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Abstract

In this Technical Report, the Dutch Nao Team presents its progress from the past year as
a continuation on the progress of the previous year (Caitlin Lagrand 2016a), and an outline
of the developed modules. In the academic year of 2016-2017, the team participated in the
Robotic Hamburg Open Workshop (RoHOW), RoboCup Iran Open in Tehran and the 2017
RoboCup in Nagoya. During the RoboCup Iran Open the team used B-Human’s framework in
development, in addition to two new modules. After the Iran Open it was decided to make a new
framework from scratch. The aim of this decision was to make all code comprehensible for new
team members, as the composition of the team changes frequently. To this end the framework is
module based and fully documented. So far the team has ported its behaviour-engine and made
a new ball-detection module. This DNT-framework was used during the 2017 RoboCup World
Finals in Nagoya.



Figure 1: Team photo in Nagoya

1 Introduction

The Dutch Nao Team consists of eight Artificial Intelligence students; two Master students and
six Bachelor students, who are supported by a senior staff member. The team was founded in
2010 and competes in the Standard Platform League (SPL); a robot football league in which all
teams compete with identical robots to play football fully autonomously. The league was started
to incentivize the development in robot science. Its current goal is to play against the human
world champion of 2050, and win. Since all teams participating in the Standard Platform League
are obliged to use identical robots, the focus of the league is solely software oriented rather than
hardware oriented. The robots are non-player controlled, and have to be able to play football by
themselves. This includes finding the ball, locating itself and making decisions on how to play next,
as well as communicating with teammates and being able to walk.

2 Hardware and framework

2.1 NAO

The Nao robot is a programmable humanoid robot made by Softbank Robotics, formerly known as
Aldebaran Robotics. The CPU used by the robot is a 1.6 GHz Intel Atom single physical core which
is hyper-threaded, combined with 1 GB of RAM and 8 GB of storage. Since there are only two
logical cores, CPU resources are scarce, which limits calculation heavy tasks such as ball detection
and localisation. The Nao has two high-definition (HD) cameras and an inertial board that are both
used for the competition. The HD cameras are located in the head of the Nao, one is aimed forward
to look for far away objects and the other is aimed downwards for looking at objects close to the feet
of the Nao. The inertial board is used for determining if the robot has fallen, which is something
that happens regularly during matches. The Nao also possesses four sonars, an infrared emitter and
receiver, pressure sensors and tactile sensors. These sensors are however less frequently used than
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the cameras and inertial board, because they are not as essential to the footballing capabilities of
the robot. However, what is essential in order for a robot to play football, is movement options.
Depending on its version the Nao Robot has either 14, 21 or 25 degrees of freedom in its joints.
The joints in the legs allow for stable bipedal movement and various kicking motions, the arms are
generally used for helping the robot stand up again after falling and for stability whilst walking. It
is also permitted for the goalie to hold the ball in its hands, but it is highly uncommon for teams
to make use of this. Even though every robot is supposed to be the same, individual differences are
noticeable when the robots walk. The movement of older robots is less stable and fluent, since the
joints of these robots have been worn out. In order to ensure a robust walk for every robot, the
joints for each individual robot need to be calibrated.

3 Framework

After the RoboCup Iran Open the Dutch Nao Team decided to make its own framework. This
was decided after an unsatisfactory event, which included many difficulties with the codebase of
B-Human(Röfer et al. 2016). Besides this trouble grasping some of the concepts, it is also against
the philosophy of the Standard Platform League to copy code of other teams, since this does
not contribute to advancements in the field of robotics. Furthermore, making a new framework
allows the team to add a number of desirable features. One of those features is the use of proper
documentation. This will allows new members in the ever changing composition of the team to more
easily understand the code they are going to work with. Another feature is that the framework is
completely module based, which makes reasoning over parts of the code easier.
The framework is based on independent modules which communicate with each other trough rep-
resentations. This idea is based on (Mamantov et al. 2014). A representation is a container that
has some information in it about a certain topic. It might for example contain information about
the current joint angles of a robot, a camera image or the current time stamp.
Most modules require certain representations as input and all modules return one or more represen-
tations as output. Take for example a module that handles the robot getting up after it has fallen
down. This module has to be able to figure out whether the robot is lying face down or face up.
Therefore it requires an input representation that contains inertial sensor data. As an output this
module could for example give the joint angles that bring the robot one step closer to standing up.
When a module requires a certain representation to work, then this representation is passed directly
from the module that provides this representation to the module that needs it. For example, if the
ball detector module requires an image from the camera module, then this representation is passed
directly from the camera module to the ball detector module. This representation is only available
to the modules that need it. During start-up of the framework, the chain of execution of the models
is calculated using Kahns algorithm (Kahn 1962), for topological sorting. This means that the
modules that don’t require any input are executed first, sending their data to the other modules to
finish the cycle.
A problem would be when module 1 requires a representation which is outputted by module 2, but
module 2 also requires the output of module 1. Here Kahns algorithm can not make a chain of
module executions to make things work. A way around this is with starting the first time with a
dummy representation which contains dummy values ignored the first time by the module.
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4 Motion

4.1 Walk

The new framework of course did not come with a working walking engine such as in the B-Human
framework (Graf and Röfer 2011) which the team used before. Since there are no members in the
team who have the knowledge or feel like acquiring this knowledge to make a walking engine, the
decision was made to use an engine from another team.
After carefully considering multiple walking engines from a number of different teams, the choice
fell on a walking engine made by the Nao Devils (Matthias Hofmann 2016). A big advantage of this
engine is that requires relatively few parameters to be tuned, while still walking rather stable and
fast, even on the new type of artificial turf. This fits right into the aim of the team’s framework of
making all modules as surrounding-indifferent as possible, resulting in less calibrations and therefore
more robustness.
The next step was to implement the engine into the framework. This turned out to be quite the
challenge, since it is a rather large module requiring a substantial number of inputs, which are all
assumed to have a specific form that is not (yet) present in the DNT framework. After all the files
had been adapted to fit into the framework, a lot of debugging was needed. So much that there
wouldn’t be enough time to get it done before the RoboCup in Nagoya. Therefore a temporary
solution was installed until the more permanent solution of the Nao Devils’ engine would work,
given the team’s observations during previous RoboCup events.
The temporary solution consisted of using the built-in walk of NaoQi, with the idea that any walking
engine is better than no walking engine. This walk works, in the sense that the robot can move
in a certain direction, but that’s about it. The robot falls quite often on the new artificial turf.
To counteract this, the walking speed has been lowered to a point where the robot does not fall
over all the time. The maximum walking speed was set to 0.2 m/s, which was empirically tested at
the RoboCup Nagoya to be the optimal value in the trade-off between walking speed and walking
stability.

4.2 Getup

Another important part of motion is the robot getting up. Given the limited time before the
RoboCup, this module was also borrowed from another team. The getup module used by the
Nao Devils’ team appeared to be much more detached from the rest of their framework than their
walking engine is, so the choice was quickly made to use their getup engine during the RoboCup
Nagoya instead of making our own. It ended up fitting in the framework quite nicely. The goal of
the team is to make it’s own get up motion after the RoboCup.

4.3 Motion selection

One of the problems that were encountered during the making of different motions was that every
motion module in the framework updates all the time and sends it’s output, often joint angles, to
memory. In the end only one motion can be executed, so this is highly inefficiënt. Therefore a new
module was needed to control all the motion modules and make sure that only one module updates
per cycle in the framework, in order to make sure no computing power is wasted. This module is
called motion selection (Siciliano and Khatib 2016).
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4.4 Interpolation engine

During the Robocup in Nagoya, an attempt was made to create a general module which can output
any motion given some ”keyframes”, which are a sequence of joint angles for every joint, in combi-
nation with an equally long sequence of corresponding timestamps. In this case the corresponding
names of the joints are also provided. This representation of the keyframes is inspired by the Chore-
graphe (Pot et al. 2009) keyframes. This allows for easy motion designing within Choregraphe, with
the option to simply copy and paste the output to get it to work in the framework. The progress
looked promising, but this module could not be used during the RoboCup due to stability issues.

5 Detecting the ball

Detecting a ball is not a tremendously hard task when enough computational resources are avail-
able, as has been proven by (Lagrand, Wal, and Kronemeijer 2017). The challenge posed when
using a Nao robot, however, is to create a ball detector that works fast enough to not disturb the
other processes running within the framework. Therefore, our ball detector processes patches of
the image using a pipeline of 3 classifiers, which go from computationally cheap to computationally
expensive. After every classifier some patches can be ruled out of the set of patches that might
contain a ball, thus making subsequent classifiers significantly faster.

Besides being fast, the ball detector should have a number of other features. First of all, and
most importantly, the ball detector should work in every reasonably lighted condition, including
changes in the lighting such as shadows moving over the field. As of 2016 dynamic lighting was
introduced to the SPL, meaning that lighting conditions might change during a game, which the
ball detector should be prepared to handle. Secondly, it is preferable that the ball detector needs
as little calibration as possible in order to reduce human error and save time before the start of a
match.

5.1 The pipeline

Before starting the pipeline a filter is applied to the entire image. In the image we check what
the darkest and lightest colours are. Then a value between the minimum and maximum colour is
picked, and every pixel becomes white if it’s higher than the picked value, or black if it’s lower
(Gevers et al. 2012). This is internally represented as a matrix filled with ones and zero’s, where a
one means that the pixel is white. The idea behind this is that despite the lighting conditions, the
white parts of the ball will always be lighter than the green field, and will thus become white.

5.1.1 Checking all locations

For the next step using forward kinematics to calculate the position of the camera relative to the
field, a calculation is done for every spot in the image to find out how big a potential ball would
be at that spot. Then a check is done on a square of the right size to fit the ball to see whether
at least 15% of the pixels in this location are white; this eliminates the entire green field since that
barely contains any white pixels. This operation is rather cheap, since it just comes down to taking
the sum of the region we wanted to inspect. Next up, the average position of a white pixel in the
square is checked. If this position is significantly far away from the middle of the image, the square
is moved towards this position up to 3 times. This process makes sure that the ball ends up in the
middle of a square
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The next square that will be checked has about a third overlap with the previous square, to prevent
getting two squares with just half a ball in it but also making sure the square doesn’t have to be
moved more than 3 times.

5.1.2 Detecting blobs

After the last step we have quite some squares taken from the image which are moved towards the
white object that was potentially partially in there. Now the preprocessing step, described in the
introduction of this paragraph is done again. This is needed because lighting can differ on different
spots on the field due to shadows or reflections. This step makes sure that most of the white that’s
on the ball, is white in the binary image as well.

The next step is to put the image into a blob detector 1. This blob detector is a single pass algorithm
using linked lists to keep track of the blobs. This blob detector is at least 4 times faster than the
OpenCV (Bradski 2000) blob detector. This does come at a cost, since it is not possible to give
features of the blobs which will be returned, such how circular they are. After the blobs have been
found, they are subjected to some tests.

1. Is the ratio between the height and width at least 0.25 and at most 2?

2. Is the height and width at least 2 pixels and at most half of the size of the region of interest?

When blobs of the right size have been found, the square continues to the next stage in the pipeline.
A similar technique is applied by another team competing in the SPL, UT Austin Villa. This team
looks for three black spots in a ball before continuing to the final classifier (Menashe et al. 2017).
This technique gives less possible ball locations, but requires an almost perfect binary image, to
have three black spots on a ball visible. This is not the case with our approach to create a binary
image, and thus the black spots are used in a different way.

5.1.3 Haar-classifier

Another SPL team, SPQR, has released their ball detector (Bloisi et al. 2017) which mainly relies on
a Haar-classifier after doing the preprocessing in a different way. We have used their trained Haar-
classifier to decide whether the remaining squares are in fact a ball or not. All the preprocessing
discussed in this section was needed to be able to use this Haar-classifier, since it returns a lot of
false positives, especially in robots and in areas outside the playing field.

5.2 Performance

The ball detector has been evaluated in the Robolab of the University of Amsterdam, which contains
an old field, so without artificial turf, and is about the size of half a real field.
While testing it was clear the ball detector performed less well than during a real match, this is
due to the fact that the Haar-classifier gives a lot of false positives when given images which don’t
mainly contain green or a ball. Since there is no field detection yet, the ball detector can still put
regions of interests from outside the field into the Haar-classifier.
The first test performed was putting the robot in the middle of the field, where two other robots
were placed, while having the ball in it’s view at a certain distance. If the robot managed to reach
the ball, this counted as a positive, a negative otherwise. After every attempt the robot was turned

1https://github.com/keenerd/quickblob
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Table 1: How many times the robot ended up at the ball at a certain distance

1M 2M 3M 4M
6/8 6/8 3/4 1/2

around 45 degrees with distances of one and two meters, so the background changed trough out
the test. Due to the size of the field, only four test could be performed at a distance of 3 meters,
placing the ball near the corners of the field. At 4 meters the robot could no longer be placed on
the middle of the field, so it was placed more towards the goal.
A second test consisted of placing the robot in the middle of the field, without any ball present.
If no ball is found for 5 seconds, the robot started turn around to find a ball. This consistently
worked well as long as the robot mainly had field in front of him, but as soon as it started to look
towards the short side of the field, a false positive was found in objects next to the field.
In conclusion it can be said that the ball detector works reasonable right now and could work great
when field detection is added as well.
The ball detector is still a bit slow, with at least 70ms to process one image from both the lower
and upper camera, but a large part of the code still leaves room for optimisation.

6 Results

6.1 Iran Open (Tehran)

The Iran Open was the first competition the team competed in this year. It took place from the
5th to the 7th of April 2017 in Tehran, Iran. The Dutch Nao Team used the B-human framework
and in addition to that a behaviour-engine and ball detector of own making.
The ball detector that was used at the Iran Open consisted of a similar pipeline as the ball detector
described in this document but used a neural network as final classifier. This did not work well in
the end because the neural network was not trained on data recorded by a moving robot, resulting
in the robot seeing balls everywhere when moving.
The Iran Open did not only consist of playing soccer matches. There also was an ‘open challenge’,
in which each participating team gave a small presentation about one of the things it has been
working on to implement in the robot. The other teams give scores for various aspects of the
presentation. The team with the most points wins the challenge. The Dutch Nao Team gave a
presentation about it’s behaviour-engine and was voted as the winner of this challenge by the other
participating teams. This behaviour engine has been thoroughly explained in the technical report
of last year (Caitlin Lagrand 2016a).
During this competition some frustration about the usage of the large quantity of code from other
teams arose, since that makes it hard to get a good sense of the way the framework operates and
how you can best implement new features. This eventually led to the making of our own framework,
which is described above in section 3.

6.2 Robotic Hamburg Open Workshop (RoHOW)

RoHOW2 is an annual open workshop for SPL teams, organised by the German team ”HULKs”3.
It took place from the 25th to the 27th of November 2016. During the event test games are played,
algorithms and ideas about challenges are shared, and lots of coding is done. The atmosphere is

2https://www.rohow.de/2016/de/
3https://www.hulks.de/
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Figure 2: Team picture after receiving the prize for winning the Open Challenge in Iran

relaxed due to the lack of pressure of competitive games, which makes it a great opportunity for
new team members to get to know the flow of working with robots and being in the SPL. This is
one of the reasons the team went there this year. Due to issues with the ball detector no games
were played at this event.
The more experienced members of most teams gave presentations or workshops about a broad range
of subjects, ranging from raising funds to be able to attend international competitions to tips and
tricks with compiling your code.

6.3 RoboCup Nagoya

The Dutch Nao Team qualified for the RoboCup 2017 (27 to 31 July 2017) in Nagoya with a video4

and a qualification paper (Lagrand et al. 2016). This was the first event after the decision to make
a new framework. It was decided to use the new framework despite it being rather basic due to lack
of time. In addition to this, an upgraded version of the ball detector was used for the first time. As
walking engine NaoQi was used. Kicking was not yet available.
During the first round (round Robin 1, the group stage in the competition), the Dutch Nao Team
played 0 − 0 against both Luxembourgh United and Aztlan. The team had trouble with crashes of
the framework and the get-up engine did not work yet, with as result a lot of ‘request-for-pickup’s.
During the second round, the play-in round, the Dutch Nao team lost 0 - 1 versus Nomadz and
played 1 − 1 versus JoiTech due to an own goal by JoiTech. A robot of the Dutch Nao Team did
help to get the ball close to the goal, so the goal wasn’t made without effort from the team’s side.
During this round the Dutch Nao Team did not earn enough points to qualify for the quarter finals.

The Open Challenge consisted of a penalty competition this year, which took place at the very
beginning of the competition, where the team could not yet kick the ball, only walk towards it and
dribble. This resulted in walking to the ball successfully, but, as expected, no goals.

4https://www.youtube.com/watch?v=FqzGRQzBJwo
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6.4 Foundation

At the beginning of the year the decision has been made to put a lot more effort into sponsoring
than in the previous year, with as goal funding the trip to the RoboCup in Japan. In order to be
able to receive money from companies in a transparent way, the Dutch Nao Team needed it’s own
bank account. To this end, a foundation has been started, with the following advantages:

1. Being able to open a bank account

2. Not having to pay taxes over money earned by either sponsoring or giving demonstrations
(unless the team earns more than 22.689 euros in a year)

3. Having the Dutch Nao Team as a legal person

The board of the foundation consisted of the following members:

1. Chairwoman: Caitlin Lagrand

2. Secretary: Patrick de Kok

3. Treasurer: Sebastièn Negrijn

6.5 Public events

During the entire year the team has given paid demonstrations and lectures for companies and the
municipality of Amsterdam. The goal of these demonstration was to raise funds for the trip to the
world cup in Nagoya, Japan. Most of the demonstrations required custom software to be made.
Some of the things that have been developed are:

1. An interface to communicate with the robot where IBM’s Watson returned an answer

2. NaoQi modules that start a desired behaviour on start-up, which enables usage without need-
ing a laptop

3. An android app to make a Nao walk or do a certain emote. This is an easy way to allow the
public to move

4. Presentations about what AI is and what the challenges are in robot soccer right now

5. The protocol to give a demonstration of having robots take penalties

This year the team raised about 5500 euros, half of this was earned with demonstrations and pre-
sentations for companies and the other half was received from the Amsterdams Universiteitsfonds.
In total 5 paid events were attended.
A special event was the BNAIC 2017 conference, where the Dutch Nao Team also contributed a
paper, (Caitlin Lagrand 2016b) in Amsterdam where the Dutch Nao Team won the prize for the best
demonstration. The demonstration consisted of one robot detecting the ball and taking a penalty,
and one robot being a goalie and diving left or right depending on where the ball was going.
Using the contacts and software we made this year, the goal is to raise more money next year while
spending less time on preparations.
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7 Conclusion

With the change of a foreign framework to a home-made framework the team now has code that all
the members understand and this knowledge can be passed on to newer members easily because of
the proper communication and clean code. Due to having to build everything from the ground up,
the results were not outstanding this year, but will improve next year as localization and a better
motion engine will be put in place. When the framework is stable and has all the basic functions,
reinforcement learning could be used to create good behaviours for the robots using reinforcement
learning (Lagrand 2017)
The Nao robots have also been used for other activities than football in the Robolab this year, such
as being a personal teaching aid (Aerssens et al. 2017) or picking up tomato’s (Lagrand, Meer, and
Visser 2016).
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