
University of Amsterdam
Faculty of Science
The Netherlands

Detecting a checkered black and white football

6 EC Bachelor honoursproject

Authors:
Caitlin Lagrand
Douwe van der Wal
Pieter Kronemeijer

Supervisor:
Arnoud Visser

February 6, 2017

Contents

1 Introduction 1

2 Data set 2

3 Method 2
3.1 TensorFlow . 3
3.2 Pipeline . 4

3.2.1 Candidates . 4
3.2.2 Classifier . 5

4 Results 6

5 Discussion 10
5.1 Possible follow-up studies . 12

6 Conclusion 12

7 Installation guides 12
7.1 TensorFlow on DAS4 . 12
7.2 TensorBox . 13
7.3 OpenCV . 13
7.4 OpenCV on DAS4 . 14

8 Appendix 16
8.1 A . 16

2

Abstract

This paper presents two ways of detecting a checkered black and white
football that is used during soccer matches between robots in the SPL1.
A well-considered trade-off between computation time and accuracy is of
the utmost importance, since the ball detector has to be able to maintain
a reasonable framerate while running on a Nao robot. The first method,
a computationally heavy method using TensorFlow, shows an accuracy of
97.2% on images with a resolution of 1280x960. However, it takes 0.215
seconds to detect a ball on a laptop with a GPU and thus will not be
fast enough to work on a Nao robot. The second, computationally light,
method is able to detect a ball with an average computation time of 0.110
seconds on a Nao robot. However, the accuracy of this method is only
62.6%. Furthermore, 0.110 seconds is still a fraction too long. Soon,
research will be conducted on ways to optimize this method in order to
make it fast enough for robot soccer.

1Standard Platform League, only Nao robots without hardware modifications are allowed.

3

Figure 1: Nao robots during a match at RoHow2(Hamburg).

1 Introduction

The Dutch Nao Team [6] plays autonomous robot soccer matches [4] in the
Standard Platform League of the RoboCup. Playing soccer consists of many
different challenges, such as movement, communication, vision and processing
all the sensor data real-time. The idea behind the RoboCup is to be able to
win against the 2050 FIFA world champion in a fair way. Until 2008 robot
soccer was played with small dog-like robots and a bright orange ball[14]. From
2008 onward it is being played with humanoid robots (Nao’s) on artificial grass
(Figure 1). Last year, the color of the ball changed from the easily-detectable
orange to a much harder detectable black-and-white pattern. Furthermore, this
year the lighting conditions will change to window lighting where possible, which
results in uneven lighting. This influences the color of the ball and a simple color-
based method will not work well. In this paper several ways will be discussed to
recognize this new ball while playing football. Both computationally expensive
and inexpensive methods will be looked at. While a computationally inexpensive
method would be preferred, since all computations have to be done on the
robot itself during a match, computationally heavy methods can serve as a good
comparison of the trade-off between speed and precision that is being made.

In the following sections of this paper, the approach that was taken to detect
the ball will be explained and the results and conclusions will be presented.
Section 3 will explain the different methods that were tried. In section 4 the
results will be evaluated and Section 5 will discuss these results. Finally, in
section 6, the conclusion will be presented.

2https://rohow.de/2016/en/

1

Figure 2: Different kind of variations within the data set.

2 Data set

The data set that was used, consists of 1526 images. These images are annotated
manually by selecting a box around the ball. The images were taken at two
different locations, in the IRL3[12] at Science Park Amsterdam, and the TUHH4.
At both locations multiple batches of images were taken, each with its own
lighting condition. This varies from dark to bright, from smooth to lots of
shadows and from artificial light to natural light. There is also a great variation
as to the distance to the ball, whether the ball is moving or not and whether
there are other objects in the picture, like robots or feet.

Figure 2 shows some of the different kinds of variation within the data set.
The images have been recorded at a resolution of 1280*960 pixels. In order to
get the most out of the trade-off between speed and process-ability, these images
have been resized to resolutions of 640*480 pixels, 320*240 pixels and 160*120
pixels.

For the final comparison between the two chosen methods, a new testing
data set has been made, consisting of 500 images in 2 lighting conditions made
in 1 location (IRL).

3 Method

This section will go into detail about two approaches that were taken to detect
the ball. Section 3.1 will explain a computationally expensive method using a
Deep Neural Net. In section 3.2, a pipeline that presents a computationally
inexpensive method will be considered. Other methods that were tried, will be
shortly discussed in section 5.

4Intelligent Robotics Lab
4Technische Universität Hamburg (https://www.tuhh.de/tuhh/startseite.html)

2

3.1 TensorFlow

A machine learning ball detector which is not limited to the Nao robot’s hard-
ware could make be a good proof of concept of why the robots need more pro-
cessing power. Besides that, a more low-end solution could perhaps be deduced
from the high-end implementation.

Stewart, Andriluka, and Ng [9] describe a machine learning approach of rec-
ognizing people’s heads on surveillance camera footage with Caffe [3]. Stewart,
has also made an implementation using a TensorFlow[1] model, which is the
model used in this section. The first part is GoogLeNet[10], which is pretrained
on ImageNet and outputs features. Then a grid consisting of squares of 32*32
is put over the image and each box in the grid is processed seperately. If some-
thing has been found, the location is returned as a bounding box. The idea is
to use this approach to recognize balls instead of heads.

A model has been trained for every resolution. These models have been
trained for several hundred thousand iterations on a Nvidia TitanX, controlled
by the DAS4 supercomputer. Training does not require a TitanX. Any device
with TensorFlow installed can train this model, but it will usually take signifi-
cantly longer.

The images in this data set must comply with certain requirements, namely
that both the image width and height need to be divisible by 32, and both the
hight and width need to be at least 224 pixels. A solution for using smaller
images is putting a bar on the side or below the image in order to meet the
specifications.

When a model has been properly trained a laptop can use it to process the
video-feed from a Nao robot real time to inform the robot about the location of
the ball.

Figure 3: TensorBox output.

3

3.2 Pipeline

Since the ball detector needs to work real time on the Nao robot, performing
a classification algorithm directly on the obtained images results in a compu-
tational heavy and slow ball detector. Therefore, the ball detector is split into
two parts: obtaining candidates and a classification algorithm. Figure 4 shows
the pipeline used to detect the ball. The pipeline uses an image as input and
returns a x1,y1,x2,y2-box around the ball in that image.

First, the possible candidates are determined. Section 3.2.1 will explain
how candidates are obtained. Next, the candidates are further explored using a
classification algorithm. Section 3.2.2 will talk about the classifier that is used.

Candidates Classifier
Image Potential balls Position of ball in image

Figure 4: The pipeline of detecting a ball.

3.2.1 Candidates

Candidates are parts of the image that can be the ball. The ball has a checkered
black and white pattern, thus parts of the image that contain this pattern could
be the ball. Two methods to find candidates will be explained in this section.
Other methods that were tried, will be shortly discussed in section 5.

Regular expressions

The first method searches for black and white patterns using regular expressions
[11]. Regular expressions are a fast way of finding pieces of text which match
a certain description. To use regular expressions on images, each pixel in a
column is converted to a character based on the color of that pixel: b(lack),
w(hite), g(reen), n(one) [5]. Figure 5 shows the result of converting an image
taken by the robot (5a) to strings (5b).

(b + .0, 5|w + .0, 5)+ (1)

The color of a pixel is obtained from pre-defined color ranges. A regular
expression (1) is applied to the resulting string to match patterns of a ball. This
regular expression search for patterns of black or white pixels with some noise.
A lot of matches are found that only represents a vertical pattern (column-wise).
The green lines in Figure 6 represent these vertical patterns. The center of the
match (black dot) is now used as location of a possible ball. This location is
used to expand the possible ball horizontally with black or white pixels (red
line). The horizontal and vertical patterns combined result in a box around a
possible ball. This part of the image plus an added offset is now considered as
potential ball and ready to be considered by the classifier.

4

(a) Image from the robot

(b) Image as strings

Figure 5: Converting an image to strings of b, w, g and n characters.

Using the old position of the ball

During a match in the Standard Platform League, the ball is often not moving.
The probability that the ball is still at the same position as the previous position
is thus high. So, the old position can be a good candidate. An offset is added
to this old position and is then used as candidate. If the ball is not found in the
candidate by the classifier, the offset is again added to the candidate. This new
candidate is now explored by the classifier. This process repeats until a ball is
found or the whole image is used as candidate, see Figure 7.

3.2.2 Classifier

The classifier determines the position of the ball in an image. The Viola-Jones
Classifier [13] from OpenCV 5 is used. This classifier is based on Haar-like
features. The classifier is trained on two different kind of data sets. First of
all, the data set explained in section 2 is used. The annotated parts of the
images are used as positives for the classifier and the rest of the images is used
as negatives. The other data set contains 10,887 ball candidates obtained using
the regular expressions method explained in section 3.2.1. The candidates are
manually annotated as ball or no ball. The images annotated as ball are added
to the positives of the first data set and the images containing no ball are added
to the negatives. The classifier is trained with images in the YCbCr color space

5http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html

5

Figure 6: Candidates using regex. Black rectangle is the annotated ball, black
dot is the center of the candidates, green line is the vertical regex pattern and

red line is the horizontal expanding with black and white.

(a) First image, no
previous ball.

(b) Next image, with
previous ball.

(c) Next image, with
previous ball
increasing.

Figure 7: Using the old position as candidate.

since the framework used for playing football uses this color space as default
and no conversion has to be performed before classifying the image. During the
detection phase, a potential ball is evaluated by the classifier. If a ball is found
within the potential ball, that part of the image is classified as ball and no other
candidate is considered.

4 Results

Once the TensorFlow model has been trained, it is possible to annotate a
640*480 video feed at a reasonable frame rate of about 6 on an Nvidia 860M
controlled by an i7 4710HQ. A sidenote on this is that a great deal of time is
taken by getting an image from the Nao, when using locally saved images 15
images can be processed per second. Sadly, it is currently not yet possible to
run the evaluation script on the Nao robot itself, for several reasons. Firstly,
TensorFlow is not made for 32bit devices. This means that it is not possible
to install TensorFlow on the Nao the regular way. Secondly, the Nao does not

6

have a GPU, which means that all the needed processing power will be taken of
the CPU, which is already very busy running all the other tasks to play soccer.
Therefore the amount of frames per second that can be processed by the Nao
will drop significantly. This means that in the end using TensorFlow for ballde-
tection will hurt the Nao’s soccer playing ability more than it helps.

Resolution Confidence Accuracy (%) False Positives Time (s)
1280x960 0.3 97,2 0.215
640x480 0.3 94,6 0.059
320x240 0.3 93 0.023

160x120
0.3
0.6
0.9

84.6
83.6
76,8

294
261
185

0.020

Table 1: TensorFlow accuracy per resolution.

Method Offset Accuracy (%) False Positives Time (s)
Only Classifier - 76.75 30 0.0879
Regex without strings 30 40.6 4 0.0499
Regex including strings 30 40.6 4 0.386
Regex without strings 60 68.6 6 0.108
Regex including strings 60 68.6 6 0.427
Regex without strings 90 73 14 0.189
Regex including strings 90 73 14 0.494
Old position 30 80.8 20 0.257
Old position 60 80.4 17 0.167
Old position 90 80.8 19 0.132
Old position + whole image 30 76.6 19 0.0868
Old position + whole image 60 78 16 0.0822
Old position + whole image 90 78.2 19 0.0836

Table 2: Pipeline method with 640x480 resolution on a laptop.

The pipeline is evaluated with different kind of methods: only the classifier,
the regular expressions method with or without converting to strings while mea-
suring the time, and the old position method repeatedly growing or only one
candidate followed by the whole image. Different offsets around a candidate are
also taken into consideration per method. The result of performing the different
methods on a laptop on images with a 640x480 resolution is shown in Table 2.
Table 3 shows the accuracies of the different methods on images with a resolu-
tion of 320x240. Only the 320x240 resolution is used for testing with a robot.
The times to detect a ball on a resolution of 320x240 are shown in Figure 4.

Because the old position method only works well when the data set is chrono-
logical, a special test data set was create to test this method: 174 images that

7

Method Offset Accuracy (%) False Positives
Only Classifier - 62.6 3
Regex without strings 30 43 1
Regex including strings 30 43 1
Regex without strings 60 57.2 1
Regex including strings 60 57.2 1
Regex without strings 90 56.6 1
Regex including strings 90 56.6 1
Old position 30 62.6 2
Old position 60 63.2 2
Old position 90 62.6 1
Old position + whole image 30 59.6 1
Old position + whole image 60 60 1
Old position + whole image 90 60.4 1

Table 3: Accuracy of the pipeline method with 320x240 resolution

represent a robot walking to a ball and kicking the ball away. The results of
the algorithm are shown in Table 5 and Table 6. The times on the robot are
recorded on a Nao version 4, which contains a ATOM Z530 1.6 GHz CPU.

Method Offset Accuracy (%) False Positives
Only Classifier - 88.5 1
Old position 30 90.2 0
Old position 60 90.2 0
Old position 90 90.2 0
Old position + whole image 30 90.2 0
Old position + whole image 60 90.8 0
Old position + whole image 90 90.8 0

Table 5: Accuracy of the pipeline method with 320x240 resolution on a
chronological data set.

8

Method Offset Time (s) laptop Time (s) robot
Only Classifier - 0.0171 0.113
Regex without strings 30 0.0134 0.152
Regex including strings 30 0.0990 2.88
Regex without strings 60 0.03277 0.322
Regex including strings 60 0.121 3.05
Regex without strings 90 0.0398 0.457
Regex including strings 90 0.127 2.67
Old position 30 0.0450 (h: 0.196, l: 0.00166) 0.455 (h: 1.64 l: 0.0158)
Old position 60 0.0309 (h: 0.116, l: 0.00313) 0.299 (h: 1.07, l: 0.0242)
Old position 90 0.0249 (h: 0.0803, l: 0.00461) 0.239 (h: 0.616, l: 0.0382)
Old position + whole image 30 0.0177 (h: 0.0359, l: 0.00181) 0.169 (h: 0.443, l: 0.0117)
Old position + whole image 60 0.0195 (h: 0.0509, l: 0.00293) 0.184 (h: 0.434, l: 0.0252)
Old position + whole image 90 0.0200 (h: 0.0481, l: 0.00437) 0.192 (h: 0.439, l: 0.0444)

Table 4: Times of the pipeline method with 320x240 resolution.
h = highest time measured, l = lowest time measured

Method Offset Times (s) laptop Time (s) robot
Only Classifier - 0.0319 0.195
Old position 30 0.0448 (h: 0.147, l: 0.00373) 0.312 (h: 1.23, l: 0.0224)
Old position 60 0.0375 (h: 0.122, l: 0.00667) 0.253 (h: 0.842, l: 0.0461)
Old position 90 0.0433 (h: 0.113, l: 0.0122) 0.249 (h: 0.699, l: 0.0699)
Old position + whole image 30 0.0231 (h: 0.0834, l: 0.00376) 0.110 (h: 0.374, l: 0.0230)
Old position + whole image 60 0.0293 (h: 0.0793, l: 0.00776) 0.139 (h: 0.309, l: 0.0444)
Old position + whole image 90 0.0383 (h: 0.0919, l: 0.00922) 0.175 (h: 0.364, l: 0.0692)

Table 6: Times of the pipeline method with 320x240 resolution on a
chronological data set.

h = highest time measured, l = lowest time measured

9

5 Discussion

Figure 8: TensorBox results and mistakes.

Most of the mistakes made by TensorBox in the three highest resolutions are
related to white objects near the border of an image. This is probably due
to the fact that in the trainings set most balls on the edge of the image were
rolling, and thus mainly white and hard to distinguish from a robot’s head or
other white objects. Perhaps these errors could be reduced when more data is
added.

In the lowest resolution a lot of false positives occur at a low confidence.
With a high confidence there are less false positives, but often balls are not seen
either. The reason for the reasonable high accuracy with a high confidence is
because there are less false positives on the images without a ball, and thus the
algorithm classifies that image correctly.

The model, TensorBox, used in the machine learning approach worked very
well, but balls are relatively easy to recognize compared to what the model was
made for: heads on camera footage. Those heads can be either viewed from the
back or front and have all kinds of different colors. For recognizing balls this
model might be more than necessary and a less complex model could do just
as good perhaps. It might be useful to try creating a less complex model and
implement this in a machine learning library that does work on the Nao robots.

We also noticed that performance dropped and the amount of false positives
became rather high at the 160*120 resolution. A reason for this could be that
black bars were put around the 160*120 image from the Nao, instead of stretch-
ing out the image to the right resolution. The model processes 32*32 blocks,
and by not stretching out the images the balls are a smaller part of a block,
perhaps making it harder to recognize it.

Besides the complexity of the model, it can also only recognize one kind of
item, so if one would want to recognize robots too, a second model would have

10

to be trained. This would become quite inefficient, running your image through
more than one model to get all the information you need. To solve this problem
a whole different model would be required, Redmon et al. [7] describes a model
that can recognize up to twenty classes at a respectable speed.

Figure 9: Classifications

The accuracy of the pipelined method is much lower than the accuracy of
the TensorBox. Most errors were balls near the border of the image or far away.
Also, ball in the goal, were often a problem to detect. The false positives were
mostly robot heads or feet. Figure 9 shows some results of the pipelined method.

As for the pipelined method, the results show that the old position method
works better as candidate than the regular expression method. Also, converting
images to strings, takes a long time and would be no option for a Nao robot
with the current implementation. However, the Dutch Nao Team currently uses
the regular expression method [5] and thus this method does already work fast
enough on a Nao robot. An extension of this method with the classifier would be
great to try. Nevertheless, the regular expression method still depends on color
calibration. With different lighting circumstances, which are present during
the RoboCup, as described in the introduction, a ball detector independent on
calibration would be preferred.

Even on a non chronological data set, the old position method detects a ball
within 0.2 seconds on a Nao robot. It still is two times too slow, but it is a good
start. Next steps would be to optimize this algorithm to make it faster to be
able to use it during matches.

Some other methods that have been tried involve the use of SIFT, SURF,
ORB, and a simple blobdetector. All of these methods did not work properly
in one way or another, which is why they were quickly abandoned. Detecting
blobs did not work as good as expected, because the ball is not always circular.
For example, when lying on a line, the ball is part of that line and no circle can

11

be found. SIFT, SURF and ORB turned out to be too slow to perform as good
ball detector on the robot. For more information about these methods, see the
appendix.

5.1 Possible follow-up studies

• Model capable of recognizing multiple objects instead of just one, for ex-
ample the ball, other Nao robots, field lines and goals.

• Search for candidates without using any form of color calibration. This
might be possible by looking at the saturation of a certain area.

• Neural networks working on Nao robots.

6 Conclusion

The TensorBox model has a vert high accuracy, but is currently not fast enough
or even possible to work on a Nao robot. A pipelined method, using candidates
and classify these candidates is a way of making a ball detector fast enough to
run on a Nao. Because the ball is often not moving during a Standard Platform
League match, the old position of the ball is a good candidate. Taking an offset
of 30 around the old position followed by the whole image, if the ball was not
found, works best. Running this algorithm on a Nao robot results in a 59.6%
accuracy with on average 0.169 seconds to detect the ball when using a random
data set.

7 Installation guides

7.1 TensorFlow on DAS4

A regular user does not have sudo rights on the DAS4, which makes installing
things a bit harder than usual. A ’.whl’ file has been prepared on the das
(/var/scratch2/koelma/tensorflow pkg/cudaX.X-cudnn5.1). In the parent di-
rectory is a README file explaining how to install tensorflow. Don’t forget to
add the exports and added modules to the .bashrc file, otherwise TensorFlow
will not work anymore after the terminal is closed.

This method will not work with the latest version of Anaconda (currently
Anaconda 4.2.0)3. Anaconda version 2.0.1 has been tested and confirmed work-
ing. An installer for this Anaconda version can be found on the DAS4 in:
/var/scratch2/koelma/src/Anaconda-2.0.1-Linux-x86 64.sh

In case an error related to having the wrong version of protobuf occurs,
make sure that the version located at /usr/bin/protoc is used. It’s possible to

6Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Continuum Analyt-
ics, Nov. 2016. Web. ¡https://continuum.io¿

12

check which version is being used by executing the command ”which protoc” on
the DAS. If the wrong version is being used, execute ”$PATH = /usr/bin/pro-
toc:$PATH”. Keep in mind that the path will also need to be changed in the
bashrc or this command will have to be executed every time TensorFlow is
needed in a new terminal.

7.2 TensorBox

Follow the instructions on GitHub[8] to install TensorBox. An error related
to ’Cython’ might occur when running the example. To solve this problem,
uninstall Cython using pip and then re-install it, again using pip.

In order to be able to run TensorBox with another data set than the example
set, three things need to be changed.

1. A folder with a new data set needs to be added. The images in this data
set must comply with certain requirements, namely that both the image
width and height need to be divisible by 32, and both the hight and width
need to be at least 224 pixels. A solution for using smaller images could
be to put a bar on the side or below the image in order to meet the
specifications.

2. Three json files with the image locations as keys and a list of the box(es)
containing the objects that need to be detected as values. One of these
three json files containing most of the data set should be used for training,
another for testing and the third is for validating. The box should have
the following format: [[x1, y1, x2, y2], [box2], [box3]].

3. The overfeat rezoom.json contains variables influencing the training pro-
cess that need to be set to the right values. The image size needs to be
changed to the right size. The grid size is calculated by dividing the image
size by 32, which should be a whole number. The location of the dictionary
containing the image paths and boxes also needs to be set correctly.

When training the model will automatically save a model that can be used
to make predictions after every 10.000 iterations. There will also be a file
constantly growing in size and getting really large, you can throw this away
after training.

7.3 OpenCV

OpenCV[2] can be installed through Anaconda using the command ”conda in-
stall opencv”. However, if you want to use OpenCV to process video’s, this will
not work. It is a know bug that the anaconda version of OpenCV will not work
with video’s4. Many solutions have been issued on the internet to fix this, but
none seem to work properly. To be able to process video’s with OpenCV, you

7https://github.com/ContinuumIO/anaconda-issues/issues/121
8https://github.com/jayrambhia/Install-OpenCV/tree/master/Ubuntu

13

will need to use a local version of Python (rather than the one from anaconda)
and install OpenCV using an install script5. Manually building OpenCV from
source is an option as a last resort, since this only worked for one out of three
laptops.

7.4 OpenCV on DAS4

To install OpenCV on DAS4, one simply needs to add ”/home/koelma/im-
pala/third.14.11/x86 64-linux/lib/python2.6/site-packages” to the Pythonpath.

References

[1] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. url:
http://tensorflow.org/.

[2] G. Bradski. In: Dr. Dobb’s Journal of Software Tools ().

[3] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature
Embedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[4] Caitlin Lagrand et al. “Autonomous robot soccer matches”. In: BNAIC2016
Proceedings. Nov. 11, 2016, pp. 237–238. url: http://bnaic2016.cs.
vu.nl/images/bnaic/documents/BNAIC_2016_Proceedings.pdf.

[5] Caitlin Lagrand et al. Dutch Nao Team - Technical Report. Tech. rep.
Universiteit van Amsterdam, FNWI, Oct. 14, 2016. url: http://www.
dutchnaoteam.nl/wp-content/uploads/2016/11/TechReport_DNT_

2016.pdf.

[6] Caitlin Lagrand et al. Team Qualification Document for RoboCup 2017,
Nagoya, Japan. Tech. rep. Science Park 904, Amsterdam, The Nether-
lands: University of Amsterdam, Nov. 30, 2016. url: http : / / www .

dutchnaoteam.nl/wp-content/uploads/2016/11/Team_Qualification_

Document_2017.pdf.

[7] Joseph Redmon et al. “You only look once: Unified, real-time object de-
tection”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 779–788.

[8] S Russel. TensorBox. https : / / github . com / TensorBox / TensorBox.
2016.

[9] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng. “End-to-end
people detection in crowded scenes”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2016, pp. 2325–2333.

[10] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 1–9.

14

[11] Ken Thompson. “Programming Techniques: Regular Expression Search
Algorithm”. In: Commun. ACM 11.6 (June 1968), pp. 419–422. issn:
0001-0782. doi: 10.1145/363347.363387. url: http://doi.acm.org/
10.1145/363347.363387.

[12] Camiel Verschoor, Patrick de Kok, and Arnoud Visser. Intelligent Robotics
Lab. Tech. rep. Universiteit van Amsterdam, June 13, 2013. url: http://
staff.fnwi.uva.nl/a.visser/publications/Vision_Document.pdf.
published.

[13] Paul Viola and Michael Jones. “Rapid object detection using a boosted
cascade of simple features”. In: Computer Vision and Pattern Recogni-
tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on. Vol. 1. IEEE. 2001, pp. I–I.

[14] Arnoud Visser et al. Dutch Aibo Team: Technical Report RoboCup 2006.
Tech. rep. Dutch Aibo Team, Dec. 1, 2006. url: http://staff.fnwi.
uva.nl/a.visser/publications/DAT2006TechReport.pdf. published.

15

8 Appendix

8.1 A

import sys

import numpy as np

import cv2

from naoqi import ALProxy

import time

import tensorflow as tf

import matplotlib.pyplot as plt

import os

import json

import subprocess

from scipy.misc import imread

import random

from train import build_forward

from utils import train_utils

from utils.annolist import AnnotationLib as al

from utils.stitch_wrapper import stitch_rects

from utils.train_utils import add_rectangles

from utils.rect import Rect

from utils.stitch_wrapper import stitch_rects

from evaluate import add_rectangles

def turnred(leds):

leds.setIntensity(’AllLedsRed’, 1.0)

leds.setIntensity("AllLedsBlue", 0.0)

leds.setIntensity("AllLedsGreen", 0.0)

def turngreen(leds):

leds.setIntensity(’AllLedsRed’, 0.0)

leds.setIntensity("AllLedsBlue", 0.0)

leds.setIntensity("AllLedsGreen", 1.0)

def StiffnessOn(proxy):

We use the "Body" name to signify the collection of all joints

pNames = "Body"

pStiffnessLists = 1.0

pTimeLists = 1.0

proxy.stiffnessInterpolation(pNames, pStiffnessLists, pTimeLists)

NAO INIT

if(len(sys.argv) <= 1):

print "parameter error"

print "python " + sys.argv[0] + " <ipaddr> <port>"

16

sys.exit()

ip_addr = sys.argv[1]

port_num = 9559# get NAOqi module proxy

open needed proxies

videoDevice = ALProxy(’ALVideoDevice’, ip_addr, port_num)# subscribe top

camera

leds = ALProxy("ALLeds",ip_addr,9559)

motionProxy = ALProxy("ALMotion", ip_addr, 9559)

postureProxy = ALProxy("ALRobotPosture", ip_addr, 9559)

camera init

AL_kTopCamera = 0

AL_kVGA = 2

AL_kBGRColorSpace = 13

captureDevice = videoDevice.subscribeCamera("test", AL_kTopCamera,

AL_kVGA, AL_kBGRColorSpace, 10)# create image

width = 640

height = 480

image = np.zeros((height, width, 3), np.uint8)

turnred(leds)

Set NAO in Stiffness On

StiffnessOn(motionProxy)

Tensorbox INIT

hypes_file = ’path/to/hypes/file.json’

iteration = INSERT NUMBER

with open(hypes_file, ’r’) as f:

H = json.load(f)

tf.reset_default_graph()

x_in = tf.placeholder(tf.float32, name=’x_in’, shape=[H[’image_height’],

H[’image_width’], 3])

if H[’use_rezoom’]:

pred_boxes, pred_logits, pred_confidences, pred_confs_deltas,

pred_boxes_deltas = build_forward(H, tf.expand_dims(x_in, 0),

’test’, reuse=None)

grid_area = H[’grid_height’] * H[’grid_width’]

pred_confidences =

tf.reshape(tf.nn.softmax(tf.reshape(pred_confs_deltas, [grid_area

* H[’rnn_len’], 2])), [grid_area, H[’rnn_len’], 2])

if H[’reregress’]:

pred_boxes = pred_boxes + pred_boxes_deltas

else:

pred_boxes, pred_logits, pred_confidences = build_forward(H,

tf.expand_dims(x_in, 0), ’test’, reuse=None)

17

saver = tf.train.Saver()

load model

framecounter = 0

start = time.time()

with tf.Session() as sess:

sess.run(tf.initialize_all_variables())

saver.restore(sess, ’path/to/folder/with/savefile/save.ckpt-%d’ %

iteration)

kleurboollijst = [0,0, 0,0, 0,0, 0,0, 0,0]

starttime = time.time()

annolist = al.AnnoList()

main annotation loop

while True:

get image

if (time.time() - start) > 1:

start = time.time()

print framecounter

framecounter = 0

framecounter += 1

result = videoDevice.getImageRemote(captureDevice);

if result == None:

print ’cannot capture.’

elif result[6] == None:

print ’no image data string.’

else:

transform robotoutput to image

values = map(ord, list(result[6]))

img = np.reshape(values, (height,width,3)).astype(’uint8’)

check for balls using model

feed = {x_in: img}

(np_pred_boxes, np_pred_confidences) = sess.run([pred_boxes,

pred_confidences], feed_dict=feed)

check if balls present

bool = 0

for elem, box in zip(np_pred_confidences, np_pred_boxes):

elem2 = elem[0]

if elem2[1]>0.6:

bool = 1

kleurboollijst.append(bool)

kleurboollijst = kleurboollijst[1:]

ntrue = sum(kleurboollijst)

change eyecolor if needed

if ntrue > 7:

turngreen(leds)

18

elif ntrue < 4:

turnred(leds)

draw box on image based on where the ball is

new_img, rects = add_rectangles(H, [img], np_pred_confidences,

np_pred_boxes,

use_stitching=True, rnn_len=H[’rnn_len’],

min_conf=0.3,

show_suppressed=True)

update value if rectangle has found

if len(rects) > 0:

averageX = (rects[0].x1 + rects[0].x2)/2

averageY = (rects[0].y1 + rects[0].y2)/2

else:

set default value

averageX = width/2

averageY = height/2

show image

cv2.imshow("Balldetection", new_img)

press esc to exit

if cv2.waitKey(10) == 27:

break

make sure movement is not made too often

if (time.time() - starttime) > 0.1:

starttime = time.time()

Yaw is turning , left is positive, right is negative.

currentAngle = motionProxy.getAngles("HeadYaw", True)[0]

move head only when ball is surely spotted

if ntrue > 5:

turning head

if averageX < width/3:

if currentAngle < 1.95:

motionProxy.setAngles("HeadYaw", currentAngle + 0.06,

0.6)

if averageX > (width/3)*2:

if currentAngle > -1.95:

motionProxy.setAngles("HeadYaw", currentAngle - 0.06,

0.6)

moving head up and down

currentAngle = motionProxy.getAngles("HeadPitch", True)[0]

if averageY > 380:

if currentAngle < 0.51:

motionProxy.setAngles("HeadPitch", currentAngle +

0.09, 0.6)

if averageY < 150:

if currentAngle > -0.65:

19

motionProxy.setAngles("HeadPitch", currentAngle -

0.09, 0.6)

shut down Nao

motionProxy.stiffnessInterpolation("Body", 0.0, 1)

motionProxy.stopMove()

print "Bye!"

20

