy
images, which not only contain the field region but also back-
ground noise and useless information which comes from above
the horizon of the field. Furthermore, we had to deal with
lighting conditions which may vary to a great extent in differ-
ent places for different times. Also, the real-time constraints
which had to be taken into consideration during our algorithmic
implementation in order for the whole procedure to be able to
execute in real time.

3.1 Choosing colorspace

The first challenge we came along was to choose the best col-
orspace representation in order to overcome the variations in
lighting conditions. The dataset we had consisted of RGB im-
ages. Unfortunately, it is unfeasible to use the default RGB
colorspace for most applications due to influences such as light-
ing and shadows. We also experimented with normalized RGB
colorspace. Theoretically, normalized RGB would have given
us the pure chromaticity values of each object in our field of
view, and thus overcoming the problems shadows and lighting
conditions can give. However, normalized RGB did not help us
achieving a light-invariant color representation, resulting into
false positives in color segmentation. HSV was the solution to
our problem. HSV is a cylindrical colorspace representation,
which contains information about hue, saturation, and value.
We found hue to be really informative in order to distinguish
easily between colors. Hue defines the pure chromaticity of the
color and it is independent of the lighting conditions. In figure 1,
this cylindrical color representation is illustrated. One can see
that the hue is represented by the angular dimension in the
vertical axis of this cylinder.

3.2 Basic Pipeline

Having described the first basic step of our approach, choosing
the proper colorspace for our application, it is time to go deeper
into the feature extraction process. The first step in this process
is the image input from the NAO’s camera in HSV format. As
we said before, images not only contain the important region of
the field in which we are interested in, but also some background
information which is useless in order to detect field features. This

Table 1: Threshold values used for color segmentation.

Threshold
Color Hue Saturation Value
Green 20 ∼ 37 100 ∼ 255 100 ∼ 255
Yellow 38 ∼ 75 50 ∼ 255 50 ∼ 255
White 0 ∼ 255 0 ∼ 60 200 ∼ 255

background usually extends above the field horizon and it may
become really disturbing in the extraction process. This is the
reason why background removal is the first step in our feature
extraction scheme. Field lines, goals, ball, and other NAO
robots are the features located into the field. In this project, we
only took into consideration lines and the goals which are static
landmarks, unlike the ball and other robots that are moving as
we could not depend on them for self-localization.

The HSV values are used to binarize the image, with respect
to the goals, and with respect to the lines. As we said in the
introduction, the field is colored green, both goals are yellow,
and lines are white. The next step of the feature extraction is
the goal detection, making use of the horizontal and vertical
histograms of yellow values. Line detection is followed in order
to find a good estimation about the lines detected in our field
of view. Having these lines’ estimations, we can detect feature
on them, using geometric properties. Last step in this process’
pipeline is to output all these detected features to the localization
core process. We can now enumerate all steps in these pipeline.
These steps are:

1. Input HSV image from camera

2. Background removal

3. Image binarization

4. Line detection

5. Line feature detection

6. Goal detection

7. Output features

3.3 Image format

NAO’s camera can output images in different colorspace rep-
resentations and resolutions [16]. The images from the dataset
we had were in RGB format, and they had QVGA resolution
(320 × 240). We wanted to keep a low resolution in order to
keep the time complexity of our algorithm feasible for real-time
execution.

3.4 Background Removal

Background removal defines the task of detecting the field’s bor-
ders in order to exclude uninformative regions in the processing
image. By doing so, computation time is saved as only that part
of the image is subtracted, where all the features are located
we are interested in. This can be done by a vertical scan of
the image and detecting the first green pixel in each column.
This method can work efficiently but it is not robust in many
cases, as green pixels can be found above the field’s horizon as
well. Following the same principle in our approach, we consider
as background every region in a column before a considerable
amount of green pixels. We start in each column considering
the pixel in the first row as background. Then, during scanning
each column, we stop when we find a set amount of continuous

NAO Localization • University of Amsterdam page 2 of 10

http://en.wikipedia.org/wiki/HSL_and_HSV

pixels which are green and assign as horizon row in this column
the first of this sequence of green pixels. Table 1 displays the
hue, saturation and value thresholds for pixels to be classified
as green. Figure 2 illustrates the process of background removal.
Even though it is not a sophisticated method, we can see that
in this specific example, almost all background above the field’s
horizon has been removed, helping us in this way to avoid detect
false positive features in the background.

3.5 Image Binarization

In this section, we will talk about another image pre-processing
technique which helped our main procedure detect features
easier. Image binarization is a process which outputs two binary
images, one in respect to the goals, and the other in respect
to the field lines. For goal detection, it is natural that we are
interested only in yellow areas of the image. The same applies
for field lines, we are only interested in green and white areas of
it. The main goal of this process is to classify colors according
to table 1. As we can realize, a simple way to classify colors is
used in order to get a binary image, with the interesting part
highlighted in each case. For the first case, goals, we are only
interested to find yellow, so we output white for each yellow
pixel, and black for any other color. For field lines, black for
every other than white pixel.

Figure 3: Binary images in respect to the lines (left), and to the
goal (right), for the example RGB image in Figure 2.

Figure 3, illustrates the process of image binarization. To add
some technical details about the above implementation of image
binarization, we can say that the whole process of it is integrated
into the background removal procedure which requires only one
vertical scan of the input image, and its goal is to minimize
the space complexity of the whole feature extraction method,
as now we have only to process binary images with only one
channel, in contrast to the original 3-channel image.

3.6 Line Detection

Before proceeding to the exact procedure about finding goal
posts and line features, it is time to introduce our approach to
detect line segments in a binary image like those we presented
before in section 3.5.

3.6.1 Other approaches

In general, we are interested in finding one line segment for each
actual line appearing in the image. Other methods, like Hough
Transformation or Probabilistic Hough Transformation failed to
detect these continuous line segments, due to the fact that they
applied after edge detection step. Then, when edge detection
is applied to those lines finds edges at both sides of an actual
line. Therefore, both Hough transformations find lines at both
sides of an actual line. There were also some other problems
with these methods, namely, the big number of detected lines,
small line pieces on each actual line, and wrongly connected
line segments. Furthermore, the huge number of detected lines,
made our efforts to cluster those lines tough.

Figure 4: Points produced by black-white-black transitions in the
example binary image of figure 3.

3.6.2 Our approach

As a result, we came up with our own approach of finding line
segments in these noisy images. The main idea in this approach
is that if we had some points on these actual line segments, we
could be able to connect them based on color information, and
geometric properties they have. Therefore, the first step of this
algorithm, is to generate these points, scanning the picture every
5 ∼ 10 pixels vertically and horizontally. We are only interested
in transitions which start from black to white to black in the
end. We store the middle points as a pixel coordinates < x, y >
in a vector. As an illustration, we can see in figure 4 where
these points are located for the same example input image as
before.
Once these points are generated, the next step is to connect

them in order to form line segments. For the representation of
each line segment we hold a queue of points. At each time the
line segment is represented by the first and the last point in
the queue as starting and ending points. Pushing always the
first point of the vector in the queue and deleting it from the
vector the same time, we are looking for the closest 5 points to
this point. From these closest points, we are checking the white
ratio between these points and our initial point. Assuming that
points from the same line segment do not have black pixels
between them, we connect the closest one with high white ratio,
usually 1.0, and pushing it in the queue of points as the last
element and deleting it from the vector. The same procedure
continues, but now we are looking to connect the last element
on the queue with one from the remaining points in this vector.
So, now the question is how are we going to stop connecting
points? Considering a line formed by several points, each of
these points should have a small distance from the formed line.
Based on this idea, we can introduce an error function in order
to define when a line starts not to comply with the points used
to generate it. Assuming a queue of points Q, which contains n
points, we can say that:

Error[Q] =
n∑
i=1

dE (Qi,Line (Q0, Qn))2 , (1)

where dE represents the shortest Euclidean distance function
between two objects, and Line generates a line through two
points.
This error measure proved to be really informative in our

case to understand when a line is starting to consist of points
which may not represent the same line segment. When this error
becomes larger than a threshold, we store the produced line so
far, and we continue with the next point in the vector to generate
a new line. To store the line, we first check if there is an already

NAO Localization • University of Amsterdam page 3 of 10

Figure 2: Background removal process example. Left to right: original RGB image, points indicating the start of the field, regions of
interest without background information.

Algorithm 1 Line segment detection algorithm
1: Input: points, image
2: Output: line
3: start = points[0]
4: while points.size() 6= 0 do
5: line.push(start)
6: bestCandidate = findBestCandidate(points, image)
7: points.erase(bestCandidate)
8: error = computeError(line, bestCandidate)
9: if error < threshold then

10: start = bestCandidate
11: else
12: storeLine(line)
13: line.clear()
14: end if
15: end while

Figure 5: Lines produced by the line segment detection algorithm
on the above points generated by the binarized image from
the previous figures.

stored line which is an extension of the current line. To find this
out, we measure the error we introduced in equation 1, taking
now as the line’s starting and ending points the points with
the largest distance between them. If the error remains small
enough, and the closest points of this connection are covered in
high white ratio, then we merge these lines which now represent
a continuous line. Algorithm 1 presents the pseudocode for the
line detection procedure. In line 12, function storeLine takes
as input the produced line. If the line cannot be merged with
an already stored line segment, it is stored as is in a vector of
lines. In figure 5, we illustrate the produced lines by the above
algorithm. We can see the effectiveness of our algorithm to
detect lines. A big advantage over the other method we have
tried is that we now detect single and continuous lines upon
each actual line segment on the field.

3.7 Line Feature Detection

Until now, we have talked about image binarization and how
we detect line segments. The next step in our feature extraction
procedure is to identify and extract information about line
features. In the RoboCup Soccer SPL field, we can distinguish
4 types of features that can be extracted out of lines. There are
three lines intersections types which can be described as a T, L,
and X crossing. The fourth is a circle in the middle of the field,
which crosses the middle line in two points. To detect the circle,
or the ellipse as it is seen by the low-height robot’s camera, we
are going to talk about in a different section. In this section, we
are only discussing how we can extract the first three types of
intersections.

For this purpose we introduced a confidence measure which is
based on geometrical properties of intersections. Given the lines
which have been produced by the previous step of the process,
we check every possible intersection produced by pairs of lines
which have at least 10 degrees angle difference in order to avoid
finding intersections by two continuous lines, and intersection is
located within the margins of the image. For each one of these
intersection classes, we compute a confidence measure. We can
briefly define these measures for the several types:

T: the intersection is located upon the one line of the line-pair,
but not close to the line’s starting or ending point.

X: the intersection must be upon both lines and not close to
both lines’ starting or ending points.

L: the intersection must be close to both lines’ starting or ending
points.

These measures are computed in a way that there will always
be a unique ranking among the intersection types. After the
computation of the confidence measure for each intersection, we
check if there are intersection types which can be combined in
one. For example, two T type intersections can form a X type
if they are located near and have opposite orientation. Except
from the computation of the intersection position and confidence
for each type of intersection, we also compute the orientation of
each of them, in order to deliver as much information as possible
to the localization system about the robot’s position.

3.8 Goal Detection

Last step in the feature extraction process is the detection of
the goal. Goal detection is critical for the robot in order to
take sensible actions, and due to the fact that it is the only
easily distinguishable landmark in the field. Both goals on
the RoboCup Soccer SPL field have a distinct yellow color.
We have already discussed how the binary image in respect to
the goals is created. Integrated in the same scan of the input
image, we compute two different histograms for yellow pixels,

NAO Localization • University of Amsterdam page 4 of 10

one horizontal and one vertical. These histograms are going to
help us later in goal detection. We also store points of yellow-
green transitions during the same image scan to estimate the
possible goalposts’ bottoms.

Goals consist of two vertical bars and a horizontal attached to
the tops of the two vertical bars. So, we can realize that vertical
bars are more informative, especially to inform our localization
system about the orientation in respect to the goalposts.
The first step in the goal detection process is the use of the

horizontal histogram of yellow pixels in combination with the y-
positions in where we found yellow-green transitions. Combining
this information, we can find the local maxima on the horizontal
axis and find the positions where goalposts are located. If the
maxima of this histogram have values under a certain threshold,
the process will not continue for vertical posts detection, as
it appears that there is no vertical post. If these values are
high enough, and we have two local maxima, we are pretty sure
that there are two vertical posts in the image, if there is only
one we are looking only for one vertical post. In both cases we
scan the image to left and right from the maxima and exclude
parts of the image which do not contain yellow pixels at all, for
computational efficiency.

The next step is the line detection, using the same approach
we have discussed earlier, but now generating points only with
a vertical scan, as we are only interested in vertical lines. From
these vertical lines we choose the best ones with respect to
their length, orientation, and with the prior knowledge about
possible horizontal positions for the goalposts. These lines will
be extended towards the bottom of the goalpost and the top,
and by doing so estimating the true height of each goalpost.
To estimate the width, we are taking random samples upon
the line representing the goalpost and measure with a simple
scan the width. The average of all these measurements will
be our estimation about its width. We also compute a confi-
dence measure about the bottom of the goalposts, taking the
estimated bottom of the representative line and computing the
distance from the yellow-green transition discussed earlier. The
same procedure is applied for the horizontal goalpost as well.
Horizontal goalpost can be very informative in cases that only
one vertical goalpost is visible by our agent. The orientation
of the horizontal goalpost can be used in order our agent to
distinguish between left and right goalpost. Figure 6 illustrates
the results of the goalpost detection in three different situations.

3.9 Ellipse Detection

The field of the RoboCup Soccer SPL league has a circle in
the middle with a diameter of 120 cm. This is an important
feature for the NAO’s self-localization as this is the only unique
feature on the field. In computer vision, most commonly ellipse
detection is carried out on binary images from an edge detector.
However, in general, ellipse detection does not address the
problem of false positives and false negatives well, especially for
partially visible ellipses.
For this project, we chose to implement an ellipse detector

based on Pătrăucean’s method [15]. We chose this technique
because it is parameterless and required no special tunining for
different scenarios. Most ellipse detectors require as input certain
parameters that define the scenery such as a range of expected
radii of ellipses, and a minimum distance between two ellipses.
This approach aims to be free of critical parameters as much as
possible, in order to avoid introducing false negatives. Also, it
provides a control over the number of false positives by using a
contrario validation. The greedy-like candidate selection step
implemented by this algorithm ensures a reasonable execution
time. The two primary steps in this algorithm are:

Figure 7: Left to right: RGB image obtained from NAO’s lower cam-
era, binary image of field lines after background removal,
possible ellipses detected (and lines, not considered)

• Region growing: Pixels with a similar gradient orientation
are aligned to form rectangular regions.

• Region chaining: These detected regions are chained to-
gether if they roughly follow some conditions that define
ellipses.

To tackle the problem of false positives, a contrario validation
is employed to reject or validate candidate ellipses. The a
contrario theory employs the non-accidentalness principle (which
says that “we see nothing in noise”). Therefore, as described in
[15], candidate ellipses that have a higher chance to be observed
in noise are discarded. However, as can be seen in figure 7, even
after this step, we still find a number of false positives because
small features like penalty X crossings, and resedue background
noise often gets classified as small arcs by the ellipse detector.
This problem can easily be tackled by filtering the candidate
ellipses on their arc lengths and putting a minimum threshold
on it.

The ellipse detection step can also ensure fewer false positives
(and faster computation) during the line feature detections stage
if ellipse detection is performed first: if we know with confidence
the area that the circumference of the ellipse is covering, we
know that line crossings do not exist on it and hence we can
mask this area for the line feature detection step.

3.10 Inverse Perspective Mapping

A transformation from one projective plane to another can
be utilized for generating views of objects different from the
camera position. Inverse perspective mapping (IPM) makes use
of this. It projects an image on a known plane and gets rid
of the perspective effect on objects that are on that plane and
produces a distorted view for all others [12]. We have not found
other teams using this method.

Information like the angle of view (under the horizon) and the
distance of objects from camera associate a different information
content with each pixel of an image. In fact, the perspective
effect must be considered during the processing of images so as
to weigh each pixel with respect to its information content. As
a counter to this issue, IPM lets us remove the perspective effect
and remap the image to a 2D domain, so that the information
content is evenly spreadout among all pixels [14].
It must be noted that applying the IPM transform requires

some camera conditions to be known. These are the camera’s
height above ground level, its aperture, its tilt with respect
to the vertical axis and its resolution. Since this information
can be computed fairly accurately by the NAO through inverse
kinemetics, the IPM transformation can be used by it. Thus,
assuming that the field in front of the camera is planar, a bird’s
eye view of the playing field can be obtained.

In the domain of robot soccer, the use of IPM transformation
can have a few potential advantages. Estimation of distance
and bearing to a feature point on the field is simplified because
now we have a bird’s eye view of the field in front of us. Prepro-
cessing steps like background removal is also much easier than
on regular camera images because of the fact that always the

NAO Localization • University of Amsterdam page 5 of 10

Figure 6: Goal detection example results (green: left goalpost, red: right goalpost, white: undefined vertical goalpost, blue: horizontal
goalpost.

lower part of the image contains the field. Moreover, IPM also
overcomes the problem that the NAO’s head can tilt along vari-
ous axes because this transformation is robust to such viewpoint
changes. Lastly, the feature extraction step can itself be made
more robust and computationally inexpensive. This is because
when viewing the field from a top perspective, all intersecting
lines on the field appear to intersect orthogonally and circles
retain their shapes. However, one of the main problems we faced
while using IPM for feature extraction was that feature points
far from the camera appear to get distorted due to the trans-
formation. This causes many false negatives while extracting
features. One ad-hoc solution to this problem was transforming
the binary image of the lines in the field instead of the raw RGB
image. Another problem with using IPM was the difficulty in
measuring projected objects such as goal posts on the field. The
transformation always stretches the goal posts such that their
top portions are no longer visible/detectable. Thus, goal post
detected continues to rely on the original camera images.

We now briefly explain this transformation[11] while not going
into the details of its mathematics. In IPM, we trace a ray from
a point in the image plane through the center of projection and
towards the horizontal plane, where it results in an intersection.
In this way, we find the corresponding image point.
We first create matrices that contain the x and y locations

in the world frame, where the pixels in the bottom portion of
the camera image (where we assume we see the field based on
the camera’s viewing angle, height and aperture) are mapped
by using the inverse perspective transformation equations (see
figure 8, center). Next, we find the weights needed to create
an inverse-perspective-mapped image with evenly spaced pixels
by linearly interpolating between intensity and color values in
the original image. Finally, we apply the inverse-perspective
interpolation mapping to an RGB camera image to get an
inverse-perspective-mapped image[8] (see figure 8, right).

4 Localization

We based our localization module on the Monte Carlo Local-
ization method (MCL). The module has been augmented with
several extensions taken from literature. This part of the report
describes the standard MCL approach, the models that were

Figure 8: Left to right: front facing RGB image obtained from
NAO’s lower camera, map of image pixels to the world
frame, bird’s eye view obtained after IPM

used to incorporate incoming sensor information (i.e. odometry
and observed visual features in the camera image). We describe
how the observed features are associated with the given fea-
ture map of the soccer field. Eventually we elaborate on how
the standard approach was improved to overcome well known
shortcomings of the usage of particle filters in a robot soccer
tournament environment.

We chose to use the MCL as basis for localization of the robot
since it is a well known approach, and thoroughly researched.
It is a multimodal particle based localization method (i.e. it
can deal with multiple pose hypothesis at the same time). Since
the new environment for 2013 is completely symmetric this is
a valuable property. In addition to that, MCL can deal with
erroneous sensor information, which is an unavoidable problem
in real life applications in robotics. It is able to recover from
kidnapping (i.e. repositioning the robot on the field without
odometry information). Finally the number of particles can be
adjusted. This is useful, since the NAO robot platform offers
only limited computational resources.

4.1 Monte Carlo Localization

The basic MCL algorithm is depicted as pseudocode as described
by Fox et al. [4] in algorithm 2.
where m denotes the map, χt particles at time t, ut control

input (in our case odometry information) at time t, zt sensor
input (in our case visual features) at time t.
In general the MCL consists of three main steps:
Initialize: place particles at random

NAO Localization • University of Amsterdam page 6 of 10

Algorithm 2 Monte Carlo Localization
1: Input: χt−1, ut, zt,m
2: Output: χt
3: monte_carlo_localization(χt−1, ut, zt,m)
4: χ̄t = χt = ∅
5: for m=1 to M do
6: x

[m]
t = sample_motion_model(ut , x[m]

t−1)
7: w

[m]
t = measurement_model(zt, x[m]

t , m)
8: χ̄ = χ̄+ 〈x[m]

t , w
[m]
t 〉

9: end for
10: for m=1 to M do
11: draw i with probability α w[i]

t

12: add x[i]
t to χt

13: end for

1. process odometry information: Change particle poses
(position and rotation) accordingly. (line : 6)

2. process visual sensor input (extracted features):
Calculate likelihood of pose hypothesis (particle) and weight
particle accordingly. (line : 7)

3. resample: Redraw all particles, place new particles dis-
tributed according to the former computed weights, and
reset all weights to one. (for loop starting in line : 10)

The initialization of particle poses does not necessarily have
to be at random, if the initial robot’s position is known, or
approximately known (e.g. only one side of the field) it is
advantageous to sample from this known prior position.
Everytime new information is available those three steps

can be executed, first process the odometry information, and
move all particles accordingly. Since the odometry of robots in
the majority of cases incorporates an error, we add additional
(Gaussian) noise to it.

Then we process the visual features, which in our case will
be returned from the feature recognition module. Each feature
comes with range, bearing and type. In order to compute a
likelihood for each pose hypothesis, we need to associate each
given feature to a feature of the feature map. This process is
described in detail in the following section. Finally we resample
all particles according to the likelihood of each pose hypothesis.
Such that at poses that had a high likelihood and thus a high
weight, we place more particles. In this step all weights will
be reset to one. And we repeat all steps with new incoming
information.

4.2 Sensor Model

The feature recognition module returns the range and bearing
and type of a feature extracted from the image feed of the
NAO robot (an elaborate description of the methods used can
be found in section 3). Currently L-crossings, T-crossings and
X-crossings and the bottom of the goal posts can be processed
(it is possible to incorporate more types of features, e.g. lines,
or the middle circle). These features occur multiple times in the
map, it is not possible to distinguish between different features
of the same type a priori. For the Monte Carlo Method to work,
we need to associate one feature to a feature on our feature map
of the soccer field. To determine which observed feature will be
associated with which map feature, we compute the observed
feature position according to our current pose hypothesis to map
space (assuming that we are positioned in the particle position,
whose weight we want to compute), then choose to associate it
with the feature in the feature map which is closest:

argmin
j

(
√

(mj,x − fx)2 + (mj,y − fy)2)

where f is the feature observed, fx and fy the feature position
and mj,x and mj,y the position of feature j in the feature map
with the same type as observed feature f .

(This simple model was chosen due to time constraints. More
elaborate models are possible, e.g. aggregate two or more fea-
tures and compute correspondence values for those "feature
patterns"). To compute the final likelihood, we calculate the
range and bearing of the feature map feature chosen, according
to our pose hypothesis. Again we assume erroneous sensory
information. For simplicity we model this error as a Gaussian,
although the underlying error model could be different. The
sensory model computes the final likelihood of a pose estimate
as described by Thrun et al. [20]:

q =
N∏
i=1

prob(ri − r̂j , σr) ∗ prob(φi − φ̂j , σφ) ∗ prob(si − ŝj , σs)

where q is our final likelihood estimate for a certain pose hypoth-
esis, i = 1 .. N the number of features observed in current image
of the camera, ri the range of the observed feature i, r̂j the
computed range of the feature j in the feature map associated
with the observed feature according to the current pose hypoth-
esis, prob(ri − r̂j , σr) denotes the probability of value ri − r̂j in
a zero mean Gaussian with variance σr. prob(φi − φ̂j , σφ) and
prob(si− ŝj , σs) denote the probability of a zero mean Gaussians
for difference in bearing of observed feature φi and bearing of
associated map feature φj and probability of si − ŝj on a zero
mean Gaussian with variance σs for the difference in certainty
of having chosen the right association of feature on the map and
observed feature accordingly.

4.3 Odometry Model

The odometry model can be either implemented from actual
sensor data (through built in accelerometer, or computation of
steps taken), or the control input. Since the current implementa-
tion was not tested on the NAO robot platform yet, it is still left
to further evaluation which input is more advantageous. Since
both methods incorporate an error, control input through not
exactly working motors, or sensor information noise, for each
particle we sample from the odometry input with additional
noise. This noise is assumed to be Gaussian and independent.
At the moment the odometry noise is modelled as error in x
and y direction travelled and noise for additional rotation.

4.4 Augmented Monte Carlo Localization

Since the standard MCL algorithm described in section 4.1
might perform poorly in case of kidnapping. This is if the
confidence of the robot pose is high and it gets replaced from an
extrinsic source (e.g. penalty of referee). If the pose confidence is
high, the particle density is high around the most probable point
in pose space. The robot might get replaced to a pose where
no particle is located. It might take a long time till particles
will aggregate at the new position. A suitable extension to
the standard approach is to keep track of the measurement
likelihood both in a short term average and a long term average.
If those differ, the robot is capable of detecting a kidnapping
situation. New particles can be sampled at random according to
the difference of short and long term average. Thus increasing
the recover speed after a kidnapping situation as described by
algorithm 3.
To incorporate the long and short term average we change

the basic algorithm described in section 4.1 as follows:
We define the long and short term average in line 4, insert
the computation of the current weight average in line 10,
then update wslow and wfast in lines 12 and 13. With

NAO Localization • University of Amsterdam page 7 of 10

Algorithm 3 Augmented Monte Carlo Localization as depicted
by Thrun et al. [20]
1: Input: χt−1, ut, zt,m
2: Output: χt
3: augmented_monte_carlo_localization(χt−1, ut, zt,m)

4: static wslow,wfast
5: χ̄t = χt = ∅
6: for m=1 to M do
7: x

[m]
t = sample_motion_model(ut , x[m]

t−1)
8: w

[m]
t = measurement_model(zt, x[m]

t , m)
9: χ̄t = χ̄t + 〈x[m]

t , w
[m]
t 〉

10: wavg = wavg + 1
M
w

[m]
t

11: end for
12: wslow = wslow + αslow(wavg − wslow)
13: wfast = wfast + αfast(wavg − wfast)
14: for m=1 to M do
15: with probability max{0.0, 1.0 - wfast/wslow} do
16: add random pose to χt
17: else
18: draw i ∈ 1, .., N with probability α w[i]

t

19: add x[i]
t to χt

20: end with
21: end for

αfast and αslow being the decay rates, where 0 <= αslow <<
αfast. Finally we sample particles at random with probability
max{0.0, 1.0 − wfast/wslow} and otherwise according to the
particle weights computed in the measurement step, as before.
This is called Augmented Monte Carlo Localization (AMCL).

4.5 Resetting Sensor Model

Now the robot is to a certain extend able to detect a kidnapping
situation (this might take several iterations of the AMCL till
the long and short term average differ sufficiently), and injects
particles at random. In the case of injecting particles totally
at random, the localization module is subject to pure chance
to sample particles near to the actual position. We can speed
up the process in case we have observed visual features. E.g.
if we see both goal posts, it is highly unlikely that we are in a
position from where we actually cant see any goal. In this case it
is possible to sample from the visual sensor information instead
of totally at random a similar method was originally proposed
by Lenser and Veloso [10]. In our implementation we sample
from one feature at random with added Gaussian noise in range
and bearing. Since we have several features of the same type
in the feature map, again we choose one at random for each
sample we want to resample. This will result in several circles
around all features on the feature map of the type of chosen
visual feature to sample from. Due to time constraints, we only
chose one observed feature to sample from. It might increase
the recovering speed after a case of kidnapping, to sample from
the pose probability distribution of several features (we can
reduce the sample space from several circles around the features
in the feature map to several points, if we observe and take into
account two visible features).

4.6 Resampling method

As described by Thrun et al. [20] resampling using a random
number leads to loss of variance. (e.g. a robot with no percep-
tion, after a sufficient amount of resampling steps would only
remain with one position hypothesis. Since if sampling with a
random number for each particle might lead to the loss of one

hypothesis, if two particles are resampled at the same pose).
Algorithm 4 depicts low variance resampling.

Algorithm 4 Low variance resampling
1: Input: χt,Wt

2: Output: χ̄t
3: low_variance_resampling(χt,Wt)
4: χ̄t = ∅
5: r = rand(0;M−1)
6: c = w

[1]
t

7: i=1
8: for m=1 to M do
9: U = r + (m-1)* M−1

10: while U > c do
11: i = i + 1
12: c = c + w

[i]
t

13: end while
14: add x[i]

t to χ̄t
15: end for

Where Xt particles with weights Wt at time t, and M the
number of particles. This method creates only one random
number, and adds a fixed step size iteratively to a "pointer" (U).
In addition to that we keep track of the sum of particle weights
such that, for every step we sample one particle. The particle
will be sampled with pose values of particle which "weight bin"
(c) the "pointer" is currently pointing. This method ensures the
systematical coverage of the sample space, and no samples are
lost. We additionally changed the algorithm slightly, instead
of drawing a random number between 0 and M−1 (line 5)
we compute the average particle weight beforehand. This also
applies for adding step size in line 9, we add the average particle
weight instead of M−1. This is done to evade complications in
case the assignment of particle weights in previous steps is not
totally statistically sound.

4.7 Visualization

For debugging purposes we developed a simple visualizing mod-
ules built on basis of OpenCV2. This module reads the param-
eters of the football field from a parameter file, and can draw
the particles, the pose hypothesis of the AMCL. It proved to be
very useful, and might be used for future projects.3

5 Evaluation

We have evaluated the line crossing detection module and goal
post detection module on a small dataset of 10 images, which
should be representative given our description. The 10 images
contained 17 L crossings, 15 T crossings, 8 X crossings, and 17
goal post parts. The first module has a precision of 0.90 and a
recall of 0.65. The goal post detector has a precision of 1.00 and
a recall of 1.00. These high scores for the goal post detector are
most probably due to the fact that there are no other yellow
objects in the image which are considered foreground.

6 Discussion

Due to time constraints, the described and implemented parts of
the system were only compiled and tested on standard computer
hard- and software. The code still has to be tested on the limited
resources of the NAO robot.

2http://opencv.org/
3The code can be accessed at: https://github.com/pkok/Robolab/tree/

master/NaoLeague/LocationVisualizer

NAO Localization • University of Amsterdam page 8 of 10

https://github.com/pkok/Robolab/tree/master/NaoLeague/LocationVisualizer
https://github.com/pkok/Robolab/tree/master/NaoLeague/LocationVisualizer

6.1 Feature detection

All tests of the feature recognition were conducted on still
images, taken from the NAO’s bottom camera. The images of a
moving robot will contain a considerable amount of blur, which
might require additional tricks to make the whole system robust
enough in an actual soccer game, e.g., only classify detected
features if they can be observed in a sufficient number of frames.
The existence of other robots on the field will increase the

number of false positives the feature recognition will detect.
While the feature extraction works very fast on standard com-

puter hardware, it might be desirable to optimize these routines.
For example, one could use the output of the localization module
for searching for features at more specific areas of the camera
image. This more educated approach could speed up the feature
extraction, as this can be used to eliminate the currently used
brute force for checking every pixel. This might be realized by
using the optical flow in the image, or implementing a different
tracking method.
As a future extension, we can also use the regions of image

above the field’s horizon in order to extract useful information
especially for the orientation of the robot in the field, as well as
the recognition of the opponents’ goal.

6.2 Localization

The Monte Carlo localization has a number of parameters, which
influence the performance to a great extend. Although the
algorithm can be adjusted to less processing power platforms by
decreasing the number of particles, there might be some space to
decrease the computational costs by tweaking the code. Besides
that, both the feature recognition and localization do not have
to be executed for every new frame. It might be beneficial to
postpone computation of features and location updates if the
robot does not move, or the computational resources have to be
used for other computations.
The localization can be improved performance-wise as well.

We now have implemented an augmented Monte Carlo localiza-
tion algorithm, which can easily be confused about on which of
the two symmetrical halves you are. For example, B-Human [17]
models only half of the field explicitly. The other half is mod-
eled by using filters that keeps track of the likelihood L that
this robot is on a certain field half. By implicit modeling of
the second half of the symmetrical field, each particle is twice
represented with likelihood L to be on one side of the field, and
1−L to be on the other half. On the other hand, rUNSWift does
not use a particle filter at all; since 2011 they have been “ex-
perimenting with multi-robot-multi-modal Kalman filtering and
researching the application of loopy belief revision to achieve
similar benefits, but more efficiently, with larger teams” [3].
Several teams are using self-detected visual features as another
source of information for the localization algorithm [19, 13].
Another method one could experiment with is triangulation

by audio signals. When at least two NAOs are quite sure about
their position, the first could send out an audio signal, which
robots unsure about their position will listen to. The sender will
also announce its estimated location over WiFi. Other robots
which are certain about their position can do something similar,
so that the uncertain robot can estimate its position through
triangulation from the bearings. However, this does rely heavily
upon the precision with which the NAO can detect the bearing
of the sound.

7 Conclusion

This report proposes an implementation for the Dutch Nao
Team’s localization module. While the code has not yet been

compiled for the NAO platform, it has proven to run quite fast
on standard computer hardware.
We have implemented a feature extraction module which

heavily depends on a line detection algorithm which is designed
by us for this project. A first inspection shows this algorithm
to work well. We have implemented ellipse detection, but these
features have not yet been integrated in the localization module.
The distance from the robot to a feature is computed with an
inverse perspective mapping, which, in future work, can be used
for easier feature detection. The localization module is based
upon the augmented Monte Carlo localization algorithm.
For both modules we have suggested possible improvements

in 6, besides more thorough testing.

References

[1] J. Ashar et al. “RoboCup Standard Platform League-
rUNSWift 2010”. In: Australasian Conference on Robotics
and Automation. 2010.

[2] J.M. Canas et al. “Visual Goal Detection for the RoboCup
Standard Platform League”. In: X Workshop on Physical
Agents, WAF. 2009, pp. 121–128.

[3] David Claridge et al. Team rUNSWift – RoboCup 2011
Standard Platform League. Available online: http : / /
cgi.cse.unsw.edu.au/~robocup/2011site/reports/
Robocup2011rUNSWiftTeamDescription.pdf.

[4] F. Dellaert et al. “Monte carlo localization for mobile
robots”. In: Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on. Vol. 2. IEEE.
1999, pp. 1322–1328.

[5] Y. Deng. “Natural Landmarks Localisation”. In: unpub-
lished, University of New South Wales (2011).

[6] The Robocup Federation. Objective of the Robocup. Avail-
able online: http://www.robocup.org/about-robocup/
objective/.

[7] The Robocup Federation. RoboCup Soccer homepage.
Available online: http://www.robocup.org/robocup-
soccer/standard-platform/.

[8] Eric Johnson and Randy Hamburger. CS, 5320/6320 Com-
puter Vision Class Project. Apr. 2007.

[9] H. Kitano et al. “RoboCup: A challenge problem for AI”.
In: AI magazine 18.1 (1997), p. 73.

[10] Scott Lenser and Manuela Veloso. “Sensor resetting local-
ization for poorly modelled mobile robots”. In: Robotics
and Automation, 2000. Proceedings. ICRA’00. IEEE In-
ternational Conference on. Vol. 2. IEEE. 2000, pp. 1225–
1232.

[11] H.A. Mallot et al. “Inverse perspective mapping simpli-
fies optical flow computation and obstacle detection”. In:
Biological cybernetics 64.3 (1991), pp. 177–185.

[12] Irina Markelic. “Tutorial on Homographies”. In: ().
[13] Marco Morales et al. Cuauhpipiltin 2012: Standard Plat-

form League – Team Description Paper. Available online:
http : / / www . robotica . itam . mx / spl / tdp _ spl _ ek _
robocup2012.pdf. 2012.

[14] Università di Parma. The ARGO Project: The GOLD
system. Available online: http://www.argo.ce.unipr.
it/argo/english/.

[15] V. Pătrăucean. “Detection and identification of elliptical
structure arrangements in images: theory and algorithms”.
In: (2012).

NAO Localization • University of Amsterdam page 9 of 10

http://cgi.cse.unsw.edu.au/~robocup/2011site/reports/Robocup2011rUNSWiftTeamDescription.pdf
http://cgi.cse.unsw.edu.au/~robocup/2011site/reports/Robocup2011rUNSWiftTeamDescription.pdf
http://cgi.cse.unsw.edu.au/~robocup/2011site/reports/Robocup2011rUNSWiftTeamDescription.pdf
http://www.robocup.org/about-robocup/objective/
http://www.robocup.org/about-robocup/objective/
http://www.robocup.org/robocup-soccer/standard-platform/
http://www.robocup.org/robocup-soccer/standard-platform/
http://www.robotica.itam.mx/spl/tdp_spl_ek_robocup2012.pdf
http://www.robotica.itam.mx/spl/tdp_spl_ek_robocup2012.pdf
http://www.argo.ce.unipr.it/argo/english/
http://www.argo.ce.unipr.it/argo/english/

[16] Aldebaran Robotics. ALVideoDevice – Advanced. Avail-
able online:http : / / www . aldebaran - robotics . com /
documentation/naoqi/vision/alvideodevice-indepth.
html.

[17] Thomas Röfer et al. B-Human Team Report and Code
Release 2012. Available online: http://www.b-human.de/
wp- content/uploads/2012/11/CodeRelease2012.pdf.
2012.

[18] H. Schulz and S. Behnke. “Utilizing the Structure of Field
Lines for Efficient Soccer Robot Localization”. In: Ad-
vanced Robotics 26.14 (2012), pp. 1603–1621.

[19] J. Sturm. “An appearance-based Visual Compass for Mo-
bile Robots”. Available online: http://vision.in.tum.
de/_media/spezial/bib/sturm2006msc.pdf. MA thesis.
the Netherlands: University of Amsterdam, Dec. 2006.

[20] S. Thrun, W. Burgard, D. Fox, et al. Probabilistic robotics.
Vol. 1. MIT press Cambridge, MA, 2005.

[21] Duncan ten Velthuis et al. Dutch Nao Team -– Team
Description for RoboCup 2011. Published on the Pro-
ceedings CD of the 15th RoboCup Symposium, Istanbul.
Available online: http://www.science.uva.nl/~arnoud/
publications/TeamDescriptionDutchNaoTeam.pdf. July
2011.

[22] Duncan ten Velthuis et al. Dutch Nao Team -– Team De-
scription for Robocup 2012 – Mexico City, Mexico. Avail-
able online: http://www.dutchnaoteam.nl/wp-content/
uploads / 2012 / 01 / QualificationDutchNaoTeam2012 .
pdf. Jan. 2012.

[23] Duncan ten Velthuis et al. Dutch Nao Team — Team De-
scription for Robocup 2013 -– Eindhoven, The Netherlands.
Available online: http://www.science.uva.nl/~arnoud/
publications / DutchNaoTeamQualification . pdf. Nov.
2012.

[24] Arnoud Visser et al. Dutch Nao Team — Team Descrip-
tion Paper -– Standard Platform League – German Open
2010. Available online: http://staff.science.uva.nl/
~arnoud/research/nao/2010/DutchNaoTeam.pdf. Jan.
2010.

NAO Localization • University of Amsterdam page 10 of 10

http://www.aldebaran-robotics.com/documentation/naoqi/vision/alvideodevice-indepth.html
http://www.aldebaran-robotics.com/documentation/naoqi/vision/alvideodevice-indepth.html
http://www.aldebaran-robotics.com/documentation/naoqi/vision/alvideodevice-indepth.html
http://www.b-human.de/wp-content/uploads/2012/11/CodeRelease2012.pdf
http://www.b-human.de/wp-content/uploads/2012/11/CodeRelease2012.pdf
http://vision.in.tum.de/_media/spezial/bib/sturm2006msc.pdf
http://vision.in.tum.de/_media/spezial/bib/sturm2006msc.pdf
http://www.science.uva.nl/~arnoud/publications/TeamDescriptionDutchNaoTeam.pdf
http://www.science.uva.nl/~arnoud/publications/TeamDescriptionDutchNaoTeam.pdf
http://www.dutchnaoteam.nl/wp-content/uploads/2012/01/QualificationDutchNaoTeam2012.pdf
http://www.dutchnaoteam.nl/wp-content/uploads/2012/01/QualificationDutchNaoTeam2012.pdf
http://www.dutchnaoteam.nl/wp-content/uploads/2012/01/QualificationDutchNaoTeam2012.pdf
http://www.science.uva.nl/~arnoud/publications/DutchNaoTeamQualification.pdf
http://www.science.uva.nl/~arnoud/publications/DutchNaoTeamQualification.pdf
http://staff.science.uva.nl/~arnoud/research/nao/2010/DutchNaoTeam.pdf
http://staff.science.uva.nl/~arnoud/research/nao/2010/DutchNaoTeam.pdf

	Introduction
	Related Work
	Feature Extraction
	Choosing colorspace
	Basic Pipeline
	Image format
	Background Removal
	Image Binarization
	Line Detection
	Other approaches
	Our approach

	Line Feature Detection
	Goal Detection
	Ellipse Detection
	Inverse Perspective Mapping

	Localization
	Monte Carlo Localization
	Sensor Model
	Odometry Model
	Augmented Monte Carlo Localization
	Resetting Sensor Model
	Resampling method
	Visualization

	Evaluation
	Discussion
	Feature detection
	Localization

	Conclusion

