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Introduction

Since 2010, the Faculty of Science of the University of Amsterdam hosts the Dutch Nao Team (DNT)1, com-
posed of bachelor and master students, that develops and manages the code base and infrastructure required
to participate in the RoboCup Standard Platform League (RSPL)2. In this league, autonomous Nao-v6 robots
engage in competitive soccer matches. DNT resides in the Intelligent Robotics Lab (IRL)3, an advanced robotics
teaching-and research facility of the University. The RSPL competition provides a unique environment where
a range of technologies and skills are integrated into a fully functioning multi-player robotics platform. Such
technologies include sensing, motion, localization, computer vision, communication, game-play and behavioral
state planning and many more.

DNT’s participation in the 2021 RSPL Obstacle Avoidance challenge4 required the development and imple-
mentation of robust real-time object detection and the capability to navigate though a field of obstacles, while
walking with a ball. This report describes the approach to this implementation, the results of tests to assess
performance as well as potential avenues for further improvement.

A reduced Yolo-v3 model configuration [24] is presented and trained specifically to achieve high performance
on robot and ball detection. A basic deployment of this model on a standard Nao-v6 runs at about 700ms,
which is far too slow for any high fidelity real-time application. However, by implementing ball and robot model
classes that apply Kalman filtering on low-frequency detection signals generated on a separate thread, a stable
representation is achieved. We show that this approach is feasible and sufficient for basic obstacle avoidance.
F1 scores for detection are significantly improved compared to a legacy detector, from ca. 0.2 to ca. 0.8-0.9.
However, we can do better and explore the potential to improve execution time of the detection algorithm.
As for the task of navigating through a field of obstacles, a pathfinding module is developed that uses the
representation of the field based on the detections. This navigation module can be called by the behavioral
engine (a state machine) in any scenario that requires maneuvering through an environment.

1 Starting Point and Objectives

The object avoidance task as formulated in the RSPL challenge4 requires a robot to walk with a ball through
a half-field with up to 5 robots placed as static obstacles and score a goal. The static robots can have different
orientations and stances. In order to achieve object avoidance capability, a number of new functionalities are
required that need to be integrated into the existing DNT framework. A simplified overview of the modules to
be added and their place in the framework is presented in the shaded box in Figure 1.

• First, in order to avoid objects, they will need to be detected with high confidence and projected on
a representation of the environment. The current framework contains a Haar feature based cascaded
classifier for ball detections [28]. The Haar detector is fast (30 FPS), but inaccurate. It suffers from a
high false positive rate and low recall (details are presented in section 3.5), so this needs to be improved.

• Secondly, Ball and Robot models are required, calculated by applying Kalman filters on (potentially noisy)
detection signals, in order to make best estimate predictions of object locations with respect to the robot.

1Dutch Nao Team https://www.dutchnaoteam.nl/en/home
2Robocup Standard Platform League.https://spl.robocup.org/
3Intelligent Robotics Lab, University of Amsterdam https://robolab.science.uva.nl
4https://spl.robocup.org/rc2021/#oac, https://cdn.robocup.org/spl/wp/2021/01/SPL-Rules-2021.pdf
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• Thirdly, a Navigation module is required to plan a feasible and optimal path to a target position. From
that point on, the existing behavior engine can be used to define a behavior that consists of walking with
the ball to the first waypoint in the queue.

This work focuses on object detection and navigation capability. Object modelling was developed in a separate
project. However, the result of integration tests in real-time game-play scenarios will be presented in section
4.5 of this report.

2 Related Work

Figure 1: High-level overview of the DNT frame-
work

Object detection has experienced a tremendous impulse
over the last decade [12, 33, 35], driven by research
interest and a successful evolution from classical and
hand-engineered features to approaches that leverage
deep learning. Detection builds on object classifica-
tion techniques and adds localization of (multiple) ob-
jects by predicting bounding boxes. There are many
successful approaches that can now achieve near per-
fect performance on benchmark datasets [35]. Be-
yond detection lies real-time image segmentation [17]
to predict semantic categories on the level of pixels
which is also widely and successfully applied in many
fields.

Application of deep learning in robotics is widespread and
many successful applications have been reported in vision,
motion, navigation, planning & control using techniques
such as deep convolutional neural nets, reinforcement learn-
ing and transfer learning [14, 20, 25]. Specifically on object
detection and navigation, various teams in the Standard
Platform League have reported innovative applications. A
comparative survey of Neural Network based approaches to
detection from TUHH [13] served as a starting point. Sev-
eral publications scale down detection networks to achieve
acceptable frame rates. [3] introduces xYolo, a scaled down version of Yolo-v3 specifically optimized for ball and
goal-post detection. [27] reverts to binary convolutional networks (XNOR) and tests it on a Jetson TX1 device.
[21] designed JET-Net, a scaled down model that successfully runs using the optimized JIT compiler developed
specifically for the Nao-v6 CPU by the B-Human team from Bremen [29]. [34] reports successful deployment
of Yolo-v4 and reduced models on different platforms, including Nao-V6 and a Coral Edge TPU. Progress is
also made in dataset generation: [9] offers infrastructure for image tagging and dataset sharing. Benchmark
datasets are being developed [8, 19]. An open source generative model for scene generation using Unreal Engine
4 was introduced by [11]. In the area of navigation and path planning, [32] implemented and compares several
options to be considered and favors an A*-based algorithm, as does [2].

3 Developing Object Detection capability

3.1 Starting point and requirements

Given the constraints on computational resources of the robots, most of the current computer vision algorithms
deployed on DNT’s Nao robots are highly optimized for specific tasks and are based on classical methods such as
Canny edge detection and Haar feature-based cascade classifiers. However, these are expected to be insufficient
for the challenge and this provides a good opportunity to migrate to Convolutional Neural Network (CNN)-
based detection. Various teams in the RSPL have moved in this direction and use cases have been presented
at https://2021.robocup.org/symposium. There are clear candidates for well suited modern detection algo-
rithms for this task. However, the main challenge will be to minimize model complexity and trade-off model
performance with speed and feasibility to run on the Nao platform that has no GPU and heavily used threads
on its CPU for normal operation.

The vision modules in the DNT framework have access to 640x480 images in the YUV color space. These images
are taken from an upper and lower camera mounted in the head of the robot and are processed at 30 FPS. The
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objective is to retrieve bounding boxes of objects on the field, such that their location can be derived. There
are multiple competing aspects to optimize for. These include Speed (low latency for detection), Accuracy (high
precision and recall), Robustness (performance under a wide range of circumstances such as light conditions,
orientation of objects, backgrounds, motion blur), Generalization (ability to detect a variety of classes beyond
balls and robots).

3.2 Survey of methods and method selection

The last 20 years have seen many breakthroughs in object detection techniques, well documented by several
surveys [12, 33, 35]. Detection algorithms can be categorized into two-stage (R-CNNs, SPP, FPN, FCN and
others) and single-stage (SSD, Yolo, Mask R-CNN, RetinaNet and others) models. Two-stage models split
Region of Interest generation from Pooling operations that extract features and specify candidate bounding
boxes. This achieves high localization and recognition accuracy, but at the costs of inference speed. Single-
stage models combine all operations in one convolutional forward pass which leads to faster inference. In
recent years, much effort has been put into developing lightweight networks (examples include SqueezeNet,
MobileNet) that can be deployed in resource constrained environments such as mobile and IoT devices. A key
element of any detector is the backbone network used to extract features on which to base object classification.
These backbones have evolved in complexity and effectiveness and include variants such as AlexNet, VGG,
GoogLeNet/Inception, Residual Networks, DarkNet amongst others. Current state-of-the-art approaches5 are
summarized in Figure 2.

FPS ms
R-CNN 2014 AlexNet 224      59 0,02       50s
SPP-Net 2015 ZF-5 var 59 0,2         5s
Fast R-CNN 2015 VGG-16 var 66 0,4         2,5s
Faster R-CNN 2016 VGG-16 600      67 5            200          
R-FCN 2016 ResNet-101 600      53 3            333          
FPN 2017 ResNet-101 800      59 5            200          
Mask R-CNN 2018 ResNeXt-101-FPN 800      62 5            200          
DetectoRS 2020 ResNeXt-101 1.333   72 4            250          
YOLO 2015 GoogLeNet 448      58 45          22            
SSD 2016 VGG-16 300      41 46          22            
YOLOv2 2016 DarkNet-19 352      44 81          12            
RetinaNet 2018 ResNet-101-FPN 400      50 12          83            
YOLOv3 2018 DarkNet-53 320      52 45          22            
CenterNet 2019 Hourglass-104 512      61 8            125          
EfficientDet-D2 2020 Efficient-B2 768      62 42          24            
YOLOv4 2020 CSPDarkNet-53 512      65 31          32            

mAP@0.5
COCO

Image
size

BackboneYearModel
Inference speed

Figure 2: Overview of key detection algorithms[33] Figure 3: Performance envelope[24]

For real-time detection tasks, an optimum is sought between accuracy6 and inference speed, visualized in a
performance envelope, see Figure 3. The Yolo algorithm, since its first formulation in 2016 [22] has consistently
pushed the boundary in this envelope. There are currently five generations of the Yolo algorithm [4, 22, 23, 24],
the details of which are well summarized by [30]. Key aspects and improvements between Yolo generations will
be presented in the next section.
Yolo is a clear candidate of choice as a generic and high performing detection algorithm. It is preferred over
highly optimized algorithms for specific classes given the ability to include additional classes in the future that
can be relevant for the DNT framework such as goal posts, penalty markers, different robot stances, etc. As a
basis for our application, variants of the the third generation Yolo-v3 are considered. The key reason for this is
the maturity of this version, with well established implementation frameworks and portability options. Yolo-v3
contains all critical improvements needed for our purposes.

3.3 Key principles used by Yolo

Bounding box predictions One of the key innovations that the first version Yolo-v1 [22] introduced was
the Convolutional implementation of sliding windows for bounding box prediction using (1x1) kernels. The use
of (1x1) kernels to substitute fully connected layers had already been demonstrated in 2013 (dubbed network-
in-network [16]). [26] introduced Overfeat: instead of running forward propagation on all individual sliding
windows of the input image independently, these windows can be combined into one forward propagation
computation and share the computation in the common regions of the image. An illustration with more details
is provided in Figure 26 (Appendix F.1). Yolo-v1 built on this approach to predict exact bounding boxes. It
splits an image into grid cells (gx×gy), assigns object boxes to specific grid cells based on the center pixel of the

5Care should be taken when interpreting performance metrics as these depend highly on the choice of evaluation dataset and
hardware. Only relative performance will be considered within well executed benchmark studies

6Usually expressed in mean average precision for detection tasks, this will be discussed in the next section
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box and defines an output vector [pc, bx, by, wx, wy, c1, ..., ck]T , with k number of classes. pc can be interpreted
as the ‘objectness’: the probability that there is an object in the bounding box7. (bx, by) defines the center
of the bounding box, and (wx, wy) its width and height, relative to the grid cell. ci represents the conditional
probability of class i, given that there is an object. Figure 4 shows the end result: a convolutional network with
appropriate architecture can map an image of shape (w × h× 3) to a volume with output vectors for each grid
cell (gx × gy × (5 + k)).

Figure 4: Illustration of transformation from image to Yolo output vector encodings (Image adapted from [18])

Loss function With these definitions, Yolo defines a loss function used for training the network, see Figure
5. The loss consists of four terms representing i) how close is the predicted bounding box to the ground truth,
ii) how close are width and height of the box compared to the ground truth, iii) how close is the objectness
score to the ground truth label (either 0 or 1), and iv) how close is the predicted conditional class probability
to the ground truth class.

Figure 5: Yolo loss function (annotations made on original image from [22])

Non-max suppression When an output volume such as the example in Figure 4 is obtained, it can predict
multiple detections of the same object with mid-points in different grid cells. Non-max suppression is used to
discard all bounding box predictions below a pc (objectness) threshold (this is a hyperparameter, usually set at
0.6). Next, all remaining predictions are processed in decreasing order based on pc. For overlapping bounding
boxes (based on an Intersection-over-Union, or IoU above some threshold, usually set at 0.5), the prediction
with the highest objectness score is kept and all others are discarded (suppressed). Non-max suppression is
performed independently on all predicted classes to avoid any unintended suppression due to interference of
bounding boxes between classes.

Anchor boxes Anchor boxes were introduced in Yolo-v2 [23] and enable detection of multiple objects per
grid cell. Key idea is to pre-define archetype bounding box sizes, let’s say three per grid cell. The output tensor
shown in Figure 4, as well as the ground truth labels, will now contain three vectors of size (7× 1) per grid cell,
resulting in a volume of (gx × gy × b(5 + k)), with k the number of classes and b the number of anchor boxes.
K-means clustering can be used to define anchor boxes (also considered as priors for the class predictions) that
are most suitable to the different classes in the training set. Some technicalities are involved to map network
output to bounding box coordinates relative to the anchor boxes, details can be found in [23].

7Or, alternatively: a prediction of the Intersection-over-Union (IoU) of the bounding box with the ground truth
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Multi-scale learning Among several incremental improvements in Yolo-v3 [24], scale pyramids were in-
troduced in the Yolo architecture that enable detections at different resolutions by the same network. This is
particularly relevant for our detection task (think of soccer balls that need to be detected at different distances).
In addition, Yolo-v3 changed the backbone of the network to Darknet-53, containing 53 convolutional layers
with residual connections.

Evaluation For the detection task, the most appropriate evaluation metric is Mean Average Precision (mAP),
defined using Intersection over Union for all predicted bounding boxes and classes in a given image. mAP is
calculated based on a choice of (a range of) confidence thresholds, details are provided in Appendix F.2.

Other improvements After Joseph Redmon, who worked on the first three generations of Yolo, withdrew
from further development, other researchers have continued the work and have introduced Yolo-v4 and v5.
Improvements were made to the network architecture introducing dense blocks, spatial pyramid pooling blocks,
a path aggregation network and a range of additional ‘tricks’ in Yolo-v4 [4]. Another group ported the Yolo
framework to Pytorch8 and claimed the Yolo-v5 label around the same time, but this has caused some contro-
versy given the limited extent of the improvement and the lack of thorough review and publication of results.

The overall pipeline involved when training and deploying Yolo is shown in Figure 6. Note that images need
to be pre-processed (scaling to fit the input dimensions and optional augmentation during training) and the
network’s output requires post-processing (non-max suppression) both for training and inference.

Figure 6: Summary of the pipeline used for training and deploying Yolo

3.4 Training and testing Tiny Yolo-v3/3L

Dataset generation A critical component of obtaining a good detector is availability of a dataset that is
large and diverse enough to enable the network to learn, generalize and ultimately predict detections in new
unseen scenes. The ball and robot classes are very specific to the RSPL and therefore, pre-trained models
are not sufficient for this task9. In 2018, a ‘Bit-Bots’ team from the University of Hamburg released an open
source online platform10 for collaborative image labeling specifically for the RoboCup Soccer [9]. A number of
annotated datasets were extracted from this database and added to the training dataset. In addition, new data
was generated by recording live scenes of DNT robots, in order to enrich the train dataset with more diverse
robot poses (in particular crouched robots). A diverse11 set of scenes were recorded to serve as validation data.
Although one could bootstrap an automated annotation tool for the specific classes, images were annotated by
hand using the Bit-Bots platform. All extracted annotations were verified. The train and validation datasets
consist of ca. 7,500 and 600 images, respectively. Appendix C presents statistics and example images from the
datasets.

Model selection The Darknet framework12 was used to train and evaluate Yolo v3 and v4 models. For
each version, three configurations were considered: the full scale model with prediction on three scales (‘Yolo-
vX/3L’), the original reduced model that uses two scales (‘Tiny Yolo-vX/2L’) and a the reduced model with

8https://github.com/ultralytics/yolov5
9Fine-tuning of pre-trained weights can be used when features extraction is expected to be effective on new classes

10https://imagetagger.bit-bots.de
11In terms of light conditions, number/location/stance of robots on the field, distance of objects, richness of background imagery
12https://github.com/AlexeyAB, forked from the original framework by Joseph Redmon, maintained by Alexey Bochkovsky
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three scales (‘Tiny Yolo-vX/3L’). Key hyperparameters that were kept constant include the image input size
(416x416)13, anchor box dimensions14, data augmentation, batch size, and optimizer settings. Figure 7 presents
the results. It is clear that the reduced models15 are well suited for this task with Tiny Yolo-v3/3L offering a
good middle ground: limited in complexity (i.e. high inference speed) and mAP performance of 86%, close to
the maximum achieved. This model was chosen for use on the robots and its performance will be presented
next. The detailed model architecture of Tiny Yolo-v3/3L is provided in Appendix A.

# Parameters BFLOPS Scales mAP@50 Lat (ms)
62 Yolo-v3/3L 65,3      3 90% 9,1         

8,86 Tiny Yolo-v3/2L 5,5        2 84% 2,8         
9 Tiny Yolo-v3/3L 7,1        3 86% 3,0         

Yolo-v4/3L 59,6      3 91% 11,5       
Tiny Yolo-v4/2L 6,8        2 81% 2,8         
Tiny Yolo-v4/3L 8,0        3 87% 3,1         

Figure 7: Performance of Yolo-v3 and v4
variants on validation dataset16

Training The Tiny Yolo-v3/3L model was trained using the
Darknet framework, compiled to run on an Aurora-R9 work sta-
tion with an Intel Core i7 9700 (8 cores/16 threads) and Nvidia
2080 Ti GPU (11 GB) with CUDA 10 and driver 415. Training
for 20k steps, which corresponds to ca. 170 epochs (7k images
in the training set, batch size 64) takes ca. 110 minutes. All
parameters used are presented in Appendix A.3. A batch size of
64 is used, learning rate of 0.001 (scheduled to scale down by 0.1
at steps 10k and 15k), an SGD optimizer is used with momen-
tum 0.9 and weight decay 5e-4. Data augmentation is used with
parameters or saturation (1.5), exposure (1.5) and hue (0.1)17.
The progression of the loss and the performance on the validation set (mean average precision) during training
is shown in Figure 8. In this particular run, the best model was found at around step 9,500 (epoch 80).

Figure 8: Chart of the progression of training loss and
performance on validation data during training

Figure 9: Screen output of the results of Darknet
model evaluation on the validation dataset

Off-line Evaluation Darknet offers a facility to evaluate a trained model on test data. Results are shown in
Figure 9. The overall Mean Average Precision on the test data for a confidence threshold of 0.5 is mAP@0.50 =
86%, with nearly equal performance on ball and robot classes. The overall F1 score is 0.79. These are promising
results given the diversity and, at times, complex detection scenes (with high levels of motion blur, partially
occluded or distant objects). A verification and visual inspection of results will be presented based on deployment
on the robot in the next section.

3.5 Deployment of the Yolo detector on the Robot

Embedding detection functionality in DNT’s Robotics software The DNT code base, written in
C++17, constitutes a framework in which all functionality required for autonomous operation of the robots
is integrated. For the task of object detection and object avoidance, the key module groups that need to be

13Lower resolution harmed detection of smaller/more distant objects
14These were obtained by running k-means clustering on the train dataset, using 3 anchor boxes per grid cell
15As a comparison: the full Yolo-v3 model has 62M parameters, Tiny Yolo-v3/3L has 9M
16Latency recorded using a Nvidia 2080 Ti GPU
17For definitions and visualizations, see https://www.ccoderun.ca/darkmark/DataAugmentationColour.html
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developed are perception (transforming real-time imagery to relevant signals to be used by other modules), object
modelling (maintaining an accurate and current representation of the environment: robot and ball positions on
the field), navigation (planning feasible and optimal paths towards a target position) and the behavior engine
(overall logic to inform the robot’s decisions, in particular as input for motion control).

Implementation details There are various options available for implementing the Yolo model. The initial
approach taken leverages the functionality offered by OpenCV’s Deep Neural Net (dnn) module18, which can
load and execute Darknet encoded models through its API. The DNT code that uses this API is available in
a private repository, excerpts of key code snippets are included in Appendix B.1. Execution time of inference
using the Tiny Yolo-v3/3L model on the Nao Robot’s CPU19 is about 700ms, equivalent to ca. 1.4 FPS. This is
too slow for real-time detection, with the robots operating at a frame rate of ca. 30 FPS. Options for speedup
will be discussed later. In order to have a functioning baseline detector, two steps were taken:

1. New ballModel and robotModel classes were created, that apply Kalman filtering on the low-frequency
Yolo detection signals. The signals are infrequent but very reliable and hence this probabilistic approach
enables a stable and usable estimate of ball and robot positions. Implementation details are out of scope
of this report.

2. Detection frequency is particularly important tracking faster ball movement. The DNT framework already
used a Haar feature based cascaded classifier for ball detections [28, 31]. Although this detector runs at
30 FPS, it is not very accurate, with high false positive20 and false negative rates. A Mixed Ball Signal

Generation algorithm was implemented to combine the speed of the Haar classifier with the precision of
Yolo, shown in Algorithm 1. The key idea is to validate Haar detections whenever infrequent, periodic
Yolo detections are executed. If the Haar classifier is in validated state and detects positively in subsequent
frames (without Yolo executing), we assume it is still valid, as long as the time between detections is below
a threshold. Otherwise, we consider the Haar detection a False Positive and discard it.

Algorithm 1 Mixed Ball Signal Generation

1: while Robot is active do . Embedded in main operating loop
2: function GetBallSignal(timestamp) . All access to data members handled in class
3: cam← pointer to latest camera sensor output
4: haar ← pointer to latest Haar ball classifier output
5: yolo← pointer to Yolo class object
6: timeSinceLastYoloRun ← currentTime − yolo.lastYoloRun
7:
8: if haar.timeSinceLastDetection > 1s or timeSinceLastYoloRun > 1s then
9: ballBoundingBoxes, robotBoundingBoxes ← yolo.RunDetection(cam)

10: yolo.lastYoloRun ← update
11: haar.validated ← false
12: for all b ∈ ballBoundingBoxes do
13: if haar.ballRectange overlaps with b then . Discards False Positives of Haar classifier
14: haar.validated ← true
15: end if
16: end for
17: return ballBoundingBoxes, robotBoundingBoxes
18: else
19: if haar.validated then . Fast Haar detections are used if validated in an earlier cycle
20: return haar.ballRectangle
21: end if
22: end if
23: end function
24: end while

Evaluation on the robots The approach described above was tested by recording a test match on DNT’s
home field and analyzing a randomly selected sequence of ca. 600 consecutive frames of game-play. Performance
on Ball and Robot detection can now be evaluated separately. For ball detection, we are mixing results of two
detectors, each of which can yield a True Positive (TP), False Positive (FP), True Negative (TN) or (False
Negative) result. Thus there are 4 × 4 = 16 possible outcomes. Examples of the most common outcomes are
shown in Figure 10. Detailed analysis is provided in appendix D. Figure 11 presents the key resulting evaluation
metrics. A marked performance improvement is observable when the Yolo detector is used. Yolo’s ball detection
precision is nearly perfect and recall improves from 19% (Haar classifier) to 70% (mixed detection). Recall on
robot detection is 76%. Overall F1 scores improve from 0.3 (Haar classifier) to 0.8 and above when using the
Yolo detector.

18https://docs.opencv.org/4.3.0/d6/d0f/group__dnn.html, (The DNT framework currently uses OpenCV v.4.3.0)
19Intel Atom E3845 Quad Core @ 1.91 GHz, 4GB DDR3
20Especially on robots: the Haar classifier often falsely detects a ball in the regions of knee and torso of the robots
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Visual inspection of the result indeed confirms many false positive detection errors by the Haar classifier in
regions of the robot, see Figure 20 (Appendix D.1). Many ball detections are missed by Haar, especially at
higher distances. Yolo, on the other hand, is robust against motion blur and successfully detects at different
distances (scales) as is expected given the 3-layer scale pyramid used in Tiny Yolo-v3/3L.

Haar TP , Yolo TP: 71 cases Haar TP, Yolo FN: 10 cases

Haar FP, Yolo TP: 8 cases Haar: FP, Yolo FN: 4 cases

Haar TN, Yolo TN: 27 casesHaar FN, Yolo TP: 223 cases Haar FN, Yolo FN: 117 cases

= Yolo/Haar joint ball detection= Haar ball detection

= Yolo robot detection

= Yolo ball detection

Haar FP, Yolo TN: 5 cases

Figure 10: Illustration of potential outcomes of mixed Haar classifier and
Tiny Yolo-v3/3L based ball detections

Haar
ball ball robot

Precision 83% 100% 99%
Recall 19% 70% 76%
True Neg Rate TNR 61% 100% 91%

Accuracy 23% 72% 77%
Balanced Accuracy 40% 85% 84%
F1-score 0,3         0,8         0,9         

Yolo

Figure 11: Detection performance
of Haar vs. Tiny Yolo-v3/3L

3.6 Options for acceleration

The challenge that comes from deploying neural networks on resource limited devices has seen much research
interest in recent years [6, 10, 15]. There are various options to consider for speeding up inference times
and reducing energy use. They are briefly mentioned here, but implementation and experimentation was not
performed within the scope of this project.

Code and compiler optimization Naturally, all redundant operations should be eliminated from the code
that calls the forward pass of the network. This includes unnecessary scaling, color space transformations and
class instantiations. A first step to consider would be to use the JIT compiler21 optimized for the Nao-v6 CPU
[29], shown to achieve up to an order of magnitude faster inference times on complex networks.

Hardware acceleration A second route to consider in the context of RSPL would be the use of specialized
hardware such as TPUs or camera devices with integrated specialized processing units. As an experiment, the
trained Tiny Yolo-v3/3L model was run on a Luxonis Oak-1 camera using the DepthAI framework22, achieving
25 FPS. However, these hardware additions are not allowed under the current RSPL rules.

Model complexity reduction, pruning and quantization We have seen the benefit of model complexity
reduction with the Tiny Yolo variants. Once defined, a baseline network architecture may still contain a large
amount of redundancy [10]. Pruning addresses the issue of redundant weights in the network. Complexity is
reduced by eliminating weights that do not (significantly) affect prediction outcomes for a given task. Quan-
tization addresses the unnecessary precision at which calculations are performed. Significant speedups can be
achieved by moving to lower precision (INT8, in some cases even up to binary) and readjusting (clipping and
recalculating) weights to maintain model performance. A lot of investment has been going into the development
of seamless pruning and quantization pipelines23, some specifically targeting Yolo models24.

21https://github.com/bhuman/CompiledNN
22https://docs.luxonis.com/projects/hardware/en/latest/pages/BK1096.html, https://docs.luxonis.com/en/latest/
23All major deep learning frameworks offer optimization modules
24Notably https://neuralmagic.com/blog/benchmark-yolov3-on-cpus-with-deepsparse
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4 Developing Navigation and Pathfinding Capability

4.1 Starting point and requirements

The DNT framework had no navigation or waypoint system in place before participating in the Object Avoidance
challenge. The basic robot behavior during game-play consisted of <find ball>→<walk to ball>→<align with
goal>→<walk to goal>. This basic behavior can be expanded by building three new functionalities:

1. Maintain an active representation of objects on the field (object modelling)

2. Based on own position and target position, find the best feasible path and transform this path to a discrete
set of waypoints

3. Rewrite the <align with goal> and <walk to goal> behaviors into more flexible <align with waypoint>
and <walk to waypoint> behaviors (in which, of course, some point in the goalbox can also be defined as
a waypoint).

Within the scope of this project, active waypoint generation was developed (functionality 2), while other mem-
bers of the team developed object modelling and walk to waypoint behavior. The basic requirement of waypoint
generation is to plan paths to a predefined position through a field with robots as obstacles in various stances.
These paths should be formed such that they i) are feasible to walk while kicking a ball, implying that the fewer
and shallower the turns required, the better; ii) retain safe distance margins from robots; iii) minimize the time
required to walks the path.

4.2 Survey of methods

Mobile robot path planning is a well studied problem and a myriad of effective approaches are possible [1, 5, 7],
roughly categorized into global planning (further divided into approaches using graph search, random sampling
or intelligent bionic algorithms) and local planning (ranging from basic graph-based approaches to the use of
potential fields, fuzzy logic, particle algorithms, etc.). In the context of the SPL, the German team ’HULKs’
team from Hamburg University of Technology has reported on their study of an A* based approach in 2019
[32]. However, this was evaluated offline and was not ported to a robot for testing.
The complexity of the task is limited and it is expected that a coarse grid will be sufficient given field dimensions
(9m × 6m), robot dimensions (safe distance radius is assumed 40cm) and limited number of robots on the field.
The approach taken is an alteration of Dijkstra’s shortest path algorithm, which applies a weighting of edges in
a graph with nodes representing field cells. The approach does not rely on a choice of heuristic required by A*.

4.3 Shortest path implementation using a cost landscape

The implementation of Dijkstra’s shortest path algorithm for robot navigation on the soccer field starts with a
custom graph class25. The field is divided into a graph of nodes and edges G(N,E), with each node connected
bidirectionally in 8 directions. An empty field will have edges with cost 1 (directions N,S,W,E) or

√
2 (directions

NE,SE,SW,NW). The class implements a parameterized placement of obstacles: all edges originating from the
obstacle node are assigned a peak cost cmax, which attenuates over adjacent nodes αi ·cmax, i ∈ 1, ..n based on a
the reach of the cost mountain n. This assignment is additive, meaning that if robots are near each other, their
cost mountains will interfere and create a saddle. Hence, a ‘cost landscape’ is created. The implementation of
the shortest path algorithm is provided in Appendix B.2. It uses the priority queue class from C++’s Standard
Library and runs in O(NlogN + E).

4.4 Testing

The approach is visualized in Figure 12 for a cost mountain with cmax = 100, reach of n = 1 and decay of
α = 0.75. Figure 12b shows a test case on the console with a large grid and high density of obstacles. The
landscape approach ensures safe distances by navigating over the saddles. Note that this represents an overly
complex toy example case. Parameters were tuned for realistic scenarios following the SPL rulebook26. The
parameters and test scenarios for the prototype module are provided in Appendix E.

25The interface of this class is provided in Appendix B.2. The full prototype code can be found at https://github.com/rvdweerd/
containers_GraphClassImplementation/tree/DNTgraph and its implementation in the DNT framework at https://github.com/

IntelligentRoboticsLab/DNT2017/tree/worldwide2021-obj-avoid/source/dnt/tools/navigation (private)
26https://cdn.robocup.org/spl/wp/2021/01/SPL-Rules-2021.pdf
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(a) Visualization of a basic cost
landscape in a graph

(b) Illustrative example of navigating through an additive cost landscape
created by randomly placing robots

Figure 12: Demonstration of edge-weighted shortest path finding using a cost landscape on a graph

4.5 Deployment on the robot

The code was ported to the robot by adding a navigation module to the DNT framework. For testing and
debugging purposes, a visual representation of the process was added to the DNT interface, see Figure 13. The
scene represents the start of a game as seen from the upper camera of the test robot. Detection bounding boxes
are marked, including the transformed coordinates from image space (the bottom centers of the bounding boxes)
to world space (relative to the robot in its own coordinate system). This represents the estimate of the position
of the objects on the field. These are derived using inverse kinematics of the robot. The right panel presents
a top view the field27 with the test robot position and orientation marked in black, and detected field robots,
clipped to the nearest grid cells in the small red circles. The path to the goal (in this example straightforward,
although it navigates in between the field robots) is indicated by the blue line and marked waypoint grid cells.

Figure 13: Scene from integration test, shown as a replay on the DNT Interface (legend in Appendix E)

Conclusion

The 2021 RoboCup Object Avoidance challenge offered a good opportunity to extend object detection and
navigation/pathfinding capabilities in the codebase of the Dutch Nao Team. Within the scope of this project,
object avoidance capability was successfully developed, as demonstrated by integration tests.

The choice for Tiny Yolo-v3/3L as the detection model was motivated by an optimization of speed and accuracy,
in combination with maturity and hence availability of frameworks and easy portability. The deployment on
Nao-v6 using OpenCV’s dnn module is slow, with inference times around 700ms. However, it was shown that by
using probabilistic estimation (Kalman filtering), stable and feasible representations of ball and robot positions
can be achieved. These form the input of a weighted shortest path algorithm that yields waypoints, leading to
the capability to maneuver to a target position on the field, while avoiding detected objects.

27A legend of the symbols in this image is provided in Appendix E
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The quality and quantity of the training dataset was crucial for obtaining a robust detection result. A significant
effort was made to create a diverse and effective dataset. Further improvement can be explored in two areas:
generalization of detection and speedup of the detection algorithm. The Tiny Yolo-v3/3L model can be trained
to detect additional landmarks on the field such as goalposts and penalty markers. This may be used for
improved localization and navigation. Significant speedup is expected by applying sparsification (pruning and
quantization) of the models, as well as as integrating a compiler optimization library that specifically targets
the Nao-v6 hardware.

References

[1] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. A comprehensive study on pathfinding
techniques for robotics and video games. International Journal of Computer Games Technology, 2015,
2015.

[2] Rahib H Abiyev, Murat Arslan, Irfan Gunsel, and Ahmet Cagman. Robot pathfinding using vision based
obstacle detection. In 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), pages 1–6.
IEEE, 2017.

[3] Daniel Barry, Munir Shah, Merel Keijsers, Humayun Khan, and Banon Hopman. Xyolo: A model for
real-time object detection in humanoid soccer on low-end hardware. In 2019 International Conference on
Image and Vision Computing New Zealand (IVCNZ), pages 1–6. IEEE, 2019.

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934, 2020.

[5] Kuanqi Cai, Chaoqun Wang, Jiyu Cheng, Clarence W De Silva, and Max Q-H Meng. Mobile robot path
planning in dynamic environments: a survey. arXiv preprint arXiv:2006.14195, 2020.

[6] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration for
deep neural networks. arXiv preprint arXiv:1710.09282, 2017.
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A Tiny Yolo-v3, 3 layers model specification

A.1 Tiny Yolo-v3, 3 layers model architecture

Conv+bn (3x16x3x3)p1s1
L-ReLU
MaxPool (2x2)s2

INPUT

MaxPool (2x2)s2

Conv+bn(512x1024x3x3)p1s1
L-ReLU

Conv (512x21x1x1)p1s1
Linear

Conv+bn (16x32x3x3)p1s1
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Figure 14: Model architecture for the baseline Tiny Yolo-v3 model with three output scales
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A.2 Tiny Yolo-v3, 3 layers trainable weights

Node Module Weight tensor #Params

0 Conv2d.weight [16, 3, 3, 3] 432
BatchNorm2d.weight [16] 16
BatchNorm2d.bias [16] 16

2 Conv2d.weight [32, 16, 3, 3] 4,608
BatchNorm2d.weight [32] 32
BatchNorm2d.bias [32] 32

4 Conv2d.weight [64, 32, 3, 3] 18,432
BatchNorm2d.weight [64] 64
BatchNorm2d.bias [64] 64

6 Conv2d.weight [128, 64, 3, 3] 73,728
BatchNorm2d.weight [128] 128
BatchNorm2d.bias [128] 128

8 Conv2d.weight [256, 128, 3, 3] 294,912
BatchNorm2d.weight [256] 256
BatchNorm2d.bias [256] 256

10 Conv2d.weight [512, 256, 3, 3] 1,179,648
BatchNorm2d.weight [512] 512
BatchNorm2d.bias [512] 512

12 Conv2d.weight [1024, 512, 3, 3] 4,718,592
BatchNorm2d.weight [1024] 1,024
BatchNorm2d.bias [1024] 1,024

13 Conv2d.weight [256, 1024, 1, 1] 262,144
BatchNorm2d.weight [256] 256
BatchNorm2d.bias [256] 256

14 Conv2d.weight [512, 256, 3, 3] 1,179,648
BatchNorm2d.weight [512] 512
BatchNorm2d.bias [512] 512

15 Conv2d.weight [21, 512, 1, 1] 10,752
Conv2d.bias [21] 21

18 Conv2d.weight [128, 256, 1, 1] 32,768
BatchNorm2d.weight [128] 128
BatchNorm2d.bias [128] 128

21 Conv2d.weight [256, 384, 3, 3] 884,736
BatchNorm2d.weight [256] 256
BatchNorm2d.bias [256] 256

22 Conv2d.weight [21, 256, 1, 1] 5,376
Conv2d.bias [21] 21

25 Conv2d.weight [128, 256, 1, 1] 32,768
BatchNorm2d.weight [128] 128
BatchNorm2d.bias [128] 128

28 Conv2d.weight [128, 256, 3, 3] 294,912
BatchNorm2d.weight [128] 128
BatchNorm2d.bias [128] 128

29 Conv2d.weight [21, 128, 1, 1] 2,688
Conv2d.bias [21] 21

Total number of weights 9,003,087

Table 1: Number of trainable weights of the baseline Tiny Yolo-v3 model
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A.3 Tiny Yolo-v3, 3 layers configuration file using the Darknet standard

[net]
# Training
batch=64
subdivisions=4
width=416
height=416

channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.001
burn_in=250
max_batches = 20000
policy=steps
steps=10000,15000
scales=.1,.1

# CUSTOM
max_chart_loss=1
mosaic=0

[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=256

size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=1

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

###########

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=linear

[yolo]
mask = 6,7,8
anchors = 4, 7, 7, 15, 13, 25,

25, 42, 41, 67, 75, 94,
91,162, 158,205, 250,332

classes=2
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1

[route]
layers = -4

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[upsample]
stride=2

[route]
layers = -1, 8

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=linear

[yolo]
mask = 3,4,5
anchors = 4, 7, 7, 15, 13, 25,

25, 42, 41, 67, 75, 94,
91,162, 158,205, 250,332

classes=2
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1

[route]
layers = -3

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky

[upsample]
stride=2

[route]
layers = -1, 6

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky

[convolutional]
size=1
stride=1
pad=1
filters=21
activation=linear

[yolo]
mask = 0,1,2
anchors = 4, 7, 7, 15, 13, 25,

25, 42, 41, 67, 75, 94,
91,162, 158,205, 250,332

classes=2
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
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B C++ Implementation details

Note: All code is available on DNT’s private repository on Github, access upon request.28

B.1 Darknet model implementation using OpenCV’s dnn module

1 #include <opencv2/core.hpp >

2 #include <opencv2/dnn.hpp >

3 #include <opencv2/objdetect.hpp >

4

5 class mYoloDetector : public Module {

6 public:

7 /**

8 * Constructor.

9 **/

10 mYoloDetector () ;

11

12 /**

13 * Default destructor.

14 **/

15 ~mYoloDetector () = default;

16

17 /**

18 * Detection function , runs the pre -loaded yolo model on the current frame ’s top view camera

image.

19 * @param ball_bounding_boxes placeholder for ball detections , will be filled when there are

ball detections

20 * @param robot_bounding_boxes placeholder for field robot detections , will be filled when

there are field robot detections

21 **/

22 void runDetection(std::vector <boundingBox >& ball_bounding_boxes , std::vector <boundingBox >&

robot_bounding_boxes);

23

24 private:

25 /**

26 * Instantiation of the yolo detection model. Loads Darknet tiny -yolo_v3 model configuration

file

27 * and pre -trained weights in opencv ’s dnn format

28 */

29 cv::dnn::Net model_;

30 cv::dnn:: DetectionModel detection_model_ = cv::dnn:: DetectionModel(model_);

31 };

Listing 1: Excerpt of header file m yolo detector.h defining a dnn-based Yolo detector

1 #include <opencv2/imgcodecs.hpp >

2

3 #include "m_yolo_detector.h"

4 #include "tools/log.h"

5 #include "tools/system_tools.h"

6

7 mYoloDetector :: mYoloDetector () {

8 // Load configuration file

9 Configuration ::Data configuration = Configuration ::load("yolo_detector.toml");

10

11 // Read in parameters

12 yolo_confidence_threshold_ = configuration["yolo_confidence_threshold_"];

13 yolo_iou_threshold_ = configuration["yolo_iou_threshold_"];

14 yolo_max_time_between_detections_ = configuration["yolo_max_time_between_detections_"];

15 yolo_max_time_between_haar_detections_ = configuration["

yolo_max_time_between_haar_detections_"];

16

17 // Float 32 tiny yolo v3

18 yolo_model_configuration_path_ = SystemTools :: getRootDir () + "/config/yolo_detector/yolov3 -

tiny_3l.cfg";

19 yolo_model_weights_path_ = SystemTools :: getRootDir () + "/config/yolo_detector/best86_yuv.

weights";

20

21 model_ = cv::dnn:: readNetFromDarknet(yolo_model_configuration_path_ ,

yolo_model_weights_path_);

28https://github.com/IntelligentRoboticsLab/DNT2017/tree/master/source/dnt/modules/perception/yolo_detector,
https://github.com/IntelligentRoboticsLab/DNT2017/tree/worldwide2021-obj-avoid/source/dnt/tools/navigation,
https://github.com/IntelligentRoboticsLab/DNT2017/blob/worldwide2021-obj-avoid/source/dnt/modules/modelling/m_

navigation.h, https://www.dutchnaoteam.nl
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22

23 detection_model_ = cv::dnn:: DetectionModel(model_);

24 detection_model_.setInputParams (1 / 255.0, cv:: Size2i (416, 416), cv:: Scalar(0, 0, 0), true ,

false);

25 }

Listing 2: Key code snippet (not complete) of the class constructor used in m yolo detector.cpp to instantiate
the trained Yolo detector

1 void mYoloDetector :: runDetection(std::vector <boundingBox >& ball_bounding_boxes ,

2 std::vector <boundingBox >& robot_bounding_boxes) {

3 // Following line is only used for timing yolo execution when testing

4 //std:: chrono :: high_resolution_clock :: time_point t1 = std:: chrono :: high_resolution_clock ::

now();

5

6 cv::Mat frame = camera_sensor_representation_ ->image_.getYUVImage ();

7 std::vector <int > classids;

8 std::vector <float > confidences;

9 std::vector <cv::Rect > boxes;

10 detection_model_.detect(frame , classids , confidences , boxes , yolo_confidence_threshold_ ,

11 yolo_iou_threshold_);

12

13 // Process yolo detections , if any

14 if (classids.size() > 0) {

15 // Fill bounding box vectors for detected balls (classid=0, Darknet model) and robots

16 // (classid=1, Darknet model)

17 for (size_t i = 0; i < classids.size(); ++i) {

18 if (classids[i] == boundingBox :: ClassName ::Ball) {

19 ball_bounding_boxes.push_back(boundingBox(confidences[i], boundingBox :: ClassName ::Ball

, boxes[i], true));

20 calculateRelativePositions(ball_bounding_boxes.back());

21

22 } else if (classids[i] == boundingBox :: ClassName :: Robot) {

23 robot_bounding_boxes.push_back(boundingBox(confidences[i], boundingBox :: ClassName ::

Robot , boxes[i], true));

24 calculateRelativePositions(robot_bounding_boxes.back());

25 }

26 }

27 }

28 }

Listing 3: Key code snippet (not complete) used in m yolo detector.cpp to execute a detection

B.2 Graph class used for path finding

1 #include <string >

2 #include <set >

3 #include <map >

4 #include <queue >

5

6 class SimpGraph

7 {

8 private:

9 typedef long long int LL;

10 struct Arc;

11 struct Node

12 {

13 Node(LL n)

14 :

15 id(n),

16 coord({ n>>32, (n<<32) >>32 })

17 {

18 name = "(" + std:: to_string(coord.first) + "," + std:: to_string(coord.second) + ")";

19 }

20 std:: string name;

21 LL id;

22 std::pair <LL, LL> coord;

23 std::set <Arc*> arcs;

24 float height = 0;

25 int distanceToTop = 0;

26 };

27 struct Arc

28 {

29 Arc(Node* s, Node* f, float c)

30 :

31 start(s),
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32 finish(f),

33 cost(c)

34 {

35 }

36 Node* start;

37 Node* finish;

38 float cost;

39 };

40 public:

41 SimpGraph(int width , int height) : fieldWidth_(width), fieldHeight_(height) {

42 InitializeAsGrid ({ width ,height });

43 }

44 ~SimpGraph () {

45 for (auto n : nodes) {

46 delete n;

47 n = nullptr;

48 }

49 for (auto a : arcs) {

50 delete a;

51 a = nullptr;

52 }

53

54 };

55 void PrintAdjacencyList ();

56 void PlotPath(std::vector <std::pair <LL , LL >> path);

57 void ResetGridAndPlaceObstacleHills(std::vector <std::pair <int , int >> obstacleGridLocations ,

float peakCost , int spread);

58 float findShortestPath(std::pair <LL, LL > startcell , std::pair <LL, LL > endcell , std::vector <

std::pair <LL, LL >>& pathCoords , std::vector <std::string >& pathNames);

59

60 private:

61 void InitializeAsGrid(std::pair <int , int > WxH);

62 void AddNode(std::pair <LL , LL> pos);

63 void AddNode(LL id);

64 void AddArc(Node* start , Node* finish , int cost);

65 void AddOneWayConnection(std::pair <LL, LL> n1 , std::pair <LL, LL> n2, int c);

66 void AddTwoWayConnection(std::pair <LL, LL> n1 , std::pair <LL, LL> n2, int c);

67 void PlaceObstacleCellOnly(std::pair <LL , LL> node , float cost);

68 void PlaceObstacleHillUsingBFS(std::pair <LL , LL > startcell , float initial_cost , int

hill_size);

69 void PlaceObstacleHillUsingBFS(Node* startnode , float initial_cost , int hill_size);

70 void priceEdgesUsingBFS(int hill_size , float cost_step);

71 void VisitedPrintFunction(Node* node);

72 void ResetGrid ();

73 void DFS(std::pair <LL, LL> startcell);

74 void DFS(Node* startnode);

75 void BFS(std::pair <LL, LL> startcell);

76 void BFS(Node* startnode);

77 void visitUsingDFS(Node* node);

78 void visitUsingBFS ();

79 struct GreaterPathLength;

80 std::vector <Arc*> findShortestPath(Node* start , Node* finish);

81 static int getPathCost(const std::vector <Arc*>& path);

82

83 private:

84 int fieldWidth_;

85 int fieldHeight_;

86 std::vector <std::pair <int ,int >> obstacleCenters;

87 std::map <LL , Node*> nodeMap;

88 std::set <Node*> nodes;

89 std::set <Arc*> arcs;

90 std::set <Node*> visited;

91 std::queue <Node*> tovisit;

92 };

Listing 4: Interface of the Graph class used to perform path finding using Dijkstra’s shortest path algorithm
with cost landscapes
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B.3 Implementation of Dijkstra’s shortest path algorithm

1 std::vector <SimpGraph ::Arc*> SimpGraph :: findShortestPath(Node* start , Node* finish)

2 {

3 std::vector <Arc*> arcPath;

4 std:: priority_queue < std::vector <Arc*>, std::vector <std::vector <Arc*>>, GreaterPathLength >

queue;

5 std::map <LL , float > fixed;

6 while (start != finish)

7 {

8 if (fixed.find(start ->id) == fixed.end())

9 {

10 fixed[start ->id] = getPathCost(arcPath);

11 for (Arc* arc : start ->arcs)

12 {

13 if (fixed.find(arc ->finish ->id) == fixed.end())

14 {

15 arcPath.push_back(arc);

16 queue.push(arcPath);

17 arcPath.pop_back ();

18 }

19 }

20 }

21 if (queue.size() == 0)

22 {

23 arcPath.clear ();

24 return arcPath;

25 }

26 arcPath = queue.top(); queue.pop();

27 start = arcPath[arcPath.size() - 1]->finish;

28 }

29 return arcPath;

30 }

31

32 float SimpGraph :: getPathCost(const std::vector <Arc*>& path)

33 {

34 float cost = 0;

35 for (Arc* arc : path)

36 {

37 cost += arc ->cost;

38 }

39 return cost;

40 }

41

42 struct GreaterPathLength;

43 {

44 bool operator ()(const std::vector <Arc*>& lhs , const std::vector <Arc*>& rhs) const

45 {

46 return getPathCost(lhs) > getPathCost(rhs);

47 }

48 };

Listing 5: Dijksta’s Shortest Path algorithm adjusted for navigating through a cost landscape
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C Datasets

C.1 Datasets - Statistics

# Annotations
Dataset ID File Prepend Description #Images Ball Robot Source

149 21 02 2018 17 02 52 Some scenes of a game with three robots. NaoDevils 329 329 552 bit-bots.de
242 01 06 2018 17 17 01 CloseRobots 1 6 18 Loki 1 558 249 309 bit-bots.de
243 01 06 2018 17 17 01 Close Robots lower NaoDevils 249 249 280 bit-bots.de
253 11 06 2018 16 35 19 Close robots bright light (upp cam) NaoDevils 445 399 556 bit-bots.de
254 11 06 2018 16 35 19 Close robots bright light (low cam) NaoDevils 446 435 429 bit-bots.de
277 20 07 2018 15 14 36 Mixed robots, RoboCup 2018, Montreal 1,104 548 2,603 bit-bots.de
287 27 07 2018 15 44 10 Evaluation set of two robots. Upp cam. NaoDevils 842 380 1,576 bit-bots.de
288 27 07 2018 15 59 59 Evaluation set of two robots. Low cam. NaoDevils 842 844 842 bit-bots.de
289 27 07 2018 16 11 04 EvalLog StandingRobotMovingHead upper 637 640 922 bit-bots.de
290 27 07 2018 16 16 30 EvalLog StandingRobotMovingHead lower 638 630 641 bit-bots.de
309 22 08 2018 14 58 20 Robots get up motion. Upper cam. NaoDev arena 562 0 562 bit-bots.de
310 22 08 2018 15 04 13 Robots get up motion. Lower cam. NaoDev arena 562 562 562 bit-bots.de
DNT06 frames saves1 Working day save data, crouched robots 94 112 108 DNT
DNT07 frames saves2 Working day save data, crouched robots 38 55 62 DNT
DNT08 frames saves3 Working day save data, crouched robots 188 243 254 DNT

Total 7,534 5,675 10,258

Table 2: Train datasets, key statistics

# Annotations
Dataset ID File Prepend Description #Images Ball Robot Source

DNT01 frameset a Normal light conditions, robots playing with one ball 208 143 349 DNT
DNT02 frameset b Dark light conditions, distant robots 13 8 16 DNT
DNT03 frameset c High contrast conditions, focus on balls 148 101 53 DNT
DNT04 frameset d Normal light conditions, focus on balls with background noise 190 138 318 DNT
DNT05 frameset e Multiple robots playing with one ball 37 27 62 DNT

Total 596 417 798

Table 3: Validation datasets, key statistics
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C.2 Train Datasets - Image samples

Figure 15: Sample images from training dataset with annotated ground truth bounding boxes 1/2
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Figure 16: Sample images from training dataset with annotated ground truth bounding boxes 2/2
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C.3 Validation Datasets - Image samples

Figure 17: Sample images from validation dataset with annotated ground truth bounding boxes
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D Evaluation of Yolo detection on Robots

TP FP Haar classifier - ball detection Yolo - ball detection Yolo - robot detection
FN TN Precision 83% Precision 100% Precision 99%

Recall / TPR 19% Recall 70% Recall 76%
True Neg Rate TNR 61% True Neg Rate TNR 100% True Neg Rate TNR 91%

Accuracy 23% Accuracy 72% Accuracy 77%
Balanced Accuracy 40% Balanced Accuracy 85% Balanced Accuracy 84%
F1 0,3      F1 0,8      F1 0,9      

Ground Truth Ground Truth
T F T F T F

Prediction:  T 81 17 98 Prediction:  T 302 0 302 Prediction:  T 336 2 338
F 340 27 367 F 131 32 163 F 106 21 127

421 44 465 433 32 465 442 23 465

Haar Yolo
TRUE TRUE T 71 8 T 79 0

F F

Haar Yolo
TRUE FALSE T 10 9 T

F F 14 5

Haar Yolo T T 223 0
FALSE TRUE F 223 0 F

Haar Yolo T T
FALSE FALSE F 117 27 F 117 27

2TP/(2TP+FP+FN)

Ground Truth:

TP/(TP+FP)
TP/(TP+FN)
TN/(TN+FP)

(TP+TN)/TOTAL
(TPR+TNR)/2

2TP/(2TP+FP+FN)

TP/(TP+FP)
TP/(TP+FN)
TN/(TN+FP)

(TP+TN)/TOTAL
(TPR+TNR)/2
2TP/(2TP+FP+FN)

TP/(TP+FP)
TP/(TP+FN)
TN/(TN+FP)

(TP+TN)/TOTAL
(TPR+TNR)/2

Figure 18: Performance evaluation: Haar classifier (ball) vs. Tiny Yolo-v3/3L (ball and robot)

D.1 Ball Detection

Yolo Ball detection

TP FP TN FN
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FN
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0 cases 27 cases
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= Yolo ball detection, overlapping
with Haar detection

= Haar ball detection

= Yolo robot detection

= Yolo ball detection

Legend:

Figure 19: Illustration of all possible mixed classifier outcomes
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Haar classifier-based ball detection examples

TP

FP

TN

FN

Figure 20: Illustration of Haar classifier-based detection outcomes

= Yolo ball detection overlapping
with Haar detection

= Haar ball detection = Yolo robot 
detection

= Yolo ball detection

Legend:

Tiny Yolo-v3/3L ball detection examples

0 cases 0 cases 0 cases 0 cases

TP

FP

TN

FN

Figure 21: Illustration of Yolo outcomes for ball detection
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D.2 Robot Detection

= Yolo ball detection overlapping
with Haar detection

= Haar ball detection = Yolo robot 
detection

= Yolo ball detection

Legend:

Tiny Yolo-v3/3L robot detection examples

TP

FP

TN

FN

Figure 22: Illustration of Yolo outcomes for robot detection
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E Navigation module tests

The navigation module uses a graph class for path finding:

• The field is divided into a graph of nodes and edges G(N,E), with each node connected bi-directionally
in 8 directions.

• An empty field will have edges with cost 1 (directions N,S,W,E) or
√

2 (directions NE,SE,SW,NW).

• The class implements a parameterized placement of obstacles: All edges originating from the obstacle
node are assigned a peak cost cmax, which attenuates over adjacent nodes αi · cmax, i ∈ 1, ..n based on a
the reach of the cost mountain n.

• This assignment is additive, meaning that if robots are near each other, their cost mountains will interfere
and create a saddle. Hence, a ‘cost landscape’ is created.

E.1 Offline testing

Figure 23: Console output of offline evaluation of the path finding algorithm. Robot starts at center of the field
and navigates to target goal on the right. R=obstacle, grid size (23× 15), cmax = 1000, α = 0.75, n = 1

E.2 Legend of the interface used for integration testing

Figure 24: Path finding implementation projected on the top field view of the DNT Interface. Example shown
from a replay of a recorded integration test. Grid size (23× 15), cmax = 1000, α = 0.75, n = 1
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F Background on techniques used by Yolo

F.1 Applying convolutions to sliding windows over an image

Figure 25: Substituting an element-wise product of a fully-connected layer with a (1x1) convolution[16]

Figure 26: Illustration of the application of convolutions to sliding windows in a single forward pass using (1x1)
kernels, as leveraged by Yolo (Image adapted from [18])
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F.2 Evaluation using Mean Average Precision and IoU

Figure 27: Workflow for evaluating mAP performance of a detection algorithm
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