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Abstract. Visually detecting a well-dened object like a soccer ball
should be a simple problem. Under good lighting conditions this problem
can be claimed to be solved, but unfortunately, the lighting conditions are
not always optimal. In those circumstances, it is valuable to have a shape
and reectance model of the ball, to be able to predict how its appearance
changes if the lighting changes. This is a prerequisite for playing soccer
outside, with direct sunlight and clouds. The predicted appearance will
be used to ne-tune an existing ball detection algorithm, based on the
classic Yolo algorithm.
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1 Introduction

In the RoboCup Standard Platform League (SPL) autonomous Nao robots are
engaged in competitive soccer matches [3]. In this league no modications are al-
lowed on the hardware level, which forces the teams to concentrate on the robotic
algorithms in the perceive-plan-act cycle [5]. To play soccer, the perception of
the soccer ball should be done with high precision and recall [8]. Unfortunately,
the computational resources on board the robot, even the Nao v6, limit the
application of advanced neural network architectures to scaled-down versions
optimized to achieve acceptable frame rates.

Yet, even scaled-down neural networks can perceive a soccer ball with high
precision and recall [26] when properly trained. By extending the training set
with challenging samples, rather than random ones, the algorithm’s performance
can be improved even further

To extend the training set for ball detection under dicult lighting conditions
this research uses a modern breakthrough in the eld of Neural Factorization of
Shape and Reectance or in short reverse image rendering. Until recently it was
not possible to render realistic objects using a neural network [13]. The NeRF
algorithm has made it possible to properly render any object using a neural
network [13]. This means that the colour, shadow, reection, and shape can be
rendered realistic. A new feature on top of the NeRF algorithm is the NeRFactor
algorithm [28]. This feature allows for rendering unknown light conditions [28].
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A constraint of NeRFactor is that there must be a rich data set of the object
available, not a sparse data set. Two similar photos of the object must be exactly
the same, the lighting, material, etc. NeRFactor has not been tested on round
objects, such as the football used in this paper. In this paper, we will apply and
generalize NeRFactor by training NeRFactor on a round object [12].

Once trained, such a model can come to aid when soccer-playing robots
experience diculties when they have to recognize the soccer ball under dierent
light conditions. The angle of the light creates all kinds of shadows. Also, the
colour changes under dierent lighting conditions. Moreover, a soccer ball is a
perfectly round object; the symmetry makes the shape estimation both simpler
and more sensitive to errors. Note that reliable shape estimation of round objects
can also play a role in agriculture, for instance when apples, tomatoes, and
melons have to be detected.

2 Theoretical background

2.1 NeRF

This study will generate training sets with the NeRFactor algorithm [28], which
is an extension of NeRF algorithm [13]. NeRF describes an object as a continuous
5D function. This 5D function outputs at every 3D point (x, y, z) the radiance
emitted at each direction (θ,φ) . The density at any point in space acts as a
dierential opacity on how much radiance is collected by a light beam through
the point (x, y, z). In addition, a deep neural network is used to estimate the
albedo, the RGB colour of the light reected at any point, as a function of the
viewpoint.

(a) Surface normals (b) Light visibility

Fig. 1: Two aspects of the shape and reectance of a football
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Fig. 2: The 100 BRDF balls used in the MERL dataset courtesy: MERL [15] 1

The result is a model which estimates the shape and reectance of the ball.
The shape can be represented with the surface normals of the surface points
(x, y, z). A surface normal is the vector that is perpendicular to the surface
and is a unit vector. In image 1a NeRFactor’s surface normals are shown on
the football. The dierent colours are the directions of the surface normals. For
rendering the images, the directions have been translated to RGB, if a surface
normals go up, the colour is blue, orange is down, etc.

The reectance of the ball can be represented with the light-visibility func-
tion. Light visibility is the visibility of any of the surface points (x, y, z) for any
light source. In gure 1b the light visibility rendered by NeRFactor of the foot-
ball is visible. The darker the colour, the less light is reected from the object.
The dierent black and white surfaces are visible on the rendering. Note that
this light visibility indicates the amount of reected light, but this value has still
to be augmented with the albedo to estimate the colour of the reected light.

The NeRF algorithm is trained with hundreds of 2D photos of the same
object from dierent viewpoints. The Structure-from-Motion (SfM) from the
COLMAP library is used to reconstruct from the 2D images a 3D object [20].
Once the reconstruction is nished, the object can be rendered from any view-
point, generating synthetic scenes.

2.2 NeRFactor

The NeRF algorithm can generate a continuous high-resolution rendering of an
object under good lighting conditions. Yet, for this study, we are interested in
dicult lighting conditions. NeRFactor tried to improve NeRF by the introduc-
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tion of multiple lighting conditions in contrast to the one lighting condition in
NeRF [28].

NeRFactor accomplishes this by using a deep neural network that is pre-
trained on the MERL dataset [15], which contains the Bidirectional Reectance
Distribution Function (BRDF) which measures the amount of electromagnetic
radiation, reected or scattered from objects measured for 100 dierent reec-
tions (see Fig. 2).

This is not the only improvement of NeRFactor compared to NeRF. In addi-
tion, the algorithm has an improved geometry and reection model by dividing
the volume density estimated by NeRF into surface geometry.

Fig. 3: NeRFactor factorization.

It also factored photos of an object into shape, reectance, and illumination,
which allows viewpoint-independent editing of lighting with shadows and mate-
rial. Fig. 3 gives an example of factorization in the case of a point-based lighting
condition called OLAD (One-Light-At-a-Time). In the visibility model, one can
see a sharp shadow (marked with D) behind the ball opposite to the light source.
With these factorized models (and several visibility models) any viewpoint and
lighting condition can be rendered from the soccer ball.

3 Dataset

The correct working of both the NeRF and NeRFactor algorithms was rst tested
on the well-known datasets that accompany the algorithms: a hot dog, a pine
cone, and a vase.
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For this study, an equivalent dataset was recorded at the Intelligent Robotics
Lab2 of the RoboCup Standard Platform League3 ocial soccer ball. The ocial
ball is a soft foam ball with a black and white soccer ball print (see Fig 4a). They
are 100 mm in diameter and weigh 44 gr. The recorded soccer ball was well used
in several competitions [1], so some wear is visible on the ball.

(a) Nao robot with ball (b) Actual dataset recording

To be able to reconstruct the viewpoints of the recordings, the Colmap al-
gorithm requires that the recordings must be taken ‘neatly’. This means that
the recorded object should be in the centre of the frame (see Fig 4b), the light
and background must be the same for recordings taken from the same angle of
the object [20]. The algorithm also works better if you walk around the object
in circles of dierent heights. The NeRF algorithm needs around 100 recordings
per scene. Still, as we used a round object with a symmetrical pattern the re-
construction could not always correctly distinguish between the dierent angles
of the object, so the scene had to be recorded several times until we had a good
dataset.

The next step is the calculation of geometry buers [28]. Calculating ge-
ometry buers is very resource intensive. Because the geometry buers do not
change, they can be calculated in advance. This makes it easier to execute the
next steps of the algorithm. The algorithm calculates three dierent buers, they
are:

– The rst step is the calculation of the surface points following any camera
ray.

– The second step is the calculation of the surface normals.
– And the nal step is the calculation of the light visibility for the whole object

from each viewing angle.

The resulting light visibility map that has been made of the object shows
how the light is scattered for each angle. The result can be seen in Fig. 5.

2 https://www.intelligentroboticslab.nl/
3 https://spl.robocup.org/
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The rendering was performed with two dierent bounding boxes; one square
and one rectangular. The render with the rectangular bounding box has more
noise in the background as can be seen at the top. In addition, there should
be no light visible behind the object. The geometry buers calculated with the
rectangular bounding box have more light scattering in the shadow of the ball.
The calculation of the geometry buers with the square bounding box gives a
better result, so these buers are used in the rest of the study.

(a) with a rectangular base (b) with a square base

Fig. 5: Examples of creating a geometry buer of the light visibility for one
viewing angle. A complete buer is calculated for each viewing angle.

The last step is the factorization of the NeRFactor algorithm. The results
of the NeRF algorithm and geometry are combined with the BRDF model and
the dierent lighting conditions. For example, we can look at the results for the
sunrise and night lighting condition. For these two conditions the ball is illumi-
nated from two opposite angles and the surface normals should point exactly in
the opposite direction (indicated by the rainbow color). That is indeed the case
at arrow A (see Fig. 6 7), which is sky-blue for the sunrise condition and pink at
night. The purple colors of the BRDF indicate the kind of reection. Indeed, as
can be seen at arrow B (see Fig. 7) the black areas are light purple (less reec-
tion) and the white areas are dark purple (more reection). The correctness of
the albedo can be seen at arrow C (see Fig. 6), with the correct white and black
pattern. In addition, one can see the warm colour of the sunset reected on the
white surface. The only downside is that the reection model seems to have a
metallic-like appearance, which is a known feature of the NeRFactor algorithm
[28]. A more detailed analysis of the factorization results can be found in [14].
Yet, overall it is clear that the shape of the ball and the black hexagons are well
preserved and the shadows & the colouring is realistic.
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Fig. 6: Rendering of the ball at sunrise.

Fig. 7: Rendering of the ball at night.

The results seem to be good enough to generate a training set to ne-tune a
ball detection algorithm, as the combination of YOLO and the HAAR algorithm
used by the Dutch Nao Team [1].

4 Object Detection

The last 20 years have seen many breakthroughs in object detection techniques,
well documented by several surveys [7,27,29]. Detection algorithms can be cate-
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gorized into two-stage (R-CNNs, SPP, FPN, FCN and others) and single-stage
(SSD, Yolo, Mask R-CNN, RetinaNet and others) models. Two-stage models
split Region of Interest generation from Pooling operations that extract features
and specify candidate bounding boxes. This achieves high localization and recog-
nition accuracy but at the cost of inference speed. Single-stage models combine
all operations in one convolutional forward pass which leads to faster inference.
In recent years, much eort has been put into developing lightweight networks
(examples include SqueezeNet, MobileNet) that can be deployed in resource con-
strained environments such as mobile and IoT devices.

For real-time detection tasks, an optimum is sought between accuracy and
inference speed. The Yolo algorithm, since its rst formulation in 2016 [17] has
consistently pushed the boundary in this envelope. There are currently eight
generations of the Yolo algorithm [17,18,19,24,9,25,23].

Yolo is a clear candidate of choice as a generic and high performing detection
algorithm. It is preferred over highly optimized algorithms for specic classes
given the ability to include additional classes in the future that can be relevant
to the soccer framework such as goal posts, penalty markers, dierent robot
stances, etc. As a basis for our application, variants of the Darknet based versions
Yolo-v3 and Yolo-v4 are considered. The key reason for this is the maturity of
this version, with well-established implementation frameworks and portability
options. Modern versions based on PyTorch require their network weights to be
transformed to TensorFlow Lite format before they can be used on the limited
computational resources of the Nao v6 robot [16].

Ball detection

There exist pretrained models for Yolo object detection, typically trained on the
COCO dataset (80 object classes) [11]. For the RoboCup one can concentrate
on the relevant object classes; so we used a model which was pre-trained on only
two object classes: Nao robots and soccer balls [26]. This pre-trained model was
trained with datasets of RoboCup recordings labelled collaboratively [4]. The
training set contained 7,500 images.

The performance of such double class detectors based on a pre-trained net-
work can be further improved with additional data, even on small datasets [10].
The focus of this study is to improve the performance in dierent lighting con-
ditions.

Synthetic dataset

The shape, reectance, and illumination of the ball under dierent lighting con-
ditions as described in Sec. 3 can be incorporated in a virtual reality environment
of the Intelligent Robotics Lab created in Unity [2]. To do this the mesh has to
be recovered [22]. Once the model of the ball is part of the virtual reality en-
vironment, one can view the ball from dierent viewpoints, including the 2D
bounding box with the label. In addition, Unity Perception contains Random-
izer tools that allow random object placement, position, rotation, texture, and
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hue. So, not only the lighting conditions are changed, but also the background
is changed (the view through the windows of the Intelligent Robotics Lab).
This is comparable with the stochastic scene generation performed in the Un-
real environment by Hess et al. [6]. An example of some of the generated images
can be found in Fig. 8. For each Randomizer tool, the range can be specied.
For instance, for the Intensity-range we used [135.5, 378.5] Lumen and for the
Temperature-range [5250, 7750] Kelvin. For the Light range Ceiling we used the
Intensity-range [3050 − 7350] Lumen and the Temperature-range [3600 − 6000]
Kelvin.

Fig. 8: Synthetic images created in Unity with the mesh learned from NeRFactor

5 Training and testing Yolo-v4/3L

The Darknet4 can be used to train Yolo models up to version 4. Based on the
previous experience [26] we concentrated on the reduced model with three scales
(’Tiny Yolo-v4/3L’). Key hyperparameters that were kept constant include the
input size of the images (416 × 416), anchor box dimensions (3 per grid cell),
batch size (64) and optimizer settings (SGD optimizer with momentum 0.9 and
weight decay of 5e−4). A learning rate of 0.00261 was used, which was reduced
by 10% after steps 10k and 15k.

The previous work reported a mean average precision (mAP@50) of 84.2%
on the ball detection, based on the learning curve illustrated in Fig. 9a. This
was the result of training on 7,500 images recorded during RoboCup soccer
matches, enriched with live scenes recorded in the Intelligent Robotics lab. This
trained network was in the next step further trained with synthetic images with

4 https://github.com/AlexeyAB, maintained by Alexey Bochkovsky
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the mesh of the ball generated based on the model generated NeRFactor (480
images). The pretrained networked started directly with a high mAP and a low
loss, which was further improved in 20,000 iterations (see Fig. 9b). The resulting
mean average precision improved to 92.3% on the real validation dataset.

Fig. 9: Learning curves of ’Tiny Yolo-v4/3L’

Yet, the most important criterion is if the diversity of lighting conditions im-
proved the robustness of the algorithm for real circumstances. When the model
trained with the NeRF mesh is validated on the real validation set with record-
ings from live scenes (593 images) we get a mean average precision of 92.89%,
outperforming the 84.2% earlier reported earlier (See Table 1). For convenience,
also the results of Specchi et al [21] are given, although these results were ac-
quired on slightly dierent dataset with an another resolution (320×320 instead
of 416× 416). The number of parameters have a strong inuence on the perfor-
mance, so this work with 23K parameters nicely falls between the 12K and 47K
results reported by [21]. Note that the focus of Specchi et al [21] was to trade
accuracy with speed to reach a high framerate on the Nao robot.

Model #Parameters mAP@50

vanderWeerd [26] - Tiny Yolo-v4/3L 23K 84.2%
Specchi et al [21] - Tiny Yolo-v7/YTv7 12K 12K 88.8%
our work - Tiny Yolo-v4/3L 23K 92.9%
Specchi et al [21] - Tiny Yolo-v7/YTv7 47K 47K 94.0%

Table 1: Comparison of ball-detection precision results
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6 Conclusion

This experiment shows the value of being able to generate synthetic datasets
which can boost the performance of object detectors such as Yolo. The focus of
this research is the relative improvement; with more advanced algorithms (e.g.,
Yolo v7) or by generating much larger synthetic datasets we could have pushed
the boundary even further. Yet, we could already see an impressive improvement
on a small dataset, which seems to originate from the diversity which could
be generated with the Randomizer tools. So, we trained with the data that
challenged the object detector enough to further improve, instead of adding
more of the same ’real’ data. As long as the computational resources of the Nao
robot do not facilitate more advanced algorithms the solution has to come from
better training schemes.
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