X

X

X

UNIVERSITY OF AMSTERDAM
FACULTY OF SCIENCE
THE NETHERLANDS

DurcH NAO TEAM

Technical Report

Authors:

Jakob KAISER

Hidde LEKANNE GEZEGD DEPREZ
Wike DUIVENVOORDEN

Pim HEEMAN

Rogier VAN DER WEERD

Thomas WIGGERS

January 16, 2022

Supervisor:
Arnoud VISSER



Abstract

In this Technical Report, the Dutch Nao Team lists its progress and activities in the past
academic year with the previous report [1] as a starting point. Besides new developments this
report also lists older developments when relevant.

This year, progress has been made in developing the framework, vision and localisation. For
the framework, the new behaviour engine is finished and a few other improvements have been
made. For vision, the previous ball detection system is improved by using the object detection
network YOLO-v3 as verification to make the detection more accurate. Field line detection has
been also been improved and corner detection has been added. To improve localisation, sweeping
behaviour has been introduced using head motions instead of full body rotations to look for the
ball. Additionally the middle circle is now also used for localisation. To conclude, even though
COVID-19 has made many things difficult, a lot of progress has still been made and we hope to
continue improving next year.

COVID has lead to most events being cancelled. However, the team has participated in the
Robotic Hamburg Open Workshop (RoHOW), which was organised online, and the RoboCup,
which was also organised remotely.



Contents

1__Introductionl 2
2 Hardware| 3
3__Framework] 4
[3.1 Behaviour engine|l . . . . . ... Lo 4
3.2  Autocreated getUpdates using macros| . . . . . . . . . .. ... L. 4

I getUp g
8.3 Interface communication| . . . . . . . . .. 4
4 Vision| 4
4.1 Object detection| . . . . . . . . . . . . e 4
[4.1.1 Data generation, model training and evaluation|. . . . . . .. ... ... ... 5}
[4.1.2  Deployment on the robots| . . . . . . .. ... ... o oo 6
4.2 Field Iine detectionl . . . . . . . . . . . 7
4.3  Corner detectionl . . . . . . . . . . e 7
[6_Tocalisationl 7
[b.1 Sweeping behaviour| . . . . . . . ... 7
6.2 Localisation based on the middle circlel . . . . . .. ................... 8
[6_Tools| 8
[6.1 Save data functionality|. . . . . . . . . .. ... . 8
[_Results 8
[7.1 Remote Robotic Hamburg Open Workshop (ROHOW)| . . . . ... ... .. ... .. 8
7.2 Remote RoboCup|. . . . . . . .. o 9
[r.3  Foundationl . . . . . . . . . . e 9
[(.4 Publicevents . . . . . . . . . e 10
B C “butions 10
9__Conclusion| 10



1 Introduction

The Dutch Nao Team consists of students of different disciplines studying various degrees at the
University of Amsterdam: seven bachelor’s students from Artificial Intelligence and Computer Sci-
ence, three master’s students from Artificial Intelligence and one master student from Computer
Science. They are supported by a senior staff member, dr. Arnoud Visser. The team was founded
in 2010 and competes in the RoboCup Standard Platform League (SPL), which is a robot football
league in which all teams compete with identical robots to play football. The league was started to
incentivise the development in robot science. Its current goal is to play against the human world
champion of 2050, and win.

Since all teams participating in the Standard Platform League are obliged to use identical robots,
the focus of the league is solely software oriented rather than hardware oriented. The robots need
to be able to play autonomously. This includes finding the ball, locating itself on the field, and
making decisions on how to play next, as well as communicating with teammates and being able to
walk.



2 Hardware

The NAO robot is a programmable humanoid robot made by Softbank Robotics, formerly known
as Aldebaran Robotics. Up until 2018, all versions 4.x and above of the NAO were equipped with
the same computational hardware, only differing in their sensors or actuators. The release of the
sixth version (V6) introduced a significant change in both hardware and proprietary software.

While the V6 hardware is significantly improved compared to previous versions, CPU resources are
still scarce. This limits calculation-heavy tasks such as expensive pixel-wise image operations and
deep neural network approaches. The NAO has two high-definition (HD) cameras and an inertial
board that are both used for the competition. The HD cameras are located in the head of the NAO;
one is aimed forward to look for far away objects and the other is aimed downwards for looking
at objects close to the feet of the NAO. The inertial board is used for determining whether the
robot has fallen, which happens regularly during matches. The NAO also possesses four sonars, an
infrared emitter and receiver, pressure sensors and tactile sensors. Except for the pressure sensors,
these sensors are used less frequently than the cameras and inertial board, as they are more prone
to breaking down, resulting in faulty measurements. The pressure sensors however become one of
the most important sensors, since the new walking engine relies heavily on the pressure information
coming from the feet for stable walking.

The NAO robot has 25 degrees of freedom in its joints. The joints in the legs allow for stable bipedal
movement and various kicking motions, the arms are generally used for helping the robot stand up
again after falling and for stability while walking. It is also permitted for the goalie to hold the ball
in its hands, but it is highly uncommon for teams to make use of this. Even though every robot is
supposed to be the same, individual differences are noticeable when the robots is playing football.
The movement of older robots is less stable and fluent, since the joints of these robots have been
worn out. In order to ensure a robust walk for every robot, the joints for each individual robot
need to be calibrated. Additionally, each robot’s camera can shift inside its enclosure, resulting in a
slight offset in the transformation with respect to the robot centre. To correct for this, the cameras
can be calibrated.

The V6 is a 64-bit system and has an 1.91 GHz Intel Atom E3845 CPU which is a quad-core processor
with one thread per core. The amount of RAM has increased to 4 GB DDR3 and the amount of
storage has increased to 32 GB SSD over previous versions. Furthermore, the WiFi connection has
improved and the fingertips are more resistant to impact. With the added computing power, new
approaches to issues like localisation and ball detection will be possible. To make communication
between the hardware and software possible, the LoLA (Low Level Access) has been usedE]

"http://doc.aldebaran. com/2-8/family/nao_technical/index_dev_naov6.html


http://doc.aldebaran.com/2-8/family/nao_technical/index_dev_naov6.html

3 Framework

Our framework was created in 2017. Its structure is based on [2] and is further elaborated in [3].
Moreover it uses Kahns algorithm [4] to link different modules in a proper sequential order within
each module group.

3.1 Behaviour engine

In the previous technical report [1], a new behaviour engine inspired by CABSL EI from the B-
Human team was discussed. This year, work on this behaviour engine has been completed and the
old behaviour engine has been replaced by the new behaviour engine.

3.2 Autocreated getUpdates using macros

The getUpdates method in modules was used to receive messages from other modules. However,
this function needed to be manually created and updated for every module, even though in almost
all cases the function is the same, except for the representations itself. This is error prone and
causes overhead since for each new module, the whole getUpdates function needs to be copied, as
the function is too difficult to directly write from scratch.

This problem is solved by creating the getUpdates automatically using the preprocessor. To ask
for an input message, now only INPUT_MESSAGE(rFoo, foo_message_) needs to be added (and
similar for output messages) to a class. This comes with only some minor additional time cost
at loading a module during execution as for each message a structure needs to be constructed.
However, afterwards, there is zero additional delay compared to the current hard-coded method.

3.3 Interface communication

Due to the addition of different working threads, different representations from different cycles
need to be aligned in order to get an accurate picture of the situation. Previously the most recent
representations were send to the interface at a given interval. However, this led occasional mis-
matches between images and the computed annotations such as lines. A sync hing mechanism was
implemented using the timestamp of the representations. Additionally in the case of frame loss,
the algorithm forcibly updates the lower and upper camera in an alternating fashion, preventing
unequal updates for different cameras.

4 Vision
4.1 Object detection

DNT’s participation in the 2021 RoboCup SPL Obstacle Avoidance challengeﬁ required the devel-
opment and implementation of robust real-time object detection (primarily ball and other robots
on the field) and the capability to navigate though a field of obstacles, while walking with a ball.
In order to achieve object avoidance capability, a number of new functionalities were developed and
integrated into the existing DNT framework.

2https://github.com/bhuman/CABSL
3https://spl.robocup.org/rc2021/#oac, https://cdn.robocup.org/spl/wp/2021/01/SPL-Rules-2021 . pdf


https://github.com/bhuman/CABSL
https://spl.robocup.org/rc2021/#oac
https://cdn.robocup.org/spl/wp/2021/01/SPL-Rules-2021.pdf

e First, in order to avoid objects, they will need to be detected with high confidence and
projected on a representation of the environment. The current DNT framework contains a
Haar feature based cascaded classifier for ball detections[5l 6]. The Haar detector is fast (30
FPS), but inaccurate. It suffers from a high false positive rate and low recall, so this needed
to be improved.

e Secondly, Ball and Robot models are required, calculated by applying Kalman filters on
(potentially noisy) detection signals, in order to make best estimate predictions of object
locations with respect to the robot.

e Thirdly, a Navigation module is required to plan a feasible and optimal path to a target
position. From that point on, the existing behaviour engine can be used to define a behaviour
that consists of walking with the ball to the first waypoint in the queue.

After a review|7], Tiny Yolo-v3[8] was selected as a suitable high performing detection algorithm.
It is preferred over optimised algorithms for specific classes given the ability to include additional
classes in the future that can be relevant for the DNT framework such as goal posts, penalty
markers, different robot stances, etc. Although more recent versions of Yolo are available[9, |10, 8,
11], Yolo-v3 has many well established implementation frameworks and portability options and it
contains all critical improvements needed for DN'T’s purposes.

4.1.1 Data generation, model training and evaluation

Train and validation datasets were generated from existing resourcesE] and own recorded and anno-
tated images. A total of ca. 8,000 images were used (details in [7]). An untrained Tiny-Yolo-v3/3L
model with three scale layers (ca. 8 mln trainable parameters) was used and trained on 170 epochs
using the Darknet’| framework. The overall Mean Average Precision on the test data for a confi-
dence threshold of 0.5 is M APaqg 50 = 86%, with nearly equal performance on ball and robot classes.
The overall F1 score is 0.79. These were considered good results given the diversity and, at times,
complex detection scenes (with high levels of motion blur, partially occluded or distant objects).

Performance was further evaluated by recording a test match on DNT’s home field and analysing a
randomly selected sequence of ca. 600 consecutive frames of game-play. Performance on Ball and
Robot detection can now be evaluated separately. For ball detection, we are mixing results of two
detectors (Yolo and the Haar classifier), each of which can yield a True Positive (TP), False Positive
(FP), True Negative (TN) or (False Negative) result. Thus there are 4 x 4 = 16 possible outcomes.
Examples of the most common outcomes are shown in Figure Detailed analysis is provided in
[7]. Figure [2| presents the key resulting evaluation metrics.

A clear performance improvement is observable when the Yolo detector is used. Yolo’s ball detection
precision is nearly perfect and recall improves from 19% (Haar classifier) to 70% (mixed detection).
Recall on robot detection is 76%. Overall F1 scores improve from 0.3 (Haar classifier) to 0.8 and
above when using the Yolo detector.Visual inspection of the result indeed confirms many false
positive detection errors by the Haar classifier in regions of the robot (see [7] for details). Many ball
detections are missed by Haar, especially at higher distances. Yolo, on the other hand, is robust
against motion blur and successfully detects at different distances (scales) as is expected given the
3-layer scale pyramid used in Tiny Yolo-v3/3L.

“https://imagetagger.bit-bots.de
Shttps://github.com/AlexeyAB


https://imagetagger.bit-bots.de
https://github.com/AlexeyAB

/

Haar TP, Yolo TP: 71 cases

Haar Yolo
ball ball robot
Precision 83% 100% 99%
Recall 19% 70% 76%
True Neg Rate TNR 61% 100% 91%
Accuracy 23% 72% 77%
Haar FP, Yolo TP: 8 cases Balanced Accuracy 40% 85% 84%
. F1-score 0,3 0,8 0,9

Figure 2: Detection perfor-
mance of Haar vs. Tiny Yolo-
v3/3L

ar TN, Yolo TN: 27 casej‘

D = Yolo ball detection O = Haar ball detection D = Yolo/Haar joint ball detection

D = Yolo robot detection

Figure 1: Illustration of potential outcomes of mixed Haar classifier
and Tiny Yolo-v3/3L based ball detections

4.1.2 Deployment on the robots

A basic deployment of this model on a standard Nao-v6 was implemented using OpenCV’s Deep
Neural Net (dnn) moduleﬁ7 which can load and execute Darknet encoded models through its API.
Execution time of inference on the Nao Robot’s CPU[is about 700ms, equivalent to ca. 1.4 FPS.
This is too slow for real-time detection, with the robots operating at a frame rate of ca. 30 FPS.
In order to have a functioning baseline detector, two steps were taken:

1. New ballModel and robotModel classes were created, that apply Kalman filtering on the
low-frequency Yolo detection signals. The signals are infrequent but very reliable and hence
this probabilistic approach enables a stable and usable estimate of ball and robot positions.

2. Detection frequency is particularly important tracking faster ball movement. Ideally, we would
be able to use high frequency Haar detector signals whenever they have been validated by the
more reliable (but slower) Yolo detection. A "Mixed Ball Signal Generation’[7] algorithm was
implemented to combine the speed of the Haar classifier with the precision of Yolo. The key
idea is to validate Haar detections whenever infrequent, periodic Yolo detections are executed.
If the Haar classifier is in validated state and detects positively in subsequent frames (without
Yolo executing), we assume it is still valid, as long as the time between detections is below a
threshold. Otherwise, we consider the Haar detection a False Positive and discard it.

®https://docs.opencv.org/4.3.0/d6/d0f/group__dnn.html, (The DNT framework currently uses OpenCV
v.4.3.0)
"Intel Atom E3845 Quad Core @ 1.91 GHz, 4GB DDR3


https://docs.opencv.org/4.3.0/d6/d0f/group__dnn.html

Other methods for speeding up the Yolo detector are possible (compiler-based optimization, quan-
tization and model pruning), these need to be explored in future work.

4.2 Field line detection

The existing field line detection algorithm, developed in 2019, suffers from a high false-positive
rate. This is problematic since detected lines play a key role in the particle filter that is used for
localisation. An analysis of the false-positive instances showed this was particularly prevalent
on robots in the image. Indeed, white tones on the robot tend to be very similar to those of field
lines in recorded images and are likely to yield many Canny edge detections that trigger positive
line detections.

Visual inspection showed that in the vast majority of cases, false positive line detections were for
lines with a vertical orientation and/or with a low projected length. Hence, a simple solution was
implemented that filters detected lines that are near-vertical or below a certain threshold length.
These parameters were tuned on a test set. Figure 3| shows two typical examples.

Figure 3: Example instances of rejections by the line detection filter

Filtering out vertical lines will also affect true-positives. This may occur when the robot looks
straight down a field line. However, these instances are rare and localisation can temporarily rely
on odometry alone in these cases.

4.3 Corner detection

A new module for corner detection has been added. This module uses the current line detection. It
looks through all pairs of detected lines and checks checks for two conditions. The angle between
the lines in a pair must be around 90 degrees and the lines must be close enough to their point of
intersection (the accepted distance is dependent on the length of the lines). If these are both true,
then that pair of lines forms a corner. This module can later be used to improve localisation by
basing localisation partly on the detected corners.

5 Localisation

5.1 Sweeping behaviour

When playing a match, looking for the ball is a critical aspect. The current technique of finding
the ball consists of three stages. When the robot first loses track of the ball, the robot will go to
the place it has last found it. If the robot has lost the ball for longer than 13 seconds it will start



looking at its surroundings. To do this the robot rotates its whole body. This takes up a lot of time
and is not very effective. If this too does not work, the last thing the robot does is go back to the
ready position. To improve our current method of searching for the ball we needed to do more with
head motions. As the robot never turns its head, only its whole body. The idea is that a robot
will now “sweep” with its head moving it continuously from left to right, starting from a random
angle and not turning past the shoulders. This function is a replacement of the full body turn in
the second option when the robot has lost the ball for longer than 13 seconds.

5.2 Localisation based on the middle circle

When the robot is totally lost on the field, it is useful to be able to completely reset the localisation
when the robot stumbles along a distinctive landmark. The middle circle is such a landmark, and
conveniently defined as a circle with a line through it. The combination of line and circle makes
it possible to calculate the precise location of the robot when these two features are observed.
This information is then used to improve localisation by adding this position as a function of
Piii=PFxa+ ]5Z * (1 — «) where alpha is the update constant between 0 and 1. This way the
robot is able to re-localise without being wrongly localised after a false positive detection.

6 Tools

6.1 Save data functionality

When recording games it is critical to get a complete recording of all incoming sensor data that
robot perceives. Previously this was made possible by saving all the data at the end of a vision
cycle, the slowest cycle, using that frame number to replay the inputs in order. This meant that
some quicker frames, like motion, were lost. However, last year there was the addition of sound-
processing during the game, which takes about half a second per frame. This would be the new
"longest cycle” in our framework. This led to an undesirable choice where we had to duplicate the
audio input 30 times to retain frame numbers, or miss 30 vision cycles every frame. This demanded
a more sophisticated solution for recording games.

A transition was made towards timestamp based recordings where each sensor reading was saved
with their timestamp and replayed in real-time. This also added the functionality of speeding up and
slowing down the replays as a function of time instead of frames, making the timing independent of
the speed of execution at the time. This was achieved by rewriting the current module performing
the recording task. Additionally, the message processing had to change in order to facilitate playing
back from already defined timestamps.

7 Results

7.1 Remote Robotic Hamburg Open Workshop (RoHOW)

ROHOVVEI is an annual open workshop for SPL teams, organised by the German team HULKsﬂ It
took place from the 4th to the 6th of December 2020 and was hosted online on discord. During the
event, test games are played, algorithms and ideas about challenges are shared, and lots of coding
is done. Usually, without the pressure of competitive games this makes it a great opportunity for

Shttps://rohow.de/2020/en/
%https://www.hulks.de/


https://rohow.de/2020/en/
https://www.hulks.de/

new team members to get to know the flow of working with robots and being in the SPL. However
since everything was online the Dutch Nao team did not participate in test games. Several subjects
like event based-communication, safe falling motions, SPL rules and potential events to take place
in 2022 were discussed.

7.2 Remote RoboCup

The Dutch Nao Team qualified for the RoboCup 2020 in Bordeaux with a Videom and a qualification
paper [13]. This competition was cancelled to be held in 2021. The team’s qualification was still
be valid for this edition, which was organised as a virtual distributed event due to covid. For this
reason the competition was organised in a different manner then previous years. It consisted of 4
distinct challenges:

1. Obstacle Avoidance Challenge
In this challenge a single robot had to score a goal from the kick-off spot as fast as possible
while the path is obstructed by four obstacles and the robot is only allowed to score from
beyond the penalty mark.

2. Passing Challenge
In this challenge two robots need to make as many passes as possible around two stationary
defenders in 5 minutes, while the ball does not touch these defenders.

3. 1vls Challenge
In this challenge two robots play a 1v1.

4. Autonomous Calibration Challenge
In the first part of this challenge, the robot has the opportunity to collect data from which it
“self calibrates”. In the second part of the challenge, the robot performs two tasks, namely
walking to fixed positions and stating the positions of two soccer balls that are placed on the
field, this is done to judge the accuracy of calibration. The robot is then judged on speed and
accuracy.

Team were not allowed to complete challenges in their own arena. This means the Dutch Nao team
completed the challenges in arena’s of other teams, while hosting other teams that completed their
challenges in Amsterdam. This did add the extra difficulty of setting up everything for a challenge
remotely.

The Dutch Nao team participated in the obstacle avoidance challenge and in the 1vls challenges.
For the obstacle avoidance the Dutch Nao team ranked 12th. For the 1v1 challenges the Dutch Nao
Team lost the first match to B-human and won the next match against SPQR Team. Then during
play-ins, the Dutch Nao team lost to UT Austin Villa.

7.3 Foundation

In 2016, the Dutch Nao Team started the foundation Stichting Dutch Nao Team, in order to be
able to administer grants, finances and activities in a transparent way.
As per 2020-2021, the board of the foundation consists of the following members:

e Chair: Wouter Zwerink

Ohttps://www.youtube . com/watch?v=SKawcYDEhjo


https://www.youtube.com/watch?v=SKawcYDEhjo

e Secretary: Pim Heeman

e Treasurer: Thomas Wiggers

7.4 Public events

Due to COVID measures in 2021 not many events have taken place. Events cancelled due to the
reasons mentioned above include an event for students by Jet-Net & TechNet and a careerday by
Betapartners. For the second event an alternative was set up but due to lack of registrations this
was also cancelled.

8 Contributions

What follows is a list of people who worked on the additions mentioned in this report, in alphabetic
order:

e Hidde, who added save data functionality, worked on localisation based on the middle circle
and improved the interface communication.

e Jakob, who worked on the new corner detection.
e Pim, who worked on autocreated getUpdates methods.

¢ Rogier van der Weerd, who worked on field line detection, object detection, object avoid-
ance and navigation.

e Thomas, who worked on the new behaviour engine, object detection, object avoidance and
navigation.

e Wike, who worked on sweeping behaviour.

9 Conclusion

This year, several new steps have been take in developing the framework, vision and localisation.
COVID has had a massive impact on the events we could take part in. Even though most events
have been cancelled, the Dutch Nao Team did participate in the RoboCup and the RoOHOW. Our
team looks forward continuing improving and we hope that more events will be possible next year.

References

[1] Pim Heeman et al. Dutch Nao Team - Technical Report. Tech. rep. Universiteit van Amster-
dam, 2020. URL: https://www.dutchnaoteam.nl/wp-content/uploads/2021/01/dnt _
techreport_2020.pdf. published (cit. on pp. .

[2] Elizabeth Mamantov et al. “Robograms: A lightweight message passing architecture for robocup
soccer”. In: Robot Soccer World Cup. Springer. 2014, pp. 306-317 (cit. on p. .

[3] Douwe van der Wal, Pieter Kronemeijer, and Caitlin Lagrand. Dutch Nao Team - Technical
Report. Tech. rep. University of Amsterdam, 2017. URL: http://www.dutchnaoteam.nl/wp-
content/uploads/2018/01/dnt_techreport_2017.pdf. published (cit. on p. .

10


https://www.dutchnaoteam.nl/wp-content/uploads/2021/01/dnt_techreport_2020.pdf
https://www.dutchnaoteam.nl/wp-content/uploads/2021/01/dnt_techreport_2020.pdf
http://www.dutchnaoteam.nl/wp-content/uploads/2018/01/dnt_techreport_2017.pdf
http://www.dutchnaoteam.nl/wp-content/uploads/2018/01/dnt_techreport_2017.pdf

Arthur B Kahn. “Topological sorting of large networks”. In: Communications of the ACM
5.11 (1962), pp. 558-562 (cit. on p. .

Duncan ten Velthuis. “Nao detection with a cascade of boosted weak classifier based on Haar-
like features”. Bachelor’s Thesis. Universiteit van Amsterdam, 2014 (cit. on p. .

Paul Viola and Michael Jones. “Rapid object detection using a boosted cascade of simple
features”. In: Proceedings of the 2001 IEEE computer society conference on computer vision
and pattern recognition. CVPR 2001. Vol. 1. Teee. 2001, pp. I-1 (cit. on p. .

Rogier van der Weerd. Project Al: Real-time object detection and avoidance for autonomous
Nao Robots performing in the Standard Platform League. Tech. rep. University of Amsterdam,
July 13, 2021. URL: https://www.dutchnaoteam.nl/wp- content/uploads/2021/10/
ProjectAI-report.pdf. published (cit. on pp.[5 [6).

Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv preprint
arXiv:1804.02767 (2018) (cit. on p. [f)).

Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 779-788. DOI: |[10.1109/CVPR.
2016.91. URL: https://doi.org/10.1109/CVPR.2016.91 (cit. on p. [5).

Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017 IEEE Computer Society, 2017, pp. 6517-6525. pDoI: [10.1109/CVPR. 2017 . 690,
URL: https://doi.org/10.1109/CVPR.2017.690 (cit. on p. .

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “Yolov4: Optimal speed
and accuracy of object detection”. In: arXiv preprint arXiv:2004.10934 (2020) (cit. on p. [5).

Thomas Wiggers et al. Dutch Nao Team - Technical Report. Tech. rep. Universiteit van Am-
sterdam, 2019. URL: https://www.dutchnaoteam.nl/wp-content/uploads/2020/01/dnt _
techreport_2019.pdf. published (cit. on p.[7).

Hidde Lekanne gezegd Deprez et al. Team Qualification Document for RoboCup 2020 Bor-
deaux, France. Tech. rep. Science Park 904, Amsterdam, The Netherlands: University of Am-
sterdam, 2020. URL: https://www.dutchnaoteam.nl/wp- content/uploads/2020/01/
TeamQualificationDocument2020.pdf. published (cit. on p. @

11


https://www.dutchnaoteam.nl/wp-content/uploads/2021/10/ProjectAI-report.pdf
https://www.dutchnaoteam.nl/wp-content/uploads/2021/10/ProjectAI-report.pdf
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://www.dutchnaoteam.nl/wp-content/uploads/2020/01/dnt_techreport_2019.pdf
https://www.dutchnaoteam.nl/wp-content/uploads/2020/01/dnt_techreport_2019.pdf
https://www.dutchnaoteam.nl/wp-content/uploads/2020/01/TeamQualificationDocument2020.pdf
https://www.dutchnaoteam.nl/wp-content/uploads/2020/01/TeamQualificationDocument2020.pdf

	Introduction
	Hardware
	Framework
	Behaviour engine
	Autocreated getUpdates using macros
	Interface communication

	Vision
	Object detection
	Data generation, model training and evaluation
	Deployment on the robots

	Field line detection
	Corner detection

	Localisation
	Sweeping behaviour
	Localisation based on the middle circle

	Tools
	Save data functionality

	Results
	Remote Robotic Hamburg Open Workshop (RoHOW)
	Remote RoboCup
	Foundation
	Public events

	Contributions
	Conclusion

