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Preface

The 9th RoboCup International Symposium was held at INTEX Osaka, Japan,
immediately after the RoboCup 2005 Soccer, Rescue and Junior Competitions.
The researchers behind the RoboCup teams met for presentation of scientific
and technological contributions in areas relevant to RoboCup.

The number of submissions to the symposium increased again and totalled
131. The International Program Committee including both RoboCup researchers
from around the world and experts from communities outside RoboCup selected
36 submissions as full papers and 38 as posters. These contributions came from
21 countries and were presented in 6 oral sessions and 2 poster sessions.

Two of the full papers were selected as awards. The Scientific Award went
to the paper authored by Jelle Kok and Nikos Vlassis on “Using the Max-Plus
Algorithm for Multiagent Decision Making in Coordination Graphs.” The En-
gineering Award was given to the paper written by Gerald Steinbauer, Martin
Mörth and Franz Wotawa with the title “Real-Time Diagnosis and Repair of
Faults of Robot Control Software.”

The Fourth IEEE International Conference on Development and Learning
(ICDL 2005) took place at the same venue as RoboCup 2005 during July 19-21,
2005. ICDL 2005 brought together researchers from the field of learning in hu-
mans, animals, and automatons to discuss and exchange ideas between robotics
and cognitive science. As a second co-located academic event, the 5th Interna-
tional Workshop on Epigenetic Robotics (EpiRob 2005) was also held in Nara.

The RoboCup International Symposium started with an invited talk by Hi-
roshi Ishiguro of Osaka University and ATR under the title “Research Issues
for Personal and Social Robots.” We had another two invited talks in joint ses-
sions with ICDL 2005, delivered by Pat Langley of Stanford University, on “An
Adaptive Architecture for Physical Agents,” and by Giogio Metta, University of
Genova, on “Developmental Robotics and Robot Development.”

We like to thank the RoboCup Organizing Committee for the local organi-
zation of the Symposium at INTEX Osaka. The RoboCup competitions and the
scientific symposium celebrated their 10th anniversary in Bremen, Germany, on
June 14-20, 2006.

December 2005 Ansgar Bredenfeld
Adam Jacoff
Itsuki Noda

Yasutake Takahashi
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Raúl Rojas, Germany
Paul Rybski, USA
Claude Sammut, Australia
Paul Scerri, USA
Sandip Sen, USA
Onn Shehory, Israel
Kosuke Shinoda, Japan
Elizabeth Sklar, USA
Bill Smart, USA
Peter Stone, USA
Katya Sycara, USA
Tomoichi Takahashi, Japan
Yasutake Takahashi, Japan
Ikuo Takeuchi, Japan
Jean-Philippe Tarel, France
Ashley Tews, Australia
Takashi Tubouchi, Japan
Ubbo Visser, Germany
Felix von Hundelshausen, USA
Marco Wiering, The Netherlands
Laura R. Winer, Canada
Florentin Wörgötter, Germany
Gordon Wyeth, Australia
Changjiu Zhou, Singapore



Table of Contents

Award Winning Papers
Scientific Award

Using the Max-Plus Algorithm for Multiagent Decision Making
in Coordination Graphs

Jelle R. Kok, Nikos Vlassis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Engineering Award

Real-Time Diagnosis and Repair of Faults of Robot Control
Software

Gerald Steinbauer, Martin Mörth, Franz Wotawa . . . . . . . . . . . . . . . . . . 13

Full Papers
Humanoid

Exploiting the Unexpected: Negative Evidence Modeling
and Proprioceptive Motion Modeling for Improved Markov
Localization

Jan Hoffmann, Michael Spranger, Daniel Göhring,
Matthias Jüngel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Playing Soccer with RoboSapien
Sven Behnke, Jürgen Müller, Michael Schreiber . . . . . . . . . . . . . . . . . . . . 36

Reliable and Precise Gait Modeling for a Quadruped Robot
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Juan Cristóbal Zagal, Iván Sarmiento, Javier Ruiz-del-Solar . . . . . . . . . 464

Autonomous Parking Control Design for Car-Like Mobile Robot
by Using Ultrasonic and Infrared Sensors

Tzuu-Hseng S. Li, Chi-Cheng Chang, Ying-Jie Ye,
Gui-Rong Tasi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Behavior-Based Vision on a 4 Legged Soccer Robot
Floris Mantz, Pieter Jonker, Wouter Caarls . . . . . . . . . . . . . . . . . . . . . . . 480

Coaching with Expert System Towards RoboCup Soccer Coach
Simulation

Ramin Fathzadeh, Vahid Mokhtari, Morteza Mousakhani, Alireza
Mohammad Shahri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Conceptual Representation for a Soccer Commentary Generator
Damian Stolarski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Distributed Sensor Fusion for Object Tracking
Alankar Karol, Mary-Anne Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Emergent Cooperation in RoboCup: A Review
Geoff Nitschke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Flexible Coordination of Multiagent Team Behavior Using HTN
Planning

Oliver Obst, Joschka Boedecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

General-Purpose Learning Machine Using K-Nearest Neighbors
Algorithm

Seyed Hamid Hamraz, Seyed Shams Feyzabadi . . . . . . . . . . . . . . . . . . . . . 529

Improvement of Color Recognition Using Colored Objects
T. Kikuchi, K. Umeda, R. Ueda, Y. Jitsukawa, H. Osumi,
T. Arai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537



XVI Table of Contents

Improving Percept Reliability in the Sony Four-Legged Robot League
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Abstract. Coordination graphs offer a tractable framework for coop-
erative multiagent decision making by decomposing the global payoff
function into a sum of local terms. Each agent can in principle select an
optimal individual action based on a variable elimination algorithm per-
formed on this graph. This results in optimal behavior for the group, but
its worst-case time complexity is exponential in the number of agents,
and it can be slow in densely connected graphs. Moreover, variable elim-
ination is not appropriate for real-time systems as it requires that the
complete algorithm terminates before a solution can be reported. In this
paper, we investigate the max-plus algorithm, an instance of the belief
propagation algorithm in Bayesian networks, as an approximate alter-
native to variable elimination. In this method the agents exchange ap-
propriate payoff messages over the coordination graph, and based on
these messages compute their individual actions. We provide empirical
evidence that this method converges to the optimal solution for tree-
structured graphs (as shown by theory), and that it finds near optimal
solutions in graphs with cycles, while being much faster than variable
elimination.

1 Introduction

A multiagent system (MAS) consists of a group of agents that interact which
each other [1, 2]. In such systems agents act individually, but the outcome can
differ based on the behavior of the other agents. In this paper, we concentrate
on cooperative MASs in which the agents try to optimize a shared performance
measure and have to ensure that their selected individual actions result in good
team behavior. RoboCup [3] is a good example of a cooperative (or team) MAS in
which the agents also have to deal with time constraints since the soccer-playing
robots have to coordinate their actions in real-time in order to win.

A recently introduced framework for multiagent coordination is the concept
of coordination graphs (CG) [4], which allows for a tractable representation of
the coordination problem. In this framework, payoff functions between subsets of
the agents are specified that represent local coordination dependencies between
the agents. In order to determine the optimal joint action that maximizes the
sum of the local payoffs, a variable elimination (VE) algorithm was proposed
in [4]. We applied CGs and VE to our UvA Trilearn RoboCup Simulation team,

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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which won the RoboCup-2003 World Championship [5]. However, although VE is
exact and always produces the optimal joint action, it can be slow in certain cases
and in the worst case scales exponentially in the number of agents for densely
connected graphs. In previous work [6], we compared two different alternatives to
VE. In this paper we will concentrate further on the max-plus algorithm, which
is analogous to the belief propagation algorithm [7, 8, 9] for Bayesian networks,
as an approximate alternative to VE. In this method, the agents repeatedly
exchange payoff messages on which they base their individual action selection.
In this paper, we provide empirical evidence that this method converges to the
optimal solution for tree-structured graphs and also show that it finds near
optimal solutions in densely connected graphs with cycles, while being much
faster than VE. These results make this framework interesting for domains as
RoboCup where real-time decision making in a group of distributed cooperative
agents is of great importance.

2 Coordination Graphs and Variable Elimination

In this section we will review the problem of computing a coordinated action for
a group of n agents using the variable elimination (VE) algorithm [4]. Each agent
chooses an individual action ai from a set Ai, and the resulting joint action a =
(a1, . . . , an) generates a payoff u(a) for the team. The coordination problem is
to find the optimal joint action a∗ that maximizes u(a), i.e., a∗ = argmaxa u(a).
An obvious approach is to enumerate all possible joint actions and select the one
that maximizes u(a). However, this approach quickly becomes impractical, since
the joint action space ×iAi grows exponentially with the number of agents n.

Fortunately, many problems exhibit the property that the payoff matrix u(a)
is sparse. Each agent only depends on a small subset of the other agents, e.g., in
robotic soccer only robots that are close to each other have to coordinate their
actions. A recent approach to exploit such dependencies involves the use of a
coordination graph [4], which decomposes the global payoff function u(a) into a
linear combination of local payoff functions, each involving only a few agents. For
example, a payoff function involving four agents can be decomposed as follows:

u(a) = f12(a1, a2) + f13(a1, a3) + f34(a3, a4). (1)

The functions fij specify the local coordination dependencies between the actions
of the agents and can be mapped to a graph G = (V, E) in which each node in
V represents an agent, while an edge in E defines a coordination dependency
between two agents. Only interconnected agents have to coordinate their actions
at any particular instance. The global coordination problem is thus replaced by
a number of local coordination problems each involving fewer agents.

In order to find the optimal joint action a∗ we can apply VE, which is essen-
tially identical to variable elimination in a Bayesian network [10]. The algorithm
operates as follows. One agent is selected and collects all payoff functions in
which it is involved from its neighbors. Next, it optimizes its decision condition-
ally on the possible action combinations of its neighbors and communicates the



Using the Max-Plus Algorithm for Multiagent Decision Making 3

resulting ‘conditional’ payoff function to one of its neighbors. Thereafter, this
agent is eliminated from the graph. When only one agent remains, this agent
selects an action that maximizes the final conditional strategy. A second pass in
the reverse order is then performed in which every agent computes its optimal
action based on its conditional strategy and the fixed actions of its neighbors.

We will illustrate VE on the aforementioned decomposition (1). We first elim-
inate agent 1. This agent depends on the local payoff functions f12 and f13 and
therefore the maximization of u(a) in (1) can be written as

max
a

u(a) = max
a2,a3,a4

{
f34(a3, a4) + max

a1
[f12(a1, a2) + f13(a1, a3)]

}
. (2)

Agent 1 defines the function φ23(a2, a3) = maxa1 [f12(a1, a2) + f13(a1, a3)]
and the best-response (conditional strategy) function B1(a2, a3) = arg maxa1

[f12(a1, a2) + f13(a1, a3)] which respectively return the maximal value and the
associated best action for agent 1 given the actions of agent 2 and 3. The function
φ23(a2, a3) is independent of agent 1, which can now be eliminated from the
graph, simplifying (2) to maxa u(a) = maxa2,a3,a4 [f34(a3, a4)+φ23(a2, a3)]. Note
that the elimination of agent 1 induces a new dependency between agent 2 and
3 and thus a change in the graph’s topology.

Next, we apply the same procedure to eliminate agent 2. Since only φ23 de-
pends on agent 2, we define B2(a3) = arg maxa2 φ23(a2, a3) and replace φ23

by φ3(a3) = maxa2 φ23(a2, a3) producing maxa u(a) = maxa3,a4 [f34(a3, a4) +
φ3(a3)], which is independent of a2. Next, we eliminate agent 3 giving maxa

u(a) = maxa4 φ4(a4) with φ4(a4) = maxa3 [f34(a3, a4) + φ3(a3)]. Agent 4 is the
last remaining agent and fixes its optimal action a∗

4 = arg maxa4 φ4(a4). There-
after, a second pass in the reverse elimination order is performed in which each
agent computes its optimal (unconditional) action from its best-response func-
tion and the fixed actions from its neighbors. In our example, agent 3 first selects
a∗
3 = B3(a∗

4). Similarly, we get a∗
2 = B2(a∗

3) and a∗
1 = B1(a∗

2, a
∗
3). In the case

that one agent has more than one maximizing best-response action, it can select
one randomly, since it always communicates its choice to its neighbors.

The outcome of VE is independent of the elimination order and always re-
sults in the optimal joint action. On the other hand, the execution time of the
algorithm does depend on the elimination order1 and is exponential in the in-
duced width of the graph (the size of the largest clique computed during node
elimination). This can be slow in certain cases and in the worst case scales expo-
nentially in n. Furthermore, VE will only produce its final result after the end of
the second pass. This is not always appropriate for real-time multiagent systems
where decision making must be done under time constraints. For example, in the
RoboCup 2D Simulation League, each agent has to sent an action to the server
within 100ms. In these cases, an anytime algorithm that improves the quality of
the solution over time would be more appropriate.

1 Computing the optimal order for minimizing the runtime costs is known to be NP-
complete, but good heuristics exists, e.g., minimum deficiency search which first
eliminates the agent with the minimum number of neighbors [11].
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Fig. 1. Graphical representation of different messages μij in a graph with four agents

3 The Max-Plus Algorithm

In this section, we describe the max-plus algorithm [7, 8, 9, 6] as an approximate
alternative to VE. The max-plus algorithm is a popular method for comput-
ing the maximum a posteriori (MAP) configuration in an (unnormalized) undi-
rected graphical model. This method, analogous to the belief propagation (BP)
or sum-product algorithm in Bayesian networks, operates by iteratively sending
messages μij(aj), which can be regarded as locally optimized payoff functions,
between agent i and j over the edges of the graph. For tree-structured graphs, the
message updates converge to a fixed point after a finite number of iterations [7].

We can translate the above result to our multiagent decision making problem,
since computing the MAP configuration is equivalent to finding the optimal joint
action in a CG [6]. Suppose that we have a coordination graph G = (V, E) with
|V | vertexes and |E| edges. Instead of variables, the nodes in V represent agents,
while the global payoff function can be decomposed as follows2

u(a) =
∑
i∈V

fi(ai) +
∑

(i,j)∈E

fij(ai, aj). (3)

Here fi denotes a local payoff function for agent i and is only based on its
individual action ai. Furthermore, (i, j) ∈ E denotes a pair of neighboring agents
(an edge in G), and fij is a local payoff function that maps two actions (ai, aj)
to a real number fij(ai, aj). A function fi thus represents the payoff an agent
contributes to the system when it acts individually, e.g., dribbling with the ball,
and fij represents the payoff of a coordinated action, e.g., a coordinated pass.

Again, the goal is to find the optimal joint action a∗ that maximizes (3). Each
agent i (node in G) repeatedly sends a message μij to its neighbors j ∈ Γ (i),
where μij maps an action aj of agent j to a real number as follows:

μij(aj) = max
ai

{
fi(ai) + fij(ai, aj) +

∑
k∈Γ (i)\j

μki(ai)
}

+ cij , (4)

where Γ (i) \ j represents all neighbors of i except j and cij is a normalization
vector. This message can be understood as an approximation of the maximum
2 Note that this function u(a) is analogous to the log-transform of an (unnormalized)

factorized probability distribution for which the MAP state is sought.
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Algorithm 1. Pseudo-code of the centralized max-plus algorithm

centralized max-plus algorithm for CG = (V, E)
intialize μji = μij = 0 for (i, j) ∈ E, gi = 0 for i ∈ V and m = −∞
while fixed-point = false and deadline to sent action has not yet arrived do

// run one iteration
fixed-point = true
for every agent i do

for all neighbors j = Γ (i) do
send j message μij(aj) = maxai

˘
fi(ai)+fij(ai, aj)+

P
k∈Γ (i)\j

μki(ai)
¯

+cij

if μij(aj) differs from previous message by a small threshold then
fixed-point = false

determine gi(ai) = fi(ai) +
P

j∈Γ (i) μji(ai) and a′
i = arg maxai

gi(ai)
if use anytime extension then

if u((a′
i)) > m then

(a∗
i ) = (a′

i) and m = u((a′
i))

else
(a∗

i ) = (a′
i)

return (a∗
i )

payoff i can achieve for a given action of j, and is computed by maximizing
(over the actions of i) the sum of the payoff functions fi and fij and all incoming
messages to i except that from j. The agents keep exchanging messages until they
converge. Fig. 1 shows a CG with four agents and the corresponding messages.

A message μij in max-plus has three important differences with respect to
the conditional strategies in VE. First, before convergence each message is an
approximation of the exact value (conditional payoff) since it depends on the
incoming (still unconverged) messages. Second, an agent i only has to sum over
the received messages from its neighbors defined over its individual actions,
instead of enumerating over all possible action combinations of its neighbors
(this makes the algorithm tractable). Finally, in VE the elimination of an agent
often causes a change in the graph topology. In the max-plus algorithm, messages
are always sent over the edges of the original graph.

For trees the messages converge to a fixed-point within a finite number of
steps [7, 9]. A message μij(aj) then equals the payoff the subtree with agent i as
root can produce when agent j performs action aj . If, at convergence, we define

gi(ai) = fi(ai) +
∑

j∈Γ (i)

μji(ai), (5)

then we can show that gi(ai) = max{a′|a′
i=ai} u(a′) holds [6]. Each agent i now

individually selects its optimal action a∗
i = argmaxai gi(ai). If there is only

one maximizing action for every agent i, the globally optimal joint action a∗ =
argmaxa u(a) is unique and has elements a∗ = (a∗

i ). Note that this global optimal
joint action is computed by only local optimizations (each node maximizes gi(ai)
separately). In case the local maximizers are not unique, an optimal joint action
can be computed by a dynamic programming technique [9, sec. 3.1].
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Algorithm 2. Pseudo-code of a distributed max-plus implementation

distributed max-plus for agent i, CG = (V, E), spanning tree ST = (V, S)
initialize μji = μij = 0 for j ∈ Γ (i), gi = 0, pi = 0 and m = −∞
while deadline to sent action has not yet arrived do

wait for message msg

if msg = μji(ai) // max-plus message then
for all neighbors j = Γ (i) do

compute μij(aj) = maxai

˘
fi(ai) + fij(ai, aj) +

P
k∈Γ (i)\j

μki(ai)
¯

+ cij

send message μij(aj) to agent j (if it differs from last sent message)
if use anytime extension then

if heuristic indicates global payoff should be evaluated then
send evaluate( i ) to agent i (me) // initiate computation global payoff

else
a∗

i = arg maxai
[fi(ai) +

P
j∈Γ (i) μji(ai)]

if msg = evaluate( j ) // receive request for evaluation from agent j then
lock a′

i = arg maxai
[fi(ai) +

P
j∈Γ (i) μji(ai)] and set pi = 0 if a′

i not locked
send evaluate( i ) to all neighbors (parent and children) in ST �= j

if i = leaf in ST then
send accumulate payoff( 0 ) to agent i (me) // initiate accumulation payoffs

if msg = accumulate payoff( pj ) from agent j then
pi = pi + pj // add payoff child j

if received accumulated payoff from all children in ST then
get actions a′

j from j = Γ (i) in CG and set gi = fi(a′
i) + 1

2

P
j∈Γ (i) fij(a′

i, a
′
j)

if i = root of ST then
send global payoff( gi + pi ) to all children in ST

else
send accumulate payoff( gi + pi ) to parent in ST

if msg = global payoff( g ) then
if g > m then

a∗
i = a′

i and m = g

send global payoff( g ) to all children in ST and unlock action a′
i

return a∗
i

Unfortunately, in graphs with cycles there are no guarantees that either max-
plus converges or that the local maximizers a∗

i = argmaxai gi(ai) correspond to
the global optimum. It has been shown that a fixed point of message passings
exists [9], but there is no algorithm yet that can provably converge to such
a solution. However, bounds are available that characterize the quality of the
solution if the algorithm converges [12]. In practice, the max-product algorithm
has been successfully applied in graphs with cycles [8, 13, 14].

The max-plus algorithm can both be implemented in a centralized and dis-
tributed version. In the distributed implementation, each agent computes and
sends updated messages after it has received a new (and different) message from
one of its neighbors. In this case, messages are sent in parallel, resulting in a com-
putational advantage over the sequential execution of the centralized algorithm.
However, an additional complexity arises since each agent has to individually
determine whether the system has converged or when it should report its action.
In general we can assume that each agent receives a ‘deadline’ signal (either from
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an external source or from an internal synchronized timing signal) after which it
must report its action. This, in turn, necessitates the development of an anytime
algorithm in which each (local) action is only updated when the corresponding
global payoff improves upon the best one found so far. In the centralized ver-
sion of Alg. 1, we therefore compute the global payoff after every iteration by
inserting the current computed joint action into (3). For the distributed case
in Alg. 2 the evaluation of the (distributed) joint action is much more complex
and is only initiated by an agent when it believes it is worthwhile to do so, e.g.,
after a big increase in the values of the received messages. This agent starts the
propagation of an ‘evaluation’ over a spanning tree ST of the nodes in G. This
tree is fixed beforehand and common knowledge among all agents. An agent
receiving an evaluation message fixes its individual action. When an agent is a
leaf of ST it also computes its local contribution to the global payoff and sends
it to its parent in ST . Each parent accumulates all payoffs of its children and
after adding its own contribution sends the result to its parent. Finally, when
the root of ST has received all accumulated payoffs from its children, the sum of
these payoffs (global payoff) is distributed to all nodes in ST . An agent updates
its best individual action a∗

i only when this payoff improves upon the best one
found so far. When the ‘deadline’ signal arrives, each agent thus does not report
the action corresponding to the current messages, but the action related to the
highest found global payoff. Alg. 1 and Alg. 2 respectively show a centralized
and a distributed version in pseudo-code.

4 Experiments

In this section, we describe our experiments with the max-plus algorithm on
differently shaped graphs. Since our focus in this paper is on the resulting poli-
cies and the corresponding (global) payoff, we used the centralized algorithm
from Alg. 1. We first tested it on trees with |V | = 100 agents, each having
|Ai| = 4 actions and a fixed number of neighbors. We created 24 trees in which
the number of neighbors per node ranged between [2, 25]. Since we fixed the num-
ber of agents, each tree had 99 edges but a different depth. Each edge (i, j) ∈ E
was associated with a payoff function fij where each action combination was
assigned a payoff fij(ai, aj) generated from a normal distribution N (0, 1).

We applied both the VE and max-plus algorithm to compute the joint action.
In VE we always eliminated the agent with the minimum number of neighbors,
such that each local maximization step involved at most two agents. For the
max-plus algorithm, we applied both a random order and the same order as VE
to select the agent to sent its messages. Note that in the latter case, the second
iteration is the reverse order of the first (comparable to the reversed pass in VE).

Fig. 2 shows the relative payoff found with max-plus with respect to the
optimal payoff after each iteration. Results are averaged over all 24 graphs.
The policy converges to the optimal solution after a few iterations. When us-
ing the elimination order of VE to select the next agent, it always converges
after two iterations. For this order, each message only has to be computed once
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Fig. 2. Average payoff for the max-plus algorithm after each iteration

(see [15]) and the two methods become equivalent. When using a random order,
it takes a few iterations before the same information is propagated through the
graph.

We also tested max-plus on graphs with cycles. Now, because an outgoing
message from agent i can eventually become part of its incoming messages,
the values of the messages can become extremely large. Therefore, as in [9],
we normalize each sent message by subtracting the average of all values in μik

using cij = 1
|Ak|

∑
k μik(ak) in (4). Furthermore, we stopped max-plus after 100

iterations when the messages did not converge (as we will see later in Fig. 4 the
policy has stabilized at this point).

For our experiments, we created graphs with 15 agents, and a varying number
of edges. In order to get a balanced graph in which each agent approximately had
the same number of neighbors, we randomly added edges between the agents with
the minimum number of edges. We generated 100 graphs for each |E| ∈ [8, 37],
resulting in 3000 graphs. Fig. 3(a)-3(c) depict example graphs with respectively
15, 23 and 37 edges (on average 2, 3.07 and 4.93 neighbors per node).

We applied the above procedure to create three test sets. In the first set,
each edge (i, j) ∈ E was associated with a payoff function fij defined over five
actions per agent and each action combination was assigned a random payoff
fij(ai, aj) ∈ N (0, 1). In the second set, we added one outlier to each payoff
function: for a randomly picked joint action, the corresponding payoff value was
set to 10 ∗N (0, 1). For the third test set, we specified a payoff function using 10
actions per agent and the same method as in the first set to generate the values.

The timing results3 for the three different test sets4 are plotted in Fig. 3(d)-
3(f). They show that the time for the max-plus algorithm grows linearly as
the complexity of the graphs increases (the number of messages is related to
the number of edges in the graph). The time for VE grows exponentially since
it has to enumerate over an increasing number of neighboring agents in each
local maximization step. Furthermore, the elimination of an agent often causes

3 All results are generated on a 3.4GHz / 2GB machine using a C++ implementation.
4 For the graphs with ten actions per agent and more than four neighbors per node,

VE was not always able to compute a policy since the intermediate computed tables
grew too large for the available memory. These graphs were removed from the set.
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(a) Example graph with 15 edges (on
average 2 neighbors per agent).
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(b) Example graph with 23 edges (on
average 3.07 neighbors per agent).
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(c) Example graph with 37 edges (on
average 4.93 neighbors per agent).
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Fig. 3. Example graphs and (average) timing results for both VE and max-plus for
different graphs with 15 agents and cycles
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(a) Payoff max-plus after each iteration
(5 actions per agent).
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(b) Payoff anytime max-plus after each
iteration (5 actions per agent).
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(c) Payoff max-plus after each iteration (5
actions per agent and outliers)
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right) and without (graphs on the left) the anytime extension on different graphs with
15 agents and cycles
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a neighboring agent to receive a conditional strategy involving agents it did not
had to coordinate before, changing the graph topology to an even denser graph.

Fig. 4 shows the relative payoff found with the max-plus algorithm with re-
spect to the optimal payoff after each iteration for graphs with different average
numbers of neighbors. For the loosely connected graphs (less than two neigh-
bors) the result is similar to the optimal result after a few iterations only. As the
number of neighbors increases, the resulting policy becomes worse. This effect
is less evident in the graphs with outliers (Fig. 4(c)) since certain action combi-
nations are clearly preferred lowering the number of oscillations. Increasing the
number of actions per agents (Fig. 4(e)) has a negative influence on the result
because of the increase in the total number of action combinations.

Applying the anytime version as discussed in Section 3, improves the results
for all graphs indicating that the failing convergence of the messages causes
the algorithm to oscillate between different joint actions and ‘forget’ good joint
actions. Fig. 4 shows that for all sets near-optimal policies are found, although
it takes more iterations for the graphs with ten actions per agent to find them.

5 Conclusion and Future Directions

In this paper, we continued the work started in [6] and investigated further the
usage of the max-plus algorithm as an alternative action selection method to
variable elimination (VE) in coordination graphs (CG). VE is an exact method
that will always report the optimal joint action, but is slow for densely connected
graphs with cycles as its worst-case complexity is exponential in the number of
agents. Furthermore, this method is only able to report a solution after the
complete algorithm has ended. The max-plus algorithm operates by repeatedly
sending local payoff messages over the edges in the CG. By performing a local
computation based on its incoming messages, each agent is able to select its
individual action. We provided empirical evidence that this method converges to
the optimal joint action for tree-structured graphs (as shown by theory), and that
it finds near optimal solutions in large, highly connected graphs with cycles an
order of magnitude faster than VE. Another advantage of the max-plus algorithm
is that it can be implemented fully distributed using asynchronous and parallel
message passing. For these reasons, we believe max-plus is an appropriate action
selection technique for cooperative real-time systems such as used in RoboCup.

As future research, we are planning to implement the max-plus algorithm
in our UvA Trilearn 2D simulation team. In previous years, we used VE for
cooperative action selection5, but computational constraints restricted us in the
number of coordination dependencies (see [5]). Using the max-plus algorithm we
hope to be able to introduce more specialized fine-grained coordination.

Finally, we like to apply max-plus to sequential decision making. In [16, 4] CGs
are used in combination with VE to learn coordinated policies of the agents using

5 Since the agents in the 2D simulator cannot communicate directly, each agent models
the complete algorithm separately using common knowledge assumptions (see [5]).
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reinforcement learning. We like to investigate whether the usage of max-plus can
help to learn the coordinated behavior for larger groups of agents.
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Abstract. Faults in hardware and software are not totally avoidable not
even if the components are carefully designed, implemented and tested.
In this paper we present a solution for detection, localization and repair
of faults in the control software for autonomous mobile robots. The pre-
sented diagnosis system uses model-based diagnosis for fault detection
and localization. Furthermore, we present a method which enables the
robot control software to recover from located faults. The novelty of our
approach is that fault localization and repair takes place at runtime.
Moreover, we present experimental results of the proposed diagnosis sys-
tem obtained in the RoboCup Middle-Size scenario.

1 Introduction

Even if the control software of a mobile robot is carefully designed, implemented
and tested, there is always the possibility of faults in the system. Generally, faults
are the deviation of the current behavior of a system from its desired behavior.
For instance, we know very well situations in RoboCup Middle Size League
(MSL) games where frequently robots had to be removed from and inserted into
the field because some hardware or software components crashed or showed an
undesired behavior. Carlson and Murphy [1] presented a quantitative evaluation
of failures on mobile robots. The situation gets even worse if one thinks about
autonomous robots, which operate for a long time without the possibility of
human intervention, e.g. nuclear inspection robots, space probes or planetary
rovers. Therefore, robustness and fault-tolerance are crucial for truly autonomous
robots.

Because faults are not totally avoidable it is desirable that mobile robots are
able to autonomously detect and repair such faults. If a permanent fault, e.g.
broken hardware, is identified the robot should at least provide basic function-
ality or should be able to switch to a safe state. These requirements could be
fulfilled if a dedicated diagnosis system is attached to the robot control software.
Usually, a diagnosis system comprises three modules: (1) a monitoring module,
(2) a fault detection and localization module and (3) a repair module. The first

� This research has been funded in part by the Austrian Science Fund (FWF) under
grant P17963-N04 and Land Steiermark under grant 40Ro03-PE ”RoboCup 2004”.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 13–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



14 G. Steinbauer, M. Mörth, and F. Wotawa

module observes the actual behavior of the hardware and software of the robot
system. The fault detection uses observations and a model of the system’s de-
sired behavior to detect deviations between them. A deviation is equivalent to a
detected fault. However, in practice the detection of a fault is not enough. The
module should also identify the hardware or software component which caused
the fault. If a fault and its location is identified the repair module tries to re-
solve the fault. This could happen by a restart or reconfiguration of the affected
components.

There are many proposed and implemented approaches for fault detection
and repair in autonomous systems. The Livingstone architecture by Williams
and colleagues [2] was used on the space probe Deep Space One to detect fail-
ures in the probe’s hardware and to recover from them. The fault detection and
recovery is based on model-based reasoning. Model-based reasoning uses a logic-
based formulation of the system model and the observations. The advantage is
that well understood reasoning algorithms can be used. Model-based diagnosis
has also been successfully applied to fault detection in digital circuits, car elec-
tronics and software debugging of VHDL programs [3]. Verma and colleagues
[4] used particle filter techniques to estimate the state of the robot and its en-
vironment. These estimations together with a dynamic model of the robot were
used to detect faults. The advantage of this approach is that it accounts for
uncertainties of the robot and its environment as it derives the most probable
state. But so far it was only applied to fault detection in the robots hardware
and no repair actions were derived. Rule-based approaches were proposed by
Murphy and Hershberger [5] to detect failures in sensing and to recover from
them. Additional sensor information was used to generate and test hypotheses
to explain symptoms resulting from sensing failures. Roumeliotis et. al. [6] used
a bank of Kalman filters to track specific failure models and the nominal model.
The filter residuals were post-processed to produce a probabilistic interpretation
of the system’s operation. Such methods are popular for linear systems affected
by Gaussian noise.

Up to now solutions for fault detection and repair of robot control software
at runtime are rare. Most previous research has dealt either with hardware di-
agnosis or diagnosis of software as part of the software engineering cycle. In
[7] Melchior and Smart summarized ideas and requirements for robots that are
aware of failures at runtime. In this paper we present a solution for real-time
fault detection and repair of control software of autonomous robots. The fault
diagnosis follows the model-based diagnosis paradigm [8]. It is based on obser-
vations of the current behavior of the control system’s components, a model of
the desired behavior of the control system’s components and the dependencies
between them. A monitoring module constantly observes the behavior of the con-
trol software. If a deviation of the desired behavior is observed a diagnosis kernel
derives a diagnosis, i.e., a set of malfunctioning software components explaining
the deviation. Based on this diagnosis and a model of the software components
and their connections a repair module executes an appropriate repair action
to recover the system from the fault. The proposed diagnosis system has been
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implemented and tested on our RoboCup MSL robots within the robotic soc-
cer scenario. In the next section we describe the control software of our mobile
robots. In section 3 we present the diagnosis system in more detail. Section 4
reports the results of experiments we conducted for the diagnosis system on our
MSL robots. Finally, we draw some conclusions and give an outlook on future
research.

2 Robot Control Software

The control software of our robots comprises different separated modules, called
services. Each service runs as an independent process and implements a specific
task, e.g., image processing, world modeling, planning. The control software is
based on the MIRO framework [9]. MIRO is a CORBA-based software frame-
work for robotics applications and provides a wide range of mechanisms for
implementing services and for the communication between services. It is a very
flexible framework which can be easily adapted to different robot platforms and
applications [10].
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Fig. 1. Dependencies and data-flow within the robot control software

Figure 1 shows an overview of our robot control software. The software is or-
ganized in three levels with increasing abstraction. The Laser and CAN services
provide low-level connection to the hardware of the robot. The connections are
based on raw sensor data and low-level commands for actuators, e.g., laser scan-
ner and the hardware modules on the CAN-Bus. The planner is located on top of
the hierarchy and implements an abstract symbolic representation of the knowl-
edge of the robot and its decision making process. The remaining services form
the continuous level. Herein, all the computation of sensor inputs and the con-
trol of actuators on a continuous level are implemented, e.g., image processing,
sensor fusion, execution of actions.
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We use two different methods for the interactions and connections between
the services: (1) remote CORBA method calls and (2) an event channel. Remote
CORBA calls follow the client/server paradigm. One service, called the server,
implements a specific function and exports a corresponding interface, e.g., the
control interface for the omni-directional drive. The client, the service which uses
the exported function, remotely invokes a method call on the server. The return
value of the call may contain queried data. In Figure 1 remote CORBA calls are
shown as solid lines directed to the server. The data-flow between server and
client is shown as chain dotted lines. The Figure also shows the dependencies
between services. Remote CORBA calls are called strongly dependent because a
fault in the server directly affects the client.

The latter communication mechanism is the event channel. A server posts
data via an event. All clients which are subscribed to this specific event are
automatically informed if a new event is available. This connection type is shown
as dashed lines and the data-flow direction is always directed from the server to
the client. The event channel is called weakly dependent. The distinction between
strong and weak dependencies is later important for the diagnosis and repair
process.

The above described structure of the control software, the different types of
connections and the dependencies between the services are used to build a model
of the desired behavior of the control software. In the next section we describe
how we use this model together with various observations of the behavior of
services and connections to form a diagnosis system for the control software of
our robots.

3 Diagnosis System

3.1 Monitoring

The task of the monitoring module of the diagnosis system is to observe the ac-
tual behavior of the control system. For this purpose we introduce the concept of
observers. An observer monitors the behavior of a service or the communication
between services. The observer determines a misbehavior of the control system
if the observed behavior deviates from the specified behavior.

In the current implementation we use the following observers:

– Periodic event production: This observer checks whether a specific event e is
at least produced every n milliseconds. An example for this observer is the
event MotionDelta containing odometry data which is produced every 50 ms
by the Motion service.

– Conditional event production: This observer checks whether an event e1 is
produced within n milliseconds after an event e2 occurred. An example for
this observer is the event WorldState which is produced by the WorldModel
after an event ObjectMeasurement occurs.

– Periodic method calls: This observer checks whether a service calls a remote
method m at least every n milliseconds. An example for this observer is the
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RangeSensor interface of the Sonar service which is regularly called by the
BehaviorEngine.

– Spawn processes: This observer checks whether a service spawns at least n
threads. We know for instance if the Motion service works correctly it spawns
six threads.

There are several requirements for the monitoring module. First, if observers
are used there should be no or at least only a minimum necessity for changes in
the control system. Furthermore, the monitoring component should not reduce
the overall performance of the control system. Both requirements can be fulfilled
easily by using mechanisms provided by CORBA [11] and the Linux OS. The
first two observers are implemented using the CORBA event channel. The third
observer is implemented using the CORBA portable interceptor pattern. The
last observer is implemented using the information provided by the proc file-
system of the Linux OS. For all these observers no changes are necessary in the
control system. Furthermore, the computational power requirements for all the
observers are negligible.

3.2 Diagnosis

A fault is detected if a observer belonging to the monitoring module recognizes
a deviation between the actual and the specified behavior of the system. But
so far we do not know which misbehaving service causes this fault. We use the
model-based diagnosis (MDB) paradigm [8, 12] to locate the faulty service.

We will explain the principles of MDB with a simple example.

CAN

CAN

Sonar

Motion

Hardware

Sonar

Motion

Hardware MotionDelta−Events

Call RangeSensor_2

Call RangeSensor_2

MotionDelta−Events

Deadlock

CAN_1

CAN_2

CAN_2

CAN_1

Fig. 2. Diagnosis of a fault in the Can-Service. The upper figure shows the desired
behavior. The lower figure shows the behavior after a deadlock in the Can-Service.

Figure 2 shows an example for the diagnosis process in case of a malfunction-
ing CAN-Service. First, we build an abstract model of the correct behavior of
the CAN-, Sonar and Motion Service. Therefore, we introduce two predicates:
AB(x) becomes true if a service x is abnormal, meaning x is malfunctioning.
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ok(y) becomes true if a connection y, either a remote call or an event, shows a
correct behavior. The model for the correct behavior of the example could be
described in the following clauses:

1. ¬AB(CAN ) → ok(CAN 1 )
2. ¬AB(CAN ) → ok(CAN 2 )
3. ¬AB(Sonar ) ∧ ok(CAN 1 ) → ok(RangeSensor 2 )
4. ¬AB(Motion) ∧ ok(CAN 2 ) → ok(MotionDelta)

Lines 1 and 2 specify that if the CAN-Service works correctly also the con-
nections CAN 1 and CAN 2 work correctly. Line 3 specifies that if the Sonar
Service and its input connection CAN 1 work correctly also the connection
RangeSensor 2 has to show a correct behavior. Line 4 specifies similar facts for
the Motion Service.

If there is a deadlock in the CAN-Service, the Motion and Sonar services can
not provide new events or calls as they get no more data from CAN. This fact is
recognized by the corresponding observers and can be expressed by the clause:
¬ok(RangeSensor 2 ) ∧ ¬ok(MotionDelta). If we assume a correct behavior of
the system expressed by the clause ¬AB(CAN )∧¬AB(Sonar )∧¬AB(Motion)
we get a contradiction. This means we have detected a fault.

Finding the service which caused the fault is equivalent to finding the set of
predicates AB(x) with x ∈ {CAN ,Motion ,Sonar} that resolves the contradic-
tion. These sets are called diagnoses, Δ. We are interested in finding a set with
minimal cardinality, e.g., a single faulty service. These diagnoses are in general
sufficient as multiple faults are unlikely. In this example the set {AB(CAN )}
with only one element is able to resolve the contradiction. Therefore, the faulty
CAN-Service is located.

3.3 Repair

Once the diagnosis system has found one or more malfunctioning services respon-
sible for a detected fault it should be able to recover the control system from
this fault. Therefore, the repair module determines an appropriate repair action
based on the described diagnosis and the dependencies between the services.

The repair action comprises a stop and a restart of the malfunctioning ser-
vices. But we have to be careful, because restarting a specific service may also
cause a restart of other services depending the restarted service. Therefore, the
repair module takes the strong dependencies between services into account.

The appropriate repair action is derived in the following way: Put all members
of the diagnosis Δ in a set R. The members of this set R are scheduled for restart.
In the next step insert all services into R, which strongly depend on a member
of R. Repeat this step until no more services are added to R. R now contains all
services which have to be restarted. But first of all the scheduled services have
to be stopped in an ordered way. This means to first stop all services which no
other service strongly depend on. Afterwards, stop all services for which no more
services are running which depend on them. This process is necessary to avoid
additional crashes of services caused by a sudden stop of a service another service
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depends on. Hereafter, start all affected services in the reverse order. Services
which were restarted because of a strong dependency on the malfunctioning
services should be able to retain data which it had gained so far or they should
be able to recover such data after a restart. Otherwise the control system may
become inconsistent.

After this repair action took place, the robots control system is again in the
desired state.

4 Experiments

The proposed diagnosis system has been implemented and tested on the robots
of our RoboCup MSL team. The robot control system runs on an embedded
Pentium III PC with 850 MHz clock rate and 256 MB of RAM. The operating
system on the PC is an ordinary Linux system.

The diagnosis system itself is implemented as a separate process to minimize
the interference with the existing control system. The diagnosis system imple-
ments the four types of observers described in Section 3. The use of Corba and
OS services allows monitoring of the robot control system without any impact
to it.

The model of the robot control system (software components, dependencies,
observers) is specified in a XML file. Therefore, changes in the model or adap-
tation to other software systems are simple and straight forward. Table 1 shows
a section of the specification of the used model describing the behavior of the
Motion service.

Table 1. Model description for the motion service

<component id="MotionService">

<rule class="SPAWNS-PROCESS-RULE">

<property name="min-process-count">6</property>

</rule>

<rule class="DIRECT-DEPENDENCY-RULE">

<property name="component-id">CanService</property>

</rule>

<rule class="PERIODIC-EVENT-PRODUCTION-RULE">

<property name="max-sleep-time">150</property>

<property name="event-name">MotionDelta</property>

</rule>

</component>

The diagnosis system is divided into three modules: (1) a monitoring module,
(2) a diagnosis kernel and (3) a repair module. The monitoring module starts all
necessary observers according to the model description and regularly checks for
violations of the observers. If such a violation is detected the diagnosis kernel
is informed. The diagnosis kernel derives a diagnosis based on the model of
the control system and the violated observations. The derivation of a diagnosis
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is started after a certain amount of time, i.e. 5 s, within no more changes in
the states of the observers are detected. This is done for stability reasons as
it takes a certain amount of time for all observers to recognize an improper
behavior. The diagnosis will be communicated to the repair module. It executes
the appropriate repair action to recover the control system. During the repair
action no new diagnoses are derived. We do this for stability reasons as the repair
action temporally may violate additional observers. After the repair action is
completed the observers and the diagnosis kernel are started again.

For the evaluation of the proposed diagnosis system and its implementation
we did several experiments on our mobile robots. We introduced artificial faults
into the robot control system and analyzed if the diagnosis system detected and
located the fault and recovered the control system. We used two different fault
scenarios:

– Killing a Service: A certain software service is explicitly killed. This is equiv-
alent to a crash of a certain service.

– Deadlock a Service: A deadlock is introduced to a certain software service.
This is equivalent to a malfunctioning software service.

Restart BERestart MODiagnosis/Stop BE
Stop MO

Diagnosis/System Recovered

Event−Observer MO

AB(MO)

Process−Observer BE

Process−Observer MO

Deadlock in MO

0 105 15 20 25 30 t/s

Fig. 3. Timing diagram for diagnosis and repair of a deadlock in the motion service

Figure 3 shows the timing diagram for the diagnosis and repair of an intro-
duced deadlock in the motion service (MO). After introducing the deadlock in
MO the Periodic Event Observer for the event MotionDelta detects that no more
events are produced. After the waiting time the diagnosis kernel derived that MO
is malfunctioning, AB(MO). Instantly the repair process starts. The repair ac-
tion comprises a stop of the Behavior Engine (BE), a stop of MO, and a restart
of MO and BE. The restart of BE is necessary because BE strongly depends
on MO. Again after the waiting time the diagnosis kernel derives the diagno-
sis that all services work properly now. Please note that no other services were
affected by the repair process. The Figure also shows the fact that suspending
the diagnosis kernel during the repair is necessary as observers report additional
improper observations, e.g. Process Observer. The relatively long time for the
recovery can be explained by the fact that stopping and starting of services can
take a while because of the required starting, stopping and re-configuration of
hardware components. Furthermore, stopping a service may consists of various
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steps. First, we send the service a interrupt signal (SIGINT). This allows a ser-
vice to shutdown properly. If this does not stop the service within 5 seconds
we send the service a termination signal (SIGTERM). Finally, we send a killing
signal (SIGKILL) if after another 5 seconds still processes of the services run.
The time for computing the diagnosis is negligible because it is less than 10 ms.

Figure 4 shows a more complex scenario. Here we introduce a deadlock in the
CAN-Service. After introducing the deadlock, MO and the Sonar Service SO pro-
duce no more data because they get no more data from CAN. This fact is detected
by the appropriate observers. Using the model of the observations, the components
and its connections the diagnosis kernel recognizes the malfunctioning CAN. The
repair action is similar to the example above except that more services are in-
volved. After repair, the control system is again in the desired state.

We conducted also two experiments in which we killed a service. In the first ex-
periment we killed the Laser Service. The diagnosis system successfully detected
the fault and recovered the control system by restarting BE, Goal Locator and
Laser. The recovery took 68 s. In a second experiment we killed the World Model.
The diagnosis system successfully detected and repaired the fault. During this
experiment it was important that the whole process took only 20 s because the
system located the fault in the WM and no other service was affected.

We also tested the diagnosis system during games of a RoboCup MSL ex-
hibition at our university. During the games the diagnosis system performed
well. The image processing of one of our robots crashed twice during the games
because of problems with a new camera. But the diagnosis system successfully
detected, localized and repaired the fault at runtime.

The affect of the diagnosis system on the runtime performance of the robot
control system is negligible. The diagnosis system uses less than 1 % of the CPU
time and less than 5 % of the memory.

5 Conclusion and Future Work

In this paper we presented a diagnosis system capable of real-time fault detection,
localization and repair for the control software of autonomous mobile robots.
The proposed system follows the model-based diagnosis paradigm. It uses a
general abstract model of the correct behavior of the control system together
with observations of the actual behavior of the system to detect and localize
faults in the software. Furthermore, we presented a repair method which is able
to recover the software from a fault. Because of its general methods the proposed
system is also applicable to other software than robot control software.

The proposed diagnosis system has been successfully implemented and tested
on our RoboCup MSL robots. Experiments show that the system is able to detect
and localize faults like crashed or deadlocked services at runtime. Furthermore,
the system is able to recover the control software from such faults on the fly.
Moreover, the proposed diagnosis system can be deployed on a robot platform
with no changes in the existing control software and with nearly no effect on the
runtime performance of the control system.
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For future research it would be interesting to improve the used models by using
more knowledge about the robot and its environment. Therefore, diagnosis of
more complex systems and also the robots hardware would be possible. Another
interesting issue would be the automatic reconfiguration of the robots hardware
and software to recover from permanent faults, like broken hardware.
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Abstract. This paper explores how sensor and motion modeling can
be improved to better Markov localization by exploiting deviations from
expected sensor readings. Proprioception is achieved by monitoring tar-
get and actual motions of robot joints. This provides information about
whether or not an action was executed as desired, yielding a quality
measure of the current odometry. Odometry is usually extremely prone
to errors for legged robots, especially in dynamic environments where
collisions are often unavoidable, due to the many degrees of freedom of
the robot and the numerous possibilities of motion hindrance. A quality
measure helps differentiate the periods of unhindered motion from pe-
riods where robot motion was impaired for whatever reason. Negative
evidence is collected when a robot fails to detect a landmark that it ex-
pects to see. Therefore the gaze direction of the camera has to be modeled
accordingly. This enables the robot to localize where it could not when
only using landmarks. In the general localization task, the probability
distribution converges more quickly when negative information is taken
into account.

1 Introduction

Selflocalization, the estimation of position and orientation of a mobile robot,
remains an important and valuable task for mobile robotics. One of the most
successfully applied approaches is called Monte-Carlo-Localization. This method
is used in numerous robot navigation problem domains, such as office navigation
[1], museum tour guides [13], RoboCup [7], as well as outdoor or less structured
environments [9]. We propose 2 extensions affecting the sensor model as well as
the motion model.

1. We show how negative information can be incorporated into Monte Carlo
localization. The sensor model is extended by modeling the probability of
non-detection events.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 24–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2. The motion model is improved through careful modeling of proprioceptive
information. The resulting model is incorporated into the action update of
the particle filter.

The adjustments and changes presented improve the general ability to localize
and also allow the robot to localize in areas where it was previously unable. They
enable the robot to quickly recover its belief after collision events and to adjust
quickly to large displacements (kidnapped robot).

Negative information denotes the ascertained absence of expected sensor read-
ings. This is incorporated into the current belief much like an additional sensor.
Proprioception is based on the comparison of actual motion to intended motion.
This information is used to enhance the influence of action commands onto the
belief. The extensions each prove to be a useful addition to the particle filter used,
but are not particle filter specific approaches and can be used in other Bayes
Filters. The positive impact on localization is shown in real world experiments
using the Sony Aibo ERS-7 robot.

2 Monte Carlo Localization

The Monte Carlo Localization method is a probabilistic method, utilizing Bayes
law and the Markov assumption. The robot maintains a set of samples, called
particles. The particles approximate the belief of the robot’s position, a prob-
ability distribution over the possible positions of the robot. The current belief
of the robot’s position is modeled as particle density, allowing for multi-modal
probability distributions and beliefs. Each particle represents a hypothetical po-
sition of the robot. Belief Bel(st), the localization estimate at time t, to be at
position st is determined by all previous robot actions ut and observations zt.
Using Bayes law and the Markov assumption, Bel(st) can be written as a func-
tion that only depends on the previous belief Bel(st−1), the last robot action
ut−1, and the current observation zt:

Bel−(st) ←−
∫

p(st|st−1, ut−1)︸ ︷︷ ︸
motion model

Bel(st−1)dst−1 (1)

Bel(st) ←− η p(zt|st)︸ ︷︷ ︸
sensor model

Bel−(st) (2)

with normalizing constant η. Equation 1 shows the a priori belief Bel−(st) which
takes into account the previous belief and propagates it using the motion model
of the robot. It is the belief prior to the measurement. The measurement is then
incorporated into the belief as described in (2) using the sensor model (‘sen-
sor updating’). In Markov localization, given an initial belief Bel(s0) at t = t0,
the robot updates its belief using odometry and then incorporates new sensor
information. Each time new information arrives the robot updates its particle
distribution using the previous motion command, the resulting distribution is



26 J. Hoffmann et al.

updated using the gathered sensor information. This 2 step operation requires
2 models. The motion model p(st|st−1, ut−1) tries to model the effect of mo-
tion commands on the hypothetical positions. The sensor model incorporates
environment and sensor information regarding this environment into the cur-
rent belief. The particle filter employed for our work is based on the method
described in [10]. Here particles consist of a robot pose and a probability. The
robot pose (x, y, θ) represents the position and orientation of the robot (x,y co-
ordinates on the field in mm and orientation in radians). The likelihood p is a
measure of the plausibility of the hypothesis being at the specified robot pose.
The approach first moves all particles according to the motion model of the ac-
tion chosen. Afterwards the probabilities of the particles are adjusted using the
sensory input and the sensor model. In a third step, called resampling particles
are moved, deleted from the particle set or injected from observation, based on
their probability.

3 Proprioceptive Motion Modeling

If obstacle avoidance fails robots are often unable to detect collisions since many
designs, like the robot used in this work, lack touch sensors or bumpers. Apart
from the current action failing, collisions (and subsequently being stuck) have
severe impact on the robot’s localization if odometry is used to any degree in
the localization process. For these approaches to be robust against collisions,
they tend to not trust odometry much. This paper is based on work dealing
with collisions detection for a Sony Aibo using the walking engine and software
framework described in [3]. The approach uses the servo motor’s direction sensors
for the task of estimating the quality of the odometry data gathered by the
walking engine. In analogy to biology we call it proprioception because intrinsic
data of the leg sensors is used.

3.1 Motion Model

The motion model consists of consecutive acquired odometry data incorporated
into the Belief, as well as a random error Δerror, which is related to the distance
traveled and the angle rotated. Every particle is updated using the odometry
offset accumulated since the last update.

posenew = poseold + Δodometry + Δerror (3)

Where Δerror is defined as

Δerror =

⎛
⎝ 0.1d× random(−1 . . .1)

0.02d× random(−1 . . . 1)
(0.002d + 0.2α)× random(−1 . . . 1)

⎞
⎠ (4)

3.2 Collision Detection

The Aibo is not equipped with sensors to directly perceive the contact with
obstacles. We have shown ways of detecting collisions using the sensor readings
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Fig. 1. Sensor and actuator data (shoulder joint FL1) for a freely walking robot. The
corresponding difference function shows discrepancies between actuator and sensor
data, caused by walking motions (peaks in the curve).

from the servo motors of the robot’s legs in [3]. The comparison of motor com-
mands and actual movement (as sensed by the servo’s position sensor) can be
used to detect collisions (see fig.1). This comparison has to compensate for the
phase shift between the two signals and has to cope with arbitrary movements
and accelerations produced by the behavioral layers of the robot. The method
provides a virtual collision sensor that can be used to improve the motion
model.

3.3 Extended Motion Model

The extended motion model accounts for the supplementary information pro-
vided by the collision detection module, by changing Δerror as well as affecting
the accumulated odometry update data in a random way. The binary decision
of the collision sensor has a static impact on the motion noise. This means that
Δerror is no longer dependent on the distance traveled and the angle rotated,
but rather is a uniform noise, within an interval expected to be a possible out-
come of collisions. But also odometry data can not be fully relied upon, which
is accounted for by randomly updating particles through the gathered odometry
information, with the assumption that the robot most probably ends up some-
where between the requested destination and the starting point. The noise tries
to account for the severe and unforeseeable impact of the collision. If collisions
are detected, every particle is updated by:

posenew = poseold + random(0...1) ·Δodometry + Δerror

Where Δerror is

Δerror =

⎛
⎝ 40× random(−1 . . . 1)

40× random(−1 . . . 1)
0.5× random(−1 . . . 1)

⎞
⎠ (5)

Otherwise, when no collision was detected, the motion model is not extended
and the update is performed as usual(3). The effect of the changes are illustrated
in fig.2 and 3.
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Fig. 2. Collision Experiment: A robot starts walking from the center circle in the
direction of the goal and turns left before reaching the penalty area. The distributions
entropy with (�) and without the extended motion model (top) and the corresponding
collision ”sensor” (bottom, values greater than 4 are interpreted as a collision).

Entropy. We use the expected entropy H as an information theoretical quality
measure of the position estimate Bel(st) [2]:

Hp(st) = −
∑
st

Bel(st) log(Bel(st)) (6)

The sum runs over all possible states. The entropy of the particle distribution
becomes zero if the robot is perfectly localized in one position. Maximal values
of H mean that Bel(st) is uniformly distributed.

Fig. 3 illustrates the effect of the described motion modeling on the particle
distribution. A robot is walking from the center circle in the direction of the goal
when a collision occurs. It then continues towards the goal and turns left before
reaching the penalty area. When the collision is modeled, the uncertainty in the
belief is clearly visible and can be used to trigger appropriate robot behavior.

4 Negative Evidence Modeling

The used localization algorithm uses field lines and landmarks to perform
the sensor updating of the current belief. We extend this approach through
the use of negative information. Two main reasons make it hard to actually
implement a system that integrates negative evidence: the target (landmark)
may not be there or the sensor may simply be unable to detect the target
(due to occlusions, sensor imperfections, imperfect image processing, etc.).
Differentiating the two cases requires careful sensor modeling. We address this
problem by considering the field of view of the robot and by using obstacle
detection to estimate occlusions. Negative information has been used in object
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Fig. 3. Belief distribution without (2) and with (3) odometry quality used after a
collision (marked by the star on the robot’s path)

tracking (see [12] for an introduction and [5] for an overview). Not seeing the
ball on the RoboCup field causes Monte Carlo particles to be deleted in that
particular region [6]; occlusions are considered by explicitly modeling other
robots’ positions.

4.1 Sensor Model

Whenever the robot senses a landmark, the localization estimate is updated us-
ing the sensor model. This sensor model is acquired before the actual run. It
describes the probability of the measurement z given a state s (position, orien-
tation, etc.) of the robot. If no landmark is detected, the state estimation is up-
dated using (only) the motion model of the robot. Sensory input in our case is
measured bearings to landmark. The approach has been extended by account-
ing for field lines and edges [11] which require a slightly different model and
method. The probability of the particles is derived from the measured bearings
to landmarks.

4.2 Negative Information

Negative information describes the absence of a sensor reading in a situation
where a sensor reading is expected given the current position estimate. To in-
tegrate negative information, imagine a binary sensor being added that fires
whenever the primary sensor does not detect a particular landmark l. Its prob-
ability of it firing is given by:

p(z�
l,t|st) (7)

This sensor model can be used to update the robot’s belief whenever it fails to
detect a landmark, i.e. when negative evidence is acquired. This rather coarse
way of incorporating negative information can be refined by taking into account
the range rt of the robot’s sensors and possible occlusions ot of landmarks. The
sensing range is the physical volume that the sensor is monitoring. In case of a
stationary robot, rt = r0 is constant, for a mobile robot with a pan-tilt camera
it is not. By ot we denote a means of detecting the occurrence of occlusions. In
practice, this can be calculated from a map of the environment, directly sensed
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by a sensor such as a laser range finder, or derived from a model of moving
objects in the environment. Combining the two yields the probability of not
sensing an expected landmark l is:

p(z�
t,l|st, rt, ot) (8)

The absence of the detection of a landmark can be used in the sensor update
step of the Iterative Bayesian Updating (see Algorithm 1).

4.3 Extended Sensor Model

Field of View. Here we show the camera of the Sony Aibo ERS-7. The ERS-7
is a legged robot with a camera mounted in its head. The camera has a horizon-
tal opening angle of 55o and the robot’s head has 3 degrees of freedom (neck tilt,
head pan, head tilt). We abbreviate gaze direction by ϕ = (ϕtilt1, ϕpan, ϕtilt2).
The sensing range is calculated by considering the field of view (FOV) of the
robot:

Occlusion. In order to account for occlusions, we opted for an approach that
has been used successful for detecting obstacles, referred to as ‘visual sonar’
[4, 8]: The camera image is scanned in vertical scan lines and unoccupied space
in the plane of the field is detected, since it can only be of green or white color
(field lines). Scanning for these colors tells the robot where obstacles are and
where there is free space, which in turn can be used to determine whether the
visibility of the landmark was impaired, i.e. if it was occluded by another robot
or some other obstacle. More specifically, if the expected landmark lies in an area
where the robot has detected free space, the likelihood of the corresponding pose
estimate is decreased. If it lies outside of the detected free space, no information
can be inferred. Taking FOV and occlusion into account, the sensor model for
not perceiving an expected landmark is given by:

p(z�
t |st, zt,obstacle) (9)

Where st = (xt, yt, ϑt, ϕt) describes the robot state that consists of the robot pose
(position xt, yt, and orientation ϑt) and the current gaze direction ϕt. These are
used to calculate the field of view of the camera. The sensor updating part of
the localization code was adjusted to account for FOV and occlusion as de-
scribed above. This means that sensor updating is triggered whenever there is
a new camera image regardless of whether or not there was a percept. Before
re-sampling, the weight of an individual particle is calculated as follows: Of all
landmarks L, a subset of landmarks L′ is detected, the subset L� is expected but
not detected, and lastly the subset L� is not detected, but was also not expected,
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Algorithm 1. Iterative Bayesian updating incorporating negative evidence
1: Bel−(st) ←− ∫

p(st|st−1, ut−1)Bel(st−1)dst−1

2: if (landmark l was detected) then
3: Bel(st) ←− ηp(zt|st)Bel−(st)
4: else
5: Bel(st) ←− ηp(z�

t,l|st, rt, ot)Bel−(st)
6: end if

L = L′ ∪ L� ∪ L� and L� ∩ L′ = ∅. The probability of a particle pi is calculated
by multiplying all the gathered evidences:

pi =
∏
l∈L′

sl(αmeasd, αexpd)

︸ ︷︷ ︸
detected

·
∏

l∈L�

s�
l (ϕ, αexpd)

︸ ︷︷ ︸
expected and not detected

(10)

The function sl is an approximation of the sensor model and returns the like-
lihood of sensing the landmark l at angle αmeasd for a particle pi that expects
this landmark to be at αexpd. Function s�

l models the probability of not sensing
the expected landmark l� given the current sensing range as determined by ϕ,
the robot pose associated with pi, and the obstacle percept zobstacle.

4.4 Experimental Results

Localization Experiment. The following experiment is a localization task on the
real robot. The robot is placed on the field in front of a landmark facing outwards.
The robot performs a scanning motion with its head (pan range [−45o, 45o]) but
does not move otherwise. From where it is standing, it can only see one land-
mark. A panorama composed of actual robot camera images is shown in fig.
4. The a priori belief is assumed uniform. This position was chosen because
it is a particulary difficult spot for the robot to localize given the limited sen-
sor information. The bearing αl to a landmark is used for localization because
the distance measurement is prone to errors. Using just the bearing, only the
orientation of the robot can be inferred.

In the following paragraphs, the basic localization excluding the use of neg-
ative information and localization incorporating negative information are com-
pared. We will first give a more qualitative analysis of the particle distribution
and then show how the entropy of the distribution decreases when negative
information is considered.

Particle Distribution. The basic experiment was conducted using 100 particles
for Monte Carlo localization. It was repeated on a log file (containing camera
images and robot joint angles) using an increased particle count of 2000. This
was done to reveal artifacts due to the small number of particles used in the
standard implementation.
Not using negative information. Without using negative information, the robot
is unable to localize (fig. 5). Only the orientation of the particles is adjusted
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Fig. 4. Top: A panoramic view generated from actual camera images, single camera
image highlighted. The robot can only see one landmark. Below: Photo of the experi-
mental setup in our lab.

according to the sensor readings. The apparent clustering in fig. 5 is not stable
and even after considerable time, the particles do not converge. The distribution
for the larger sample set is uniform (w.r.t. position). Note that the distribution
is not circular because the distance to the landmark was not used. Instead,
only the bearing to the landmark was used. This results in a radial distribution
resembling magnetic field lines.
Incorporating negative information. The negative information gained in this
experiment is only seeing one landmark within the pan range. Incorporating
this information, the robot is able to localize quickly. On average, the robot is
reasonably well localized after 5-10 secs with a pose error of less than Δp =
(35 cm, 35 cm, 20o).

Entropy. We now consider the entropy of the particle distribution as defined
earlier. Fig. 6 shows the progression of the distribution’s entropy over time for
the above localization experiment calculated from the 100 particle distribution.

Not using negative information. The experiments starts with a uniform particle
distribution which equals to maximum entropy. When the landmark comes into
view, a decrease in entropy is observed. This information gain is caused by the
robot now knowing its relative orientation w.r.t. the landmark. Since there are
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Fig. 5. Particle distribution not using negative information, initial uniform distribution
and distribution after 10s. Solid arrows indicate Monte Carlo particles (100). The ex-
periment was repeated using 2000 particles (shaded lines) to better represent the actual
probability distribution. The actual robot position is indicated by the white symbol,
the calculated robot pose by the solid symbol. Not using negative information and
only using the bearing to the landmark the robot is unable to localize. Some clusters of
particles form but they do not converge. As one would expect, the position distribution
is almost uniform but the relative angle is quite distinct. Right. Particle distribution
when negative information is incorporated, enabling the robot to localize quickly.

Fig. 6. Expected entropy of the belief in the localization task with (�) and without
(thin line) using negative information. 1) At first the robot does not see the landmark.
As soon as the landmark comes into the robot’s view (indicated by the dashed vertical
line), the entropy drops. Using negative information, the quality of the localization is
greatly improved and the entropy continues to decrease over time. Note that the entropy
decreases even before the landmark has been seen for the first time. 2) Additionally
using field lines for localization enables the robot to localize. Incorporating negative
information, the rate of convergence is higher and the entropy is significantly lower
than without using it.
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no constraints on the robot’s position, the entropy remains at a relatively high
level. Note that even though there is a drop in entropy, the localization estimate
itself is still highly uncertain.
Incorporating negative information. When using negative information, the en-
tropy decreases even before the first sensor reading. The information gain is
much smaller than that caused by perceiving a landmark, but nevertheless no-
ticeable. As soon as there is a percept, the negative information in combination
with the knowledge of the robot’s orientation results in a quick convergence of
the particle distribution towards the actual robot pose. Remember that without
using negative information no localization was observed.
Using field lines for localization. In our last experiment, field lines were used for
localization in addition to landmarks. This enables the robot to localize quickly
at the actual robot pose even when using the basic localization. Adding negative
information, however, greatly increases the rate of convergence and the overall
level of entropy is reduced even further. It is noteworthy that the decrease of
entropy when incorporating negative information is not obscured by the usage
of lines for localization (which offer a much higher information content than
negative information).

5 Conclusion

We have demonstrated the power of integrating negative information as well as
information about collisions into Markov localization.

We have shown how an odometry-based motion model can be improved using
the knowledge about collisions with obstacles. This knowledge has been obtained
by comparing the motor commands and the sensor readings of the leg joints. In
the case of a collision the influence of the odometry on the motion model was
reduced and extra noise was added that models the impact of an obstacle.

Incorporating negative information into the sensor model makes localization
more stable even in areas where landmarks are rarely visible. The usage of neg-
ative information does, however, require very careful modeling. To avoid false
negatives, the model needs to take into account the sensor’s sensing range and
possible occlusions of landmarks. We have presented how such modeling can
be achieved for a Sony Aibo robot in the RoboCup environment. In real robot
experiments, we have shown that using negative information, a robot is able to
localize in positions where it otherwise would not. The entropy of the distribution
is greatly reduced when negative information is incorporated and the rate of con-
vergence towards the estimated position is increased. Future work will focus on
how negative information can be used for other types of landmarks (e.g. field
lines) and other sensors. Performance evaluation will be continued in more com-
plex situations and the possibilities of reducing the number of particles necessary
for robust Monte Carlo localization will be investigated.
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Abstract. Due to limited availability of humanoid robots and the high
costs involved, multi-agent experiments with humanoid robots have been
at least difficult so far. With the introduction of RoboSapien, a low-cost
humanoid robot developed for the toy market, this situation has changed.

This paper describes how we augmented multiple RoboSapiens to ob-
tain a team of soccer playing humanoid robots. We added a Pocket PC
and a color camera to the robot base to make it autonomous.

For a team of these augmented RoboSapiens, we implemented com-
puter vision and self localization. We designed basic soccer skills, such as
approaching the ball, dribbling the ball towards the goal, and defending
the goal. We set up a soccer field and played test games in our lab to
evaluate the system.

The paper reports experiences made during these soccer matches as
well as results on a scoring task. We also tested this system at RoboCup
German Open 2005, where we played soccer matches against the Brain-
stormers Osnabrück, who also used augmented RoboSapiens.

1 Introduction

To work towards the long-term goal of winning against the FIFA world cham-
pion, the RoboCup Federation added in 2002 a league for humanoid robots to
their annual soccer championships. The RoboCup Humanoid League competi-
tion rules [14] require the participating robots to have a human-like body plan.
They must consist of a trunk, two legs, two arms, and a head. The only allowed
mode of locomotion is bipedal walking. The robots must be fully autonomous.
No external power, computing power, or remote control is allowed.

Because the humanoid robots have not been ready for playing soccer games
so far, the robots had to demonstrate their capabilities by solving a number
of subtasks. In the Humanoid Walk they had to walk towards a pole, to turn
around it, and to come back to the start. Scoring was based on walking speed and
stability. In the Penalty Kick competition two robots faced each other. While
one robot tried to score a goal, the other defended. In the Freestyle competition,
the robots had five minutes to show a performance to a jury. Each year, there
is also a new technical challenge. In 2004, it consisted of an obstacle walk, a
passing task, and balancing across a sloped ramp.

The teams which participated in the Humanoid League chose very differ-
ent robot platforms. Most teams constructed their own robots (e.g. Robo-
Erectus [30]). A few teams used expensive humanoid robots developed by the

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 36–48, 2006.
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Japanese industry, e.g. Hoap-2 [16] or Honda Asimo [8]. Some teams purchased
servo-driven commercial robots or robot kits, e.g. from iXs [10] or Vstone [26].

The performance of the robots in the Humanoid League improved over the
three competitions. In 2004, Team Osaka won the competition with the robot
VisiON [21]. This robot used an omnidirectional camera as head. As a goalie,
it could defend against a shot by jumping to the ground. Afterwards, VisiON
got up without help. Another highlight of the 2004 competition was the passing
demonstration between two Hoap-2 robots of team Senchans A [16].

Despite these impressive achievements, the overall performance of the Robo-
Cup humanoids is still far from perfect. Basic soccer skills, such as robust dy-
namic walking and kicking without loosing balance are not possessed by all
robots. Moreover, due to the high price involved, it exceeds the resources of
most research groups to buy or construct more than one robot. To play soccer,
however, a group needs a number of players in order to field a team.

Fortunately, RoboSapien, a low cost commercial humanoid robot, hit the mar-
ket in 2004. In its original version, it is controlled by a human operator. We found
a way to make it autonomous by augmenting it with a Pocket PC and a camera.
Due to the low cost of this solution, it is not hard to obtain multiple augmented
RoboSapiens. Since basic problems, such as dynamic walking, are solved when
using this robot base, one can focus on higher-level issues, such as visual per-
ception, self localization, behavior control, and communication.

The paper is organized as follows. The next section reviews some of the re-
lated work. Section 3 presents the original RoboSapien. In Section 4, we describe
how we augmented it with a Pocket PC and a camera. Section 5 covers visual
perception and self localization on the soccer field. Behavior control for making
it play soccer is detailed in Section 6. In Section 7, we describe some infrastruc-
ture components needed to support a team of soccer playing robots. Section 8
reports experiences made during test games and presents experimental results
on a scoring test. The paper concludes with a discussion of the feasibility of
using RoboSapien for soccer competitions.

2 Related Work

Humanoid robots are not only used to play soccer. The human-like body has
advantages when the robots are used in environments designed for humans. It
facilitates multimodal communication with humans and imitation learning. Con-
sequently, a number of research groups, especially in Japan, are constructing
humanoid robots. A list of projects is maintained by Willis [28].

Among the most advanced humanoid robots developed so far, is the 58cm tall
Sony Qrio [19]. It contains three CPUs and has 38 degrees of freedom (DOF).
Qrio is able to walk and dance. Research on map building and navigation, as
well as on human-robot interaction is carried out inside Sony. Currently, it is
unclear if and when this robot will be available to a larger research community,
but the costs of Qrio have been compared to the price of a luxury car.
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Unlike Qrio, Hoap-2 (25 DOF, 50cm tall), developed by Fujitsu [7], has been
sold to some labs for about USD 50,000. A taller humanoid, Asimo, has been
developed by Honda [8]. Its most recent research version has 34 DOFs and a
height of 130cm. Approximately the same size of Asimo has a trumpet playing
humanoid robot which has been announced recently by Toyota [24].

While the humanoid robots developed by large companies are impressive, they
are not available to researchers outside the industry labs or are too expensive for
academic research. Some universities built their own robots, but due to limited
resources, usually only one prototype has been constructed. Hence, multi-robot
experiments with humanoid robots are currently not feasible in academic envi-
ronments and are likely to be at least difficult in the near future.

Faced with similar problems, researchers working with wheeled robots came
up with creative low-cost solutions. One example of a low-cost robot kit is the
Lego Mindstorms system. It has been used e.g. for robotic soccer [13], educa-
tion [29], and communication with people [11]. Other low-cost robotic platforms
include the Tetrixx kit [5], the Trikebot [9], and the VolksBot [1].

To avoid the development of custom processing boards, some researchers used
off-the-shelf PDAs to control their robots [27, 15]. One of the best know PDA
projects is the Palm Pilot Robot Kit [4, 17], developed at CMU. A PDA has also
been used to control the Robota and DB humanoid robots [3].

While RoboSapien is certainly the most frequently sold humanoid robot today,
it is not the only option for researchers. Kondo developed the servo-driven KHR-
1 robot kit [12]. We augmented it with a Pocket PC and a camera as well and
use it for gait optimization and to play soccer. Compared to RoboSapien, it is
more expensive (≈ EUR 1,000), less robust, and less stable. On the other hand,
it has more degrees of freedom (17) than RoboSapien and can move in a more
flexible way.

Similar servo-driven robots are offered from Vstone (Robovie-M/MS [26]),
Tribotix (Cycloid [25]), and Speecys [20]. Vstone also offers the VisiON robot
(Robovie-V) for a price of approximately EUR 7,200. A question for further
research would be to find out if the higher number of DOFs of these robots
translates to better performance in soccer games. One possible danger could be
that walking stability is compromised in these more complex designs.

3 Original RoboSapien

RoboSapien, shown in Fig. 1, is a low-cost humanoid robot, which has been
designed by Mark W. Tilden [23] and is marketed with great success by WowWee
for the toy market. It measures approximately 34cm in height and its weight is
about 2.1kg, including four mono (D) type batteries. These batteries are located
in its feet. The low center of mass makes RoboSapien very stable.

The robot is driven by seven small DC motors. One motor per leg moves two
joints in the hip and the knee in the sagittal plane, keeping the foot orthogonal
to the trunk. A trunk motor tilts the upper body laterally. One motor in each
shoulder raises and lowers the arm and one motor in each elbow twists the lower
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Fig. 1. Robo Sapien. Left: frontal view, seven motors move the robot. Right: side view.

Fig. 2. Dynamic walking gait of RoboSapien. (1) The trunk motor tilts the upper body
to the right. The center of mass shifts over the right foot. The left foot lifts from the
ground. (2) The leg motors move into opposite directions, resulting in a forward motion
of the robot. As the upper body swings back, the left foot regains contact with the
ground. (3,4) Symmetrical to (1,2).

arm and opens its grippers. RoboSapien has two gripper hands consisting of
three fingers each.

Unlike more complex bipedal robots, RoboSapien uses only three motors for
locomotion. This is possible because its gait patterns utilize the dynamics of
the robot. For dynamic walking, RoboSapien swings its upper body laterally to
achieve a periodic displacement of the center of mass projection from one foot
to the other. The resulting walking pattern is illustrated in Fig. 2. The robot
moves approximately 4cm per step on a laminate floor. With a step frequency
of about 2Hz, this corresponds to a speed of 8cm/s. In the second gait mode
the step frequency is increased to about 2.7Hz, but the step length decreases to
approximately 2cm. This results in a speed of about 5.2cm/s. RoboSapien walks
backwards in a similar way. It can also turn on the spot.

The original RoboSapien is controlled by a human operator who pushes but-
tons on a remote control. 67 motion commands can be issued to the robot.
The motion primitives can be combined, e.g. to have the robot walk a curve.
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Fig. 3. The augmented RoboSapien competed as NimbRo RS at RoboCup 2004: Hu-
manoid Walk and Balancing Challenge

Preprogrammed motion chains can be triggered by touch sensors, located in its
feet and at its finger tips, as well as by a sonic sensor which reacts to clapping
sounds.

4 Augmented RoboSapien

In order to make RoboSapien autonomous, we augmented it with computing
power and a camera [2]. As NimbRo RS, this augmented RoboSapien took part
in some of the RoboCup 2004 Humanoid League competitions (see Fig. 3). It
performed the Humanoid Walk and was one of only two robots which mastered
the Balancing Challenge, resulting in an overall third place in the Technical
Challenges. In order to play soccer, we augmented four more RoboSapiens with
an updated Pocket PC and a wide-angle camera as follows (conf. to Fig. 6).

For the Pocket PC, we selected the FSC Pocket Loox 720. It has a weight
of only 170g, including the battery, and features a 520MHz XScale processor
PXA-272, 128MB RAM, 64MB flash memory, a touch-sensitive display with
VGA resolution, Bluetooth, wireless LAN, an infrared (IR) interface, and an
integrated 1.3 MPixel camera.

In order to place this Pocket PC between the shoulders of the robot, we
removed RoboSapien’s head (keeping the IR receiver) and cut a rectangular
opening into its chest. The Pocket PC can easily be removed to charge the battery
and to download programs. Software for it can be conveniently developed on a
PC using e.g. Microsoft (Embedded) Visual Studio.

The Pocket PC needs to interface the robot base. We implemented an unidi-
rectional IR interface via a learning remote program (UltraMote) and Windows
messages. The Pocket PC can send multiple motion commands per second to
the robot base.

Since in RoboCupSoccer key objects, such as the ball and the goals, are
color-coded, visual perception provides a rich source of information about the
robot’s environment. For this reason, we added a miniature color camera to the
Pocket PC. From the few available models, we selected the Lifeview FlyCam-CF
1.3M. An SDK is provided by Lifeview that allows user programs to capture un-
compressed live images in the RGB color space. The camera supports resolutions
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(a) (b)

Fig. 4. (a) Image captured from RoboSapien’s perspective while it was walking. De-
tected objects: goal (blue horizontal rectangle), ball (orange circle), and field markers
(magenta vertical rectangles); (b) Three two-dimenensional projections of the grid rep-
resenting the probability distribution of robot poses (x, y, θ). The green circle is drawn
at the estimated robot location (x, y). The black line represents its estimated orienta-
tion θ. The detected objects are drawn relative to the robot.

from 160×120 up to 1280×1024 pixels. At 320×240 pixels it delivers 5fps. We
replaced the original camera lens with a ultra-wide angle lens. The field of view
of this camera is now about 150◦ horizontally × 112◦ vertically. This allows the
augmented RoboSapien to see at the same time its own feet and objects above
the horizon (conf. to Fig. 4(a)).

The described modifications make the augmented RoboSapien fully autono-
mous. The Pocket PC runs computer vision, behavior control, and wireless com-
munication. The total costs for the parts (robot base, Pocket PC, camera, lens,
UltraMote) are currently about 700 Euros + tax per robot.

5 Computer Vision and Self Localization

The images captured by the CF camera are the only source of information about
the state of the world that our robots use. In order to control their behavior,
this data must be analyzed.

Our computer vision software converts the captured RGB images into the
YUV color space to decrease the influence of different lighting conditions. The
colors of pixels are classified with the pie-slice method [22]. In a multistage
process insignificant colored pixels are discarded and the colored objects ball,
goals, and field markers are detected. Their coordinates are estimated in an
egocentric frame (distance to the robot and angle to its orientation). These
estimates are based on image positions and object sizes. The robot-centered
coordinates suffice for many relative behaviors, like positioning behind the ball
while facing the goal, and dribbling the ball.
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To implement global team behaviors, such as kick-off, we need the robot
coordinates in an allocentric frame (position on the field and orientation). We
estimate these using a probabilistic Markov localization method that integrates
egocentric observations and motion commands over time. As proposed by Fox,
Burgard, and Thrun [6] this method uses a three-dimensional grid (x, y, θ), shown
in Figure 4(b).

We use the localization to compute relative coordinates for the goals if they
are currently not visible in the image. Robot localization is also needed for the
fusion of local robot views to a global team view. We integrate ball observations
from multiple robots using a particle filter to obtain a better estimate of the ball
position. The fused ball position is used by the robots that do not see the ball
themselves. It is also the basis for the assignment of roles to players.

6 Behavior Control

Since we cannot change the gaits of RoboSapien, behavior control for it needs
to focus on higher-level issues, like ball handling, positioning on the field, and
team play.

To simplify the behavior control interface to the robot base, we implemented
a set of parameterized motion functions, like walking straight for a distance or
turning for a certain angle. The motion functions initiate the movement and
wait according to the desired distance or the desired turning angle.

Another possibility is to initiate a movement and to keep moving until a
desired state change is reported by our computer vision software. This feedback-
control is more robust than feed-forward motion macros, but it relies on the
visibility of objects.

We try to move the robots in a way that the key objects (ball, goals, and
markers) are in the robot’s field of view, but this is not always possible. For
example, if the robot wants to move around the ball, the robot has to pass the
ball first. The robot can only turn towards the ball again when the ball is lying
behind the robot, outside its field-of-view. Another example is the situation
where the robot faces the goal and wants to move laterally in order to align
itself with the ball and the goal. In this case, the robot has to turn (potentially
loosing ball sight), to walk towards the goal-ball line, and to turn back. For such
cases, we implemented motion macros that chain up to four motion commands.
They are triggered when the ball is leaving the robot’s field of view. The robot
executes the macros and regains ball sight at the end of a macro.

The rate of behavior decisions is limited by the frame rate of the camera and
the rate at which RoboSapien accepts new motion commands. Currently, the
entire cycle (image capture, computer vision, self localization, behavior control,
and motion command) is executed at about 4Hz. This is more than sufficient,
compared to the speed of the robots and the ball.

Using the described combination of feed-forward and feedback control, we
implemented a number of basic soccer skills. If the robots do not see the ball,
they wander on the field to search for it. They can approach the ball, such that
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they face the goal. They can dribble it towards the goal. If the ball is between a
robot and our own goal the robot can move around the ball. We also implemented
some defensive behaviors for the goal keeper.

On an external PC, we implemented team behaviors, such as kick-off and
normal play. These can assign roles like primary attacker and secondary attacker
to the robots. They also can send the robots to an arbitrary position on the field.

7 Infrastructure

In addition to the robots themselves, some infrastructure components are needed
to support a team of soccer playing robots.

The most obvious of these are the ball and the field. Our robots play with
the small orange plastic ball used in the RoboCup Humanoid League. It has a
diameter of 8.4cm and a weight of 26g.

The field size of 3.2m×2.6m also complies to the most recent Humanoid
League rules proposal [14]. As playing surface, we use green carpet. The field is
marked with 4.8cm wide white lines, as sketched in Fig. 5. In addition to the
outer field border, we mark a line separating the two field halves, a center circle
of 90cm diameter, and goal areas of size 120cm×40cm. The goals are 80cm wide,
30cm deep, and 30cm high. They are colored in sky-blue and yellow.

We added markers around the field to aid robot localization. The markers are
placed at a 50cm distance to the field line. Our first attempt was to use four
poles, borrowed from the Aibo-League, placed at the long side of the field, 1m
from the half line. It turned out that the 10cm×10cm color patches of these
poles were hard to see from a larger distance. For this reason, we switched to six
rectangular markers, with color patches of size 29,7cm×21cm (A4 paper). Two
of these patches are placed on top of each other. One is always magenta. The
other is white for markers placed in the middle of the long field side. It is yellow
or sky-blue for markers placed at the corners. Markers on the left side of the
field (when facing the yellow goal) have magenta as upper color. For the right
field side, magenta is below the other color.

The Pocket PCs used in the augmented RoboSapiens are equipped with wire-
less network adapters. We use the wireless UDP communication to transmit
debug information to an external computer where it is logged and visualized.
This computer is also used to fuse local views to a team view and executes team
behaviors.

In order to be able to design behaviors without access to the real hardware,
we implemented a physics-based simulation for two teams of RoboSapiens. This
simulation is based on the Open Dynamics Engine [18].

8 Experimental Results

In addition to the computer vision, self localization, and behavior control compo-
nents described above, an alternative set of these components has been developed
in a lab course by a group of six students.
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Both systems are able to play soccer. To evaluate them, we played test games in
our lab with an increasing number of players. A similar lab project was done by the
Brainstormers at University of Osnabrück. In April 2005, both teams met at the
German Open in Paderborn to show three demonstration games. The games lasted
2×10min each and attracted many spectators. During these games, the robots
knew most of the time where the ball was. The scored goals were not accidental,
but the results of intentional actions. The robots were playing without human
help. Only the referee was allowed to touch the robots in order to untangle them
in the case of entanglements. Whenever the ball went outside the field, the referee
would put it back to the field line at the position where it left the field. We also
learned that the presence of more than two robots in the goal box (one attacker
and the goalie) must be prevented by the rules to avoid overcrowding.

Fig. 5. Scoring Test. Sketch of the field setup, robot and ball positions used.

In order to produce a performance estimate that is less noisy and easier to
obtain than the score of entire soccer games, we designed a scoring test, illus-
trated in Fig. 5. In this test, one robot stands on the most distant point of the
center circle, facing the empty goal, which is 2.05m away. The ball is placed at
ten different positions on the half of the center circle which is closer to the goal
(20◦ steps). The chosen ball position is not communicated to the robot. Its task
is now to bring the ball into the goal as quickly as possible.

Our system managed to score in all ten trials. The augmented RoboSapien
needed on average 170s to score. The robot was operating continuously during
the scoring test. The only human intervention was to place the ball and the
robot at their initial positions.
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Fig. 6. Augmented RoboSapiens playing soccer at RoboCup German Open 2005

For comparison, a human-controlled (via the original remote control unit)
augmented RoboSapien (perfect perception, almost perfect behavior control)
took on average 97s for scoring. It had a 100% success rate as well.

9 Conclusions

In this paper, we described a way to augment low-cost commercial off-the-shelf
humanoid robots in order to convert them into a soccer team.

For programmable autonomy, we attached Pocket PCs to the RoboSapiens.
They provide ample computing power and have many interfaces. To allow for
visual perception of the game situation, we added a color CMOS camera.

We implemented computer vision, probabilistic self-localization, and behav-
ior control on the Pocket PC. In addition, we set up a soccer field, wireless
communication, and a physics-based simulation.

This system was able to play test games in our lab and at German Open 2005.
The augmented RoboSapien also performed well in a scoring test. The soccer ex-
periments revealed some limitations of the augmented RoboSapien. They include
low precision, unidirectional IR communication, and mechanical limitations. The
low precision of walking makes it unfeasible to rely on path integration for navi-
gation. It is necessary to compensate for the quickly accumulating deviations by
visual feedback. The unidirectional IR communication from the Pocket PC to
the robot base prevents the use of proprioceptive information, touch sensors, and
sonic sensors for behavior control. The low number of DOFs as well as the low
center of mass limit the possible movements. For instance, while it is possible to
dribble a ball with the robot, RoboSapien is unable to perform the powerful kick
needed for penalties. It is also unable to walk laterally, but must turn towards
the target before walking.

Despite these limitations, we think that augmented RoboSapiens are a suitable
platform for performing multi-robot experiments with humanoid robots. When
working with such a platform, one does not need to deal with the difficulties of
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bipedal walking and balance. Since these issues are solved by the RoboSapien
base, the researchers can focus on visual perception and higher-level behavior
control.

As can be seen in the RoboCup Four-legged (Aibo) League, the use of standard-
ized hardware has certain advantages and disadvantages. On the positive side,
there is no need to develop and build robots for researchers interested in percep-
tion and behavior control. One can start with an off-the-shelf robot to develop
software. Standardized hardware also facilitates the exchange of software compo-
nents and the comparison of experimental results between research groups.

On the other hand, commercial robots are usually not fully open. The de-
veloper has to use the API provided by the manufacturer and cannot modify
the software and hardware layers below the API. These changes are done exclu-
sively by the manufacturer, which might limit the exploration of new ideas by
researchers. While it is in many cases possible to find a work around a limitation,
this approach might lead to the use of the hardware in a way not intended by the
manufacturer. One example for this is the walking on the knees (instead of the
paws) adopted by most of the participants of the RoboCup Four-legged League.

For the reasons above, we think that the availability of capable standard
hardware would facilitate empirical multi-agent research on humanoid robots. If
such robots were open and well documented, they could be used as a starting
point for researchers. One step towards this goal was to augment RoboSapien.

Since the costs for this programmable autonomous humanoid robot are only
about EUR 700, it is feasible to perform experiments with more than one robot
even for research groups lacking huge resources. This could be interesting not
only for university groups and industry labs, but also for RoboCup Junior, ed-
ucation, and enthusiasts.

We made the API for sending motion commands to the robot base and captur-
ing images, as well as a tutorial how to augment RoboSapien publicly available.
Other research groups adopted the augmented RoboSapien already. We delivered
one robot to Microsoft Research Cambridge. The Brainstormers of University
of Osnabrück also augmented a number of RoboSapiens. Together, we played
three soccer demonstration games at the RoboCup German Open (April 2005)
in Paderborn. At RoboCup 2005, the team Hiro used augmented RoboSapiens
in the Humanoid League competitions.

Videos of RoboSapiens playing soccer and more images can be found on our
website: http://www.NimbRo.net [/rs].
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5. Stefan Enderle, Stefan Sablatnög, Steffen Simon, and Gerhard K. Kraetzschmar.

Tetrixx – A Robot Development Kit. In Proc. of Edutainment Robots WS, 2000.
6. Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Markov localization for mo-

bile robots in dynamic environments. Journal of Artificial Intelligence Research,
11:391–427, 1999.

7. Fujitsu. HOAP-2. http://www.automation.fujitsu.com/en/products/products09.html.
8. Honda. ASIMO. http://world.honda.com/asimo/.
9. Thomas Hsiu, Steve Richards, Ajinkya Bhave, Andres Perez-Bergquist, and Illah

Nourbakhsh. Designing a low-cost, expressive educational robot. In Proc. of Int.
Conf. on Intelligent Robots and Systems (IROS), Las Vegas, 2003.

10. iXs Research Corp. http://www.ixs.co.jp.
11. Alexander Koller and Geert-Jan Kruijff. Talking robots with LEGO mindstorms.

In Proc. of 20th Int. Conf. on Computational Linguistics (COLING), Geneva, 2004.
12. Kondo Kagaku Co., Ltd. KHR-1. http://www.kondo-robot.com.
13. Henrik Hautop Lund and Luigi Pagliarini. RoboCup Jr. with LEGO Mindstorms.

In Proc. of Int. Conf. on Robotics and Automation, San Francisco, CA, 2000.
14. Norbert M. Mayer. Humanoid Kid Size League and Medium Size League rules and

setup. http://er04.ams.eng.osaka-u.ac.jp/humanoid webpage/humanoid.pdf.
15. Kevin Mukhar, Dave Johnson, Kevin Mukhar, and Dave Johnson. The Ultimate

Palm Robot. McGraw-Hill, 2003.
16. Masaki Ogino, Masaaki Kikuchi, Junichiro Ooga, Masahiro Aono, and Minoru

Asada. Optic flow based skill learning for a humanoid to trap, approach to, and
pass a ball. In RoboCup 2004: Robot Soccer World Cup VIII, pages 323–334, 2005.

17. Greg Reshko, Matthew Mason, and Illah Nourbakhsh. Rapid prototyping of small
robots. Technical Report CMU-RI-TR-02-11, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, March 2002.

18. Russel Smith. Open Dynamics Engine. http://opende.sourceforge.net.
19. Sony. Dream Robot QRIO. http://www.sony.net/qrio.
20. Speecys Corp. Speecys robot kit. http://www.speecys.com.
21. Team Osaka. VisiON. http://www.sansokan.jp/robot/info/vision en.html.
22. Peter J. Thomas, Russel J. Stonier, and Peter J. Wolfs. Robustness of colour

detection for robot soccer. In Proc. of 7th Int. Conf. on Control, Automation,
Robotics and Vision (ICARCV), volume 3, pages 1245–1249, 2002.

23. Mark W. Tilden. Neuromorphic robot humanoid to step into the market. The
Neuromorphic Engineer, 1(1):12, 2004.

24. Toyota. Partner Robot. http://www.toyota.co.jp/en/special/robot/.
25. Tribotix Pty Ltd. Cycloid. http://www.tribotix.com/products/robotis/cycloid.htm.
26. Vstone Co., Ltd. http://www.vstone.co.jp.
27. Doug Williams. PDA Robotics. McGraw-Hill, 2003.
28. Chris Willis. World’s greatest android projects. http://www.androidworld.com.



48 S. Behnke, J. Müller, and M. Schreiber

29. Xudong Yu and Jerry B. Weinberg. Robotics in education: New platforms and
environments. IEEE Robotics & Automation Magazine, 10(3), 2003.

30. Changjiu Zhou and Pik Kong Yue. Robo-Erectus: a low-cost autonomous humanoid
soccer robot. Advanced Robotics, 18(7):717–720, 2004.



Reliable and Precise Gait Modeling for a
Quadruped Robot
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Abstract. We present a parametric walk model for a four-legged robot.
The walk model is improved using a genetic algorithm, but unlike previ-
ous approaches, the fitness is determined in a run that closely resembles
the later application. We thus not only achieve high speeds, but also a
high degree of flexibility. In addition to the walking model being flexible,
we present a means of automatically calibrating the walking engine. This
allows for highly precise robot control and greatly improved odometry
accuracy. Lastly, we show how the motion model can be extended to in-
tegrate specialized motions to further increase locomotion speed without
compromising flexibility.

1 Introduction

Legged robots operate in areas that wheeled robots have trouble accessing. On
the other hand, creation and optimization of quadruped robot locomotion is
a challenging, highly complex task. The main reason for this is the difficulty
to cope with the many degrees of freedom of a legged robot even in a relatively
simple robot design. Such designs (may it be software and/or hardware) are often
inspired by animal locomotion in terms of anatomy (number of limbs and joints,
proportions, etc.), gait patterns (Central Pattern Generators) and concepts such
as reflexes [5, 1, 13, 16].

Inverse kinematics is commonly used to calculate the motor commands neces-
sary for robot motions: trajectories of the robot’s paws are defined and then the
corresponding limb movements and thus joint angles as a functions of time are
calculated. Inverse kinematics is usually based purely on geometry, neglecting
physical properties such as friction, weight of the robot as a whole and of individ-
ual components, moments of inertia, motor strengths, etc. These simplifications
in the modeling tend to impair performance in real world environments.

Experience can help to come up with experimental setups which take these
pitfalls into consideration while not explicitly modeling them, e. g. by conduct-
ing experiments on especially difficult surfaces [11]. Limiting possible motions
to statically stable ones, robust robot gaits can be developed. These motions

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 49–58, 2006.
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are reversible at any given point in time and require three of the robot’s four
legs to touch the ground at any time [6]. These motions trade off speed for
robustness whereas dynamically stable motions can produce faster locomotion
[15, 4, 8]. Gaits can be found by trying to model all physical aspects of the robot,
but bridging the gap between simulation and the real world remains challenging
[7, 3]. An alternative gait representation in frequency space is described in [10]
yielding smooth motions and gait transitions.

Evolutionary approaches include the evolution of the controller alone (with
fixed robot morphology [11, 17]) and simultaneous evolution of robot morphology
and controller [19, 18]. Other approaches include teaching, learning, and inverse
kinematics [12]. Many machine learning approaches focus on optimizing a single
criterion such as forward or turning speed which results in highly specialized
motions. From these specialized motions it tends to be difficult to generalize
towards gait patterns that can handle ‘mixed’ motions, e. g. moving forward and
sideways at the same time. These mixed motions are of great importance in real
robot control in dynamic environments where it is desirable to be able to adjust
the robot’s position and orientation quickly (‘omnidirectional’ movements).

Outline. This paper describes a combination of different strategies to improve
the overall performance of four-legged walking. We present a parametric walk
model extending [9]. Using this ‘wheel model’ increases the robustness of walk
of the legged robot. A means of automatically optimizing the gait pattern is
presented, focusing on flexibility rather then speed alone. We then show how the
gait pattern can be calibrated to achieve reproducible performance and odometry
data of high quality. Lastly, we show how the walking engine can be extended
to integrate specialized motions without sacrificing flexibility.

2 Method

2.1 The Wheel Model

Legged robots can access areas which wheeled robot are unable to cope with.
Unfortunately, robot control for a legged robot is extremely complex due to the
many degrees of freedom involved. For the four-legged Sony Aibo ERS-210, [9]
introduced the wheel model which assumes that the robots paws are performing
circular motions and robot control works much like that of a differential drive
robot (fig. 1). Using this model, dynamic stability of the robot can be achieved
easily by constraining the phase shift between the movement of individual legs.
In our experiments, we used both Aibo ERS-210s and ERS-7s.

Each movement (consisting of a forward, a sideways, and a turning speed)
results in a circular movement around a common center of rotation (see fig. 1 a).
This movement is realized by making steps tangential to the circle with the speed
a wheel would have at the same position.

Actual gait patterns are described by a set of parameters of the walking
engine. Several approaches to parameterize these patterns where developed in
the context of gait optimization allowing the trajectories to differ from the first
used trapezoidal shape (e. g. canter action in [9] and free form quad in [2]).
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Fig. 1. a) Simultaneous walking and turning using the wheel model: The resting po-
sitions of the feet move on circles around a common rotation center. This is realized
by steps (red) that are deduced from imagined wheel movements and tangential to the
optimal circles. b) Parameters of the foot movements: Feet are moved in parallelograms
(rhomboids), the direction and size of which is determined by the wheel model.

We chose the parameter set shown in table 1 which allowed us to fully describe
the characteristics of different gait patterns while still being reasonably small for
genetic optimization.

Table 1. All used parameters of a parameter set and their meaning

– xf , yf , zf : position of a front foot relative to middle between the front shoulders
– xh, yh, zh: position of a hind foot relative to middle between the hind shoulders
– hf , hh: maximum height of the feet above ground during a step
– tiltf , tilth: tangent of the the arc between the theoretical foot trajectory and the

ground; influences the intensity of touching the ground and can avoid sliding on it
– gpv, gph: fraction of time a front or hind foot has ground contact (in theory)
– l = (lfl, lfr, lhl, lhr): relative time of lifting each leg, (0, 0.5, 0.5, 0) describes the

usually used trot and means lifting left front and right hind foot at the beginning
of a full step (0) and lifting the other two feet half a full step later (0.5)

– T : duration of a full step in frames à 8 milliseconds.

2.2 Localization

One of the goals of our work was to allow fully automatic gait optimization. We
wanted to be independent of external hardware (such as an external camera and
computer to track the robot) and wanted everything to run on the robot. This
requires the robot to be well localized in order for it to determine its current
speed and performance. The standard beacons on a RoboCup field were used
in previous work, but they have two disadvantages: 1) if only one beacon is
visible, the robot has no way of determining its lateral position, and 2) tracking
multiple beacons is error prone and the localization error is often bigger than
the covered distance. We therefore devised a special bar code like pattern (see
fig. 2) that allows the robot to precisely monitor its x-y-position and orientation
from a single camera image from a wide range of positions. The black and white
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Fig. 2. The b/w pattern used for localization: a) A camera image of an ERS-210 with
detected pattern parts highlighted, b) Schematic view of the pattern, c) Variables used
to calculate the robot pose

pattern has the further advantage of being clearly detectable in various lighting
conditions. Size and structure of the pattern are chosen such that equally good
localization performance can be achieved from the majority of distances to it.

As shown in fig. 2 c, the current position can be calculated from the known
distances a and b and the recognized angles α and β.

The angle δ can be calculated by applying the sine theorem twice. This yields
the relative position (x, y) w.r.t. the center of the pattern:

x = −c sin(δ)
y = −a + c cos(δ)

with c = (a sin(π−α− δ))/ sin(α)). For a distances from the pattern of 60 cm to
260 cm, the position error from single images during walking is Δp = (16mm,
38 mm). The noise caused by camera vibrations can be reduced by using simple
PID smoothing. This decreases the average position error and allows meaningful
speed calculations even for short durations.

2.3 Evolution Run

Most previous optimization approaches have in common that they are focused on
improving a particular motion, such as walking forward at high speed. They fail,
however, to take into account the overall performance of the robot in real world
situations, where constant adjustments of the robot’s direction and orientation
are necessary.

To evaluate a parameter set, the robot’s performance following a path is de-
termined. Unlike other experiments, this is not a simple straight line, but a
rather complex path that requires the robot to strafe and turn too to follow
it (see fig. 3). Deviations from the path are penalized by the fitness function
(see below). Such a course is a sequence of target positions and robot orien-
tations. An evaluation run consists of two parts, a forward part with desired
robot orientation changing over time as shown in fig. 3, and a backward part
with constant robot orientation. Instead of executing a fixed sequence of steps,
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Fig. 3. a) The path for evaluation omnidirectional gait pattern defines the target
position and orientation of a robot. b) The activated movement (red) results from the
distance to the target position 0.85 seconds later.

the robot is forced to correct its previous mistakes to stay on the course. Such
a task was chosen because it is easily reproducible and quite typical for actual
applications where the robot constantly changes the direction while walking for-
ward (e. g. chasing a ball). The control algorithm is very similar to the one used
by us in RoboCup games to steer the robot towards the ball or some other tar-
get position.

The runs are performed fully autonomous. No manual replacement of the
robot is necessary since it is generally able to localize using the pattern described
above. The start and end point of the path are fixed position relative to the
localization pattern.

The obvious performance criteria for a gait are speed and accuracy. The fitness
function F of a parameter set P used in the experiments favors more stable
gaits and can be interpreted as walk speed corrected by unwanted vibrations
and position deviations:

F (P ) = ẋ−Δy/6− 33Δϕ−
(
10−5z̈ − 5

)
− 40pblind

where ẋ is the average speed, Δy and Δϕ the deviation from the course, z̈ de-
scribes vertical vibrations and pblind is the percentage of images without recog-
nition of the localization pattern, e. g. because of vibrations or totally wrong
gaze direction. As walking forward is more important, the fitness of the forward
walking part contributes more than that of walking backward.

Evaluating a single parameter set takes about 30 seconds: 10s for walking
forward with turning, 10s for walking backward and 10s for positioning for the
next run. If the performance of a parameter set is below a threshold, the run
is aborted and the robot returns to the starting point using the standard gait.
Typically, a complete optimization run with 50 to 60 parameter sets takes about
30 minutes.
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2.4 Evolution

Since it is very difficult to model the interdependencies between parameters and
the resulting speed and quality of a gait pattern, genetic algorithms were used for
optimization (see [14]). A population of parameter sets is exposed to evolution.
Each parameter set corresponds to an individual and each parameter to a gene.
All genes of an individual are stored on a single chromosome.

Using real robots for the evolution is time consuming, therefore choosing the
following evolution parameters turned out to be a good compromise between
fast advance and avoidance of unusable parameter sets.

A population consists of only ten individuals, starting with a known parameter
set (a manually tweaked one used by our team in previous years) and nine
mutations of it. In every generation, half of the population with the worst fitness
is selected and replaced by mutations and recombination of the better half. 40%
of the descendants are created by mutation and 60% by recombination. Mutation
changes single genes with a probability of 30%, equally distributed up to ±6% of
its original value. Recombination interpolates the value of each gene randomly
between the parent values of that gene or even extrapolates into the direction of
the better parent.
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Fig. 4. ERS-7: Evolution of walking parameter sets with two separated populations
for the forward and the backward part of the course, a) Development of the fitness in
the population of forward walking parameters, b) Development of the fitness in the
population of backward walking parameters

Using these values results in visible and measurable differences between sin-
gle individuals without getting unusable parameters. This method is useful for
local optimization in a sensible part of the search space without prior knowledge
about correlation between parameters and with only a few abortive attempts
(fig. 4).
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2.5 Odometry Calibration

Experience shows that the executed motion does not always match the one
intended by the calculated step sizes. The actual speed depends non-linearly on
the target speed.

A walk request commonly consists of forward, sideways, and turn speed. It
turned out, however, that for our application this is not a very good way of
describing motions. We therefore devised a different means of describing a walk
request consisting of the walk direction α, the ‘turn-walk-ratio’ δ, and the ‘over-
all speed’ r as defined in fig. 5. To approximate the non-linear dependency of
target and actual speed, the target speed for each combination of walk direc-
tion and turn-walk-ratio is divided up into three ranges [0, small[, [small, med[,
and [med, max]. Within each of these ranges, the dependency is assumed linear.
The values for the boundaries are determined in the calibration process. The
calibration is done for all combinations of forward, sideways, and turn speed
which results in 127 boundary points to be calibrated. Luckily, this can be done
automatically:

In a first run, an autonomous behavior measures the influence of increasing
the step size on the walk speed for each combination of walk direction and
turn-walk-ratio for a certain parameter set. If increasing the step sizes does not
increase the overall speed any more, the behavior starts to measure the next
walk direction. This first calibration run determines the respective minimum
and maximum speeds and enables to chose a medium speed minimizing the
deviations when using linear interpolation in between.

In a second calibration pass, all chosen 127 boundaries are adjusted indepen-
dently to match their requested forward, sideways, and turn speed by changing
the target step size proportional to half of the detected speed difference. These
adjustments minimize the gap between target and actual motion without risking
to alternate only the sign of the difference. Iteratively running the calibration
further decreases the error, as shown in fig. 5b.
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Fig. 5. The position of the 127 parameter sets used (black dots: standing, 6× turning
only, 8×5×3× with walking): The azimuth α denotes the walk direction, the declination
δ denotes the normalized turn-walk-ratio and the radius r the normalized overall speed
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Calibration is done for constant walk requests only. A constant walking motion
always results in an arc. Knowing time, position and orientation of the robot at
a starting and an ending point, the average walking and turning speed inbetween
can be calculated.

This calibration process is repeated when the robot has to operate on a new
surface.

2.6 Using Multiple Parameter Sets

Once a good omnidirectional gait pattern was found, we explored ways of in-
cluding specialized gaits to further increase performance. This brings about the
problem of switching or interpolating between gait patterns. That problem can
be solved by allowing different parameter sets for the 127 boundary points de-
scribed in the previous section. For interpolation to work, neighboring parameter
sets must not differ too much.

If e. g. a particularly good (and similar enough) parameter set was found for
turning, it can be used to replace the parameter set(s) associated with the bound-
ary points (walk direction = 0, turn-walk-ratio = ±1, overall speed = vmax).

Whether a parameter set is suitable for interpolation is evaluated manually.
For example, we extended the walking engine by including a parameter set for
fast turning. This was derived manually from the parameter set for the omnidi-
rectional walk by decreasing the distance between front and hind feet.

2.7 Performance

The walking engine consisting of the omnidirectional parameter set and special-
ized motions for ‘walking backwards in a straight line’ and ‘fast turning (only)’
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|Δẋ| |Δẏ| |Δϕ̇|
in mm/s in mm/s in rad/s

uncalibrated 12,9 12,1 0,086
measured 7,7 11,4 0,070
calibration 1 6,4 7,6 0,038
calibration 2 5,8 8,0 0,030
calibration 3 4,4 8,7 0,021
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Fig. 6. a) The used minimum, medium, and maximum speed for an ERS-7 in all 8 walk
directions without turning: By using several optimized and calibrated parameter sets,
a much higher speed range can be covered than by using a single parameter set and
the (necessary) speed limitation e. g. to an ellipse. b) The average difference between
assumed and real speed of the 127 parameter sets can be decreased significantly with
a few calibration steps.
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proved to deliver highly reliable and reproducible performance. The speed ranks
amongst the highest that have been achieved on the Aibo ERS-7 to date (fig. 6 a).
The precision was evaluated qualitatively: the robot was able to stay on a rectan-
gular path only using odometry for localization. In contrast, using uncalibrated
motions, the robot would turn farther than desired at every corner resulting in
a triangular trajectory.

3 Conclusion

Using the presented experimental setup, we were able to perform automated
evolutionary optimization of gait patterns on a legged robot. Unlike most other
approaches, the gait pattern found performs well in actual applications where
target speed and direction of the robot continuously change. This was achieved
by having the robot follow a path that closely resembles a real life situation
for evaluation. The gaits found are calibrated to allow for remarkably accurate
odometry which greatly improves localization. Lastly, the walking engine was
extended to allow interpolation from one parameter set to another. Using this
approach, we were able to use highly optimized/specialized motions in combina-
tion with the general, highly accurate gait pattern found in the evolution. The
walking engine was successfully used in the RoboCup 2004 world championships
Sony Four-Legged League. Its outstanding performance and precision was one
of the key advantages of the GermanTeam over other teams and helped to win
the championship.
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GermanTeam 2002. In RoboCup 2002 Robot Soccer World Cup VI, Gal
A. Kaminka, Pedro U. Lima, Raul Rojas (Eds.), number 2752 in Lec-
ture Notes in Artificial Intelligence. Springer, 2003. More detailed in
http://www.tzi.de/kogrob/papers/GermanTeam2002.pdf.
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Abstract. This paper describes the humanoid robot Toni that has been
designed to play soccer in the RoboCup Humanoid League. The paper
details Toni’s mechanical and electrical design, perception, self localiza-
tion, behavior control, and infrastructure.

Toni is fully autonomous, has a low weight (2.2kg), and is much taller
(74cm) than most servo-driven humanoid robots. It has a wide field of
view camera, ample computing power, and wireless communication.

Toni possesses basic soccer skills. It walks dynamically in all directions
(up to 20cm/s in forward direction) and turns on the spot. It perceives
the ball and the goals and localizes itself on the field. Toni is able to
approach the ball and to dribble it. It can kick the ball without falling.

We performed tests in our lab and penalty kick demonstrations at
RoboCup German Open 2005. Toni’s successors Jupp, Sepp, and Max
performed well at the RoboCup 2005 Humanoid League competitions.

1 Introduction

The ultimate goal of the RoboCup initiative is stated as follows: By mid-21st
century, a team of fully autonomous humanoid robot soccer players shall win
the soccer game, comply with the official rule of the FIFA, against the winner
of the most recent World Cup [9]. As one step towards this long-term goal, the
RoboCup Federation added in 2002 a league for humanoid robots to their annual
soccer championships.

Three competitions took place in the RoboCup Humanoid League so far. In
preparation for real soccer games, the robots had to demonstrate their capabil-
ities by solving a number of subtasks.

In the Humanoid Walk, they had to walk towards a pole, to turn around it,
and to come back to the start. Scoring was based on walking speed and stability.
In the Penalty Kick competition, two robots faced each other. While one robot
tried to score a goal, the other defended. In the Freestyle competition, the robots
had five minutes to show a performance to a jury. Each year, there is also a new
technical challenge. In 2004, it consisted of an obstacle walk, a passing task, and
balancing across a sloped ramp.

The RoboCup Humanoid League competition rules [11] require robots to have
a human-like body plan. They must consist of a trunk, two legs, two arms, and a
head. The only allowed mode of locomotion is bipedal walking. The robots must

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 59–70, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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be fully autonomous. No external power, computing power, or remote control is
allowed.

In the 2002 Humanoid League competition, the Nagara robot was the overall
winner. A Honda Asimo prototype of team HITS Firstep [6] won in 2003. Team
Osaka won the 2004 competition with the robot VisiON [17]. This robot used
an omnidirectional camera as head. As a goalie it could defend against a shot
by jumping to the ground. Afterwards, VisiON got up without help. Another
highlight of the competition was the passing demonstration between two Hoap-2
robots of team Senchans A [14].

Despite these impressive achievements, the overall performance of the soccer
playing humanoids is still far from perfect. Basic soccer skills, such as robust
dynamic walking and kicking without loosing balance are not possessed by all
robots. Even the best robots sometimes show instability while walking, fail to
kick the ball, or defend against shots not taken. Consequently, further research is
needed. Within the Humanoid League, the performance of smaller, servo-driven
robots in general exceeds the performance of larger robots. The only convincing
larger robot so far was the Honda Asimo prototype, out of reach for almost all
researchers.

In the following, we describe the humanoid robot Toni, which has been designed
by our team NimbRo for the 2005 RoboCup Humanoid League soccer competi-
tions. We use servo motors to drive its 18 joints for their relatively low cost and
for their good weight-to-torque ratio. Our design focused on weight reduction to
make Toni agile. We used standard components for computing power and camera
because of their high degree of integration and their relatively low cost.

This paper is organized as follows. In the next section, we review some of the
related work. Section 3 describes Toni’s mechanical and Section 4 its electrical
design in detail. In Section 5 proprioception, computer vision, and self localiza-
tion are covered. Section 6 describes how Toni is controlled using a hierarchy of
reactive behaviors, and Section 7 details its infrastructure components.

2 Related Work

Humanoid robots are not only a good choice for playing soccer. The anthropo-
morphic body shape is also helpful for acting in environments that have been
designed for humans, in particular for the interaction with people. In addition
to speech, a humanoid robot can try to use the same means for intuitive mul-
timodal communication that people use: body language, gestures, mimics, and
gaze. Consequently, a number of research groups, especially in Japan, are con-
structing humanoid robots. A list of projects is maintained by Willis [22].

Among the most advanced humanoid robots developed so far is the 58cm tall
Sony Qrio [16]. It contains three CPUs and has 38 degrees of freedom (DOF).
Qrio is able to walk and dance. Research on map building and navigation, as
well as on human-robot interaction is carried out inside Sony. Currently, it is
unclear if and when this robot will be available to a larger research community,
but the costs of Qrio have been compared to the price of a luxury car.
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Unlike Qrio, Hoap-2 (25 DOF, 50cm tall), developed by Fujitsu [4], has been
sold to some labs for about USD 50,000. It is used by the RoboCup team Sen-
chans A, but never won the competition.

A taller humanoid, Asimo, has been developed by Honda [5]. The recently
announced research version has 34DOFs and a height of 130cm. It can walk at
69cm/s and jogs at 83cm/s. It is possible to rent Asimo for about USD 162,000
per year for presentations.

Approximately the same size of Asimo has a trumpet playing humanoid robot
which has been announced recently by Toyota [20]. It is displayed at Expo 2005
in Aichi, Japan.

While these humanoid robots are impressive, they are not available to re-
searchers outside the industry labs or are too expensive for academic research.
There are few publications about the details of humanoid robots developed by
industry. Academic projects, like H7 of Tokyo University [7, 12] and HRP-2P [8]
of the Japanese AIST are better documented.

Many existing humanoid robots are not adapted to the needs of soccer com-
petitions. In soccer, the robots must survive a fall. Some robots even jump or
lie down and get up by themselves again. The soccer robots must also be fully
autonomous. Many existing robots have only limited senses. Some of them rely
on external computers for behavior control. It might also prove difficult to get
access to the lower levels of their APIs.

In addition to the expensive larger humanoid robots, which are usually driven
by DC-motors and harmonic drive gears, some smaller servo-driven humanoid
robots have been developed recently [10, 21, 23]. Some of these robots performed
well at RoboCup competitions.

The servo-driven robots have up to 22DOFs and a size of 30-40cm. As the
competition rules require the robots now to be fully autonomous, it becomes
difficult for these small robots to carry a camera and sufficient computing power.
The small body size also limits the walking speed of these robots.

To overcome the described limitations, we designed a taller servo-driven hu-
manoid robot that keeps the low weight of the smaller robots. We added a
wide-angle camera, ample computing power, and wireless communication to it.

3 Mechanical Design

Fig. 1 shows two views of our humanoid robot Toni, ready to kick the ball. As can
be seen, Toni has human-like proportions and a slim appearance. Its mechanical
design focused on weight reduction. Toni is 74cm tall and has a total weight of
only 2.2kg.

The robot is driven by 18 servo motors: 6 per leg and 3 in each arm. The
six leg-servos allow for flexible leg movements. Two orthogonal servos form the
2DOF hip joint and the 2DOF ankle joint. One servo drives the knee joint.

A special feature of Toni is its active toes joint, located in the foot plate.
It allows for over-extending the leg. This is needed for walking with a straight
stance leg. Most humanoid robots shorten the stance leg by bending the knee



62 S. Behnke, J. Müller, and M. Schreiber

Fig. 1. Two views of the humanoid robot Toni, ready to kick

joint to avoid singularities. This requires high-torque knee actuators and leads
to an unnatural gait pattern. When the stance leg is kept straight, torques are
reduced and the gait is more natural. However, when walking with large steps,
it is now necessary to over-extend the other leg before toes-off in order to shift
the weight to the stance leg. The extra segment between the ankle joint and the
toes joint provides this extra leg extension [1]. The toes joint is also used when
kicking the ball. To our knowledge, only the H6/7 robots of Tokyo University
possess active toes joints [13].

We selected the S9152 servos from Futaba to drive the hips, the knees, and
the ankles. These digital servos are rated for a torque of 200Ncm. They have a
weight of only 85g. The toes joints need less torque. They are powered by JR
8511 servos (185Ncm, 66g). We augmented all servos by adding a ball bearing
on their back, opposite to the driven axis. This made a stiff joint construction
possible.

Toni’s arms do not need to be as strong as the legs. They are powered by
SES640 servos (64Ncm, 28g). Two orthogonal servos constitute the shoulder
joint and one servo drives the elbow joint.

The skeleton of the robot is mostly constructed from aluminum extrusions
with rectangular tube cross section. In order to reduce weight, we removed all
material not necessary for stability. Toni’s feet and its arms are made from sheets
of carbon composite material. Its head is there for completeness only. It is made
of lightweight foam.



Toni: A Soccer Playing Humanoid Robot 63

4 Electronics

Toni is fully autonomous. It is powered by high-current Lithium-polymer rechar-
geable batteries, which are located in its pelvis. Two Kokam 2000H cells last for
about 30 minutes of operation. They can be discharged with 30A and have a
weight of only 110g.

The servos are interfaced to three tiny ChipS12 microcontroller boards, shown
in Fig. 2(a). One of these boards is located in each thigh and one board is hidden
in the pelvis. These boards feature the Motorola MC9S12C32 chip. This 16-bit
controller belongs to the popular HCS12 family. We clock it with 24MHz. It has
2kB RAM, 32kB flash, a RS232 serial interface, CAN bus, 8 timers, 5 PWM
channels, and 8 A/D converters. We use the timer module to generate pulses of
1...2ms duration at a rate of 180Hz in hardware. These pulses encode the target
positions for the servos. Up to eight servos can be controlled with one board.

In order to keep track of the actual servo movements, the potentiometer volt-
ages are digitized by the A/D converters and processed by the microcontrollers.
By analyzing the temporal fine structure of these signals, we estimate not only
the current servo positions, but also the PWM duty cycles of their motors.

In addition to these joint sensors, Toni is equipped with an attitude sensor,
shown in Fig. 2(b). It consists of a dual-axis accelerometer (Analog Devices
ADXL203, ±1.5g) and two gyroscopes (ADXRS 150/300,±150/300 deg/s). This
attitude sensor is located in its pelvis. The four analog sensor signals are digitized
with A/D converters of the HCS12 and are preprocessed by the microcontroller.

The microcontrollers communicate with each other via a CAN bus at 1MBaud
and with a main computer via a RS232 serial line at 115KBaud.

Every 6ms, target positions for the servos are sent from the main computer to
the HCS12 boards. The microcontrollers send the preprocessed sensor readings
back. This allows to generate smooth trajectories for the servos and to keep track
of the robot’s state in the main computer.

We use a Pocket PC as main computer, which is located in Toni’s chest (see
Fig. 1). The model FSC Pocket Loox 720 has a weight of only 170g, including
the battery. It features a 520MHz XScale processor PXA-272, 128MB RAM,
64MB flash memory, a touch-sensitive display with VGA resolution, Bluetooth,
wireless LAN, a RS232 serial interface, and an integrated 1.3 MPixel camera.

(a) (b)

Fig. 2. Electronics: (a) ChipS12 microcontroller board featuring HCS12C32; (b) Atti-
tude sensor consisting of a dual-axis accelerometer and two gyroscopes
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(a) (b)

Forward

Backward

Fig. 3. Toni with a small PC and two ultra-wide-angle USB cameras: (a) Picture of
the robot’s back and neck; (b) Pictures captured simultaneously from the two cameras

This computer runs behavior control, computer vision, and wireless commu-
nication. It is equipped with a Lifeview FlyCAM CF 1.3M that has been fitted
to an ultra-wide-angle lens. The lens is located approximately at the position of
the larynx. The wide field of view of this camera (vertically about 112°) allows
Toni to see at the same time its own feet and objects above the horizon. The
horizontal field of view is approximately 150°.

We also tested a Sony Vaio U750P PC as main computer, which is small
enough to fit into Toni’s trunk, as shown in Fig. 3(a). The PC has a weight
of 550g, including batteries, and features an ultra-low voltage 1.1GHz Pentium
M 733 processor, 512MB RAM, 20GB harddrive, a touch sensitive display with
SVGA resolution, and wireless LAN.

This PC is interfaced to two ultra-wide-angle USB cameras, also visible in
Fig. 3(a). They consist of webcam electronics, a 1/3”CCD imager, and a door
viewer lens. Toni can see almost all objects around it when these cameras are
pointed towards the front and the back. Two simultaneously captured images are
shown in Fig. 3(b). The cameras deliver up to 30fps and the PC is fast enough
to process the images and to localize the robot at this rate. The total weight of
the robot in this configuration is only 2.7kg.

5 Perception

In order to play soccer, Toni needs information about itself and about the situ-
ation on the field. In particular, it must know where the ball and the goals are,
localize itself on the field, and perceive other players.

We fuse the accelerometer and gyro readings to obtain an estimate of Toni’s
attitude. This is done by integrating the rotation speeds measured by the
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(a) (b)

Fig. 4. (a) Image captured from Toni’s perspective while it was walking. Detected ob-
jects: goal (blue horizontal rectangle), ball (orange circle), and pole (magenta vertical
rectangle); (b) Three 2D projections of the 3D grid representing the probability distri-
bution of robot poses (x, y, θ). The green circle is drawn at the estimated robot location
(x, y). The black line represents its estimated orientation θ. The detected objects are
drawn relative to the robot

gyroscopes. The long-term readings of the accelerometers are used to provide
a starting point for the integration. Furthermore, the biases of the gyros are
compensated using the accelerometer readings. In combination with the mea-
sured joint angles, the attitude allows to reconstruct the camera pose.

The only source of information about Toni’s environment is its camera. The
wide-angle CF color camera allows seeing the ball at the robots feet, the goal,
and poles simultaneously (see Fig. 4(a)). In RoboCup soccer, these key objects
are color-coded. The ball is orange, the field is green, goals are yellow and blue,
and poles contain magenta and a goal color.

Our computer vision software converts the captured RGB images into the
YUV color space to decrease the influence of different lighting conditions. The
colors of pixels are classified with the pie-slice method [19]. In a multistage
process insignificant colored pixels are discarded and the colored objects are
detected. Their coordinates are estimated in an egocentric frame (distance to
the robot and angle to its orientation), based on image position and object size.
These relative coordinates suffice for many relative behaviors, like positioning
behind the ball while facing the goal.

To implement global team behaviors, such as kick-off, we need the robot
coordinates in an allocentric frame (position on the field and orientation). We
estimate these using a probabilistic Markov localization method that integrates
egocentric observations and motion commands over time. As proposed by Fox,
Burgard, and Thrun [3] this method uses a three-dimensional grid (x, y, θ)
to represent the probability distribution of robot poses. The grid is shown in
Fig. 4(b).
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6 Behavior Control

We control Toni using a framework that supports a hierarchy of reactive
behaviors [2]. This framework allows for structured behavior engineering. Multi-
ple layers that run on different time scales contain behaviors of different complex-
ity. This framework forces the behavior engineers to define abstract sensors that
are aggregated from faster, more basic sensors. Abstract actuators give higher-
level behaviors the possibility to configure lower layers in order to eventually
influence the state of the world.

The framework also supports an agent hierarchy. For Toni, we use three levels
of this hierarchy: individual joint, body part, and entire robot. This structure
restricts interactions between the system variables and thus reduces the com-
plexity of behavior engineering.

The lowest level of this hierarchy, the control loop within the servo, has been
implemented by the servo manufacturer. It runs at about 300Hz for the digital
servos. We monitor target positions, actual positions, and motor duties.

At the next layer, we generate target positions for the individual joints of a
body-part at a rate of 167Hz. We make sure that the joint angles vary smoothly.
This layer implements an interface that describes the behavior of body parts.
For example, the entire leg can be positioned using leg extension (the distance
from the hip joint to the ankle joint), the leg angle (angle between the pelvis
plate and the line from hip to ankle), and foot angle (angle between foot plate
and pelvis plate).

Such a more abstract actuator space simplifies the implementation of dynamic
walking on the next layer. A central pattern generator running in the trunk
determines the step frequency. Both legs derive their own gait phase by shifting
the trunk phase by±π/2. Based on this gait phase, each leg generates trajectories
for its leg extension, leg angle, and foot angle.

The two key ingredients for generating dynamic walking are lateral shifting
of the robots center of mass, and movement of the legs in walking direction. The
swinging leg is shortened while it is moved quickly into the walking direction. At

Fig. 5. Dynamic walking. Leg angles and leg extension of a leg while walking forward
with small steps. The other leg moves in the same way, with a phase offset of π.
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Fig. 6. Kicking. Joint angles of the knee of the kicking leg and the sagittal hip joints
of both legs.

the same time, the supporting leg has maximal extension and is moved slowly
against the walking direction. The resulting trajectories of leg angles and leg
extension are shown in Fig. 5 for the case of walking in forward direction with
small steps.

Toni’s maximum walking speed is about 20cm/s. The robot is not only able
to walk forward and backward, but it can also walk to the side. By blending
these gait directions, we generate omnidirectional walking. Toni is also able to
turn on the spot. We used this interface to implement higher-level behaviors,
like approaching the ball, dribbling, and positioning for penalty kicks.

In addition to omnidirectional walking, we implemented a kicking behavior for
Toni. Fig. 6 shows trajectories for the sagittal hip joints of both legs and the knee
joint of the kicking leg. The kicking leg strikes out, accelerates smoothly until it
hits the ball and decelerates again. Note that all three joints reach their maxi-
mum speed in forward direction when the ball is hit. The kicked ball rolls for ap-
proximately two meters on carpet. Afterwards, Toni goes back to a stable stand.

Toni’s toes joints are used when walking with larger steps during the double-
support phase. The unloading leg is over-extending to push the center of mass
above the loading leg [1]. We also used the toes joints to balance Toni on the
frontal part of the foot plate (toes).

7 Infrastructure

In addition to the robot itself, we implemented some infrastructure components
to support behavior engineering.

• Simulation: In order to be able to design behaviors without access to the real
hardware, we implemented a physics-based simulation for Toni. This simulation
is based on the Open Dynamics Engine [15]. It is visualized in real time using
OpenGL [18].
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Fig. 7. Penalty Kick demos at RoboCup German Open 2005: Toni vs. Mr. DD

• Communication: Toni is equipped with a wireless network adapter. We use
the wireless communication to transmit via UDP debug information to an ex-
ternal computer, where it is logged and visualized. This computer is also used to
fuse local views to a team view when multiple robots are playing. We plan to use
it to compute team behaviors, such as the assignment of roles to the individual
players. We also plan to use the wireless network for transmitting the game state
(kickoff, penalty ...) to the robots.
• Test Behaviors and Remote Control: On all levels of the behavior archi-
tecture, we implemented test behaviors that generate sequences for the abstract
actuators in order to test the behavior of the lower layers. Similarly, the lower
layers can also be tested by setting the actuators to the readings of a joystick.
In this way, the user can determine an individual joint angle, a leg parameter,
or the walking direction and speed of the robot.
• Monitoring: All variables of the system, such as joint angles, sensor read-
ings, actuator values, and behavior activations, are logged. They can be vi-
sualized live or after an experiment. The analysis of not only the observable
robot behavior, but also its internal state is extremely helpful when debugging
behaviors.

8 Conclusions

This paper described the humanoid robot Toni, which was designed to play soc-
cer. It detailed its mechanical and electrical design, perception, behavior control,
and infrastructure.

Toni is fully autonomous, has a low weight of only 2.2kg, and is much taller
(74cm) than most servo-driven robots. It has 18 DOFs, with toes joints as special
feature. The robot is equipped with a wide field-of-view color camera, ample
computing power, and wireless communication.

Toni possesses basic soccer skills. It can walk dynamically in all directions
and is able to turn on the spot. It perceives the ball and the goals and localizes
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itself on the field. Toni is able to approach the ball and to dribble it. It is able
to kick the ball without falling.

We presented Toni for the first time to the public during the 21st Chaos Com-
munication Congress (Berlin, Dec. 2004), where it was playing with a soccer ball.
At RoboCup German Open (Apr. 2005), we showed penalty kick demonstrations
against Mr. DD of Darmstadt Dribblers. Toni was able to approach the ball, such
that the ball was located in front of its kicking foot and the robot was facing the
goal. Toni slowed down when coming close to the ball and triggered its kicking
behavior when positioned well enough. The robot smoothly stopped walking,
reached out and kicked the ball strongly towards the goal.

For the RoboCup 2005 Competition, which took place in July in Osaka, Japan,
we constructed three more robots, based on Toni’s technology. Jupp and Sepp
have a size of 60cm and played in the KidSize class. Max has a size of 70cm and
played in the MidSize class. All three robots have an additional yaw-joint in the
thigh, a pitch-joint in the trunk, and stronger arms. They can rotate easier on
the spot and are able to get up after a fall. These robots performed well. Our
team NimbRo got 2nd and 3rd in the Technical Challenge, next to Team Os-
aka. Max won the MidSize Penalty Kick final 3:0 against Aria (Iran). Sepp and
Jupp reached the final in the 2 vs. 2 soccer games. They lost 2:1 against Team
Osaka. They also scored the second highest number of goals in the Penalty Kick
competition, next only to Team Osaka. In the overall Best Humanoid ranking,
Osaka won, NimbRo KidSize came in 2nd, and NimbRo MidSize was 3rd.

Videos of the competitions can be found at: http://www.NimbRo.net.
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Abstract. In the Humanoid Leagues balancing during walking and run-
ning is still the biggest challenge for most of the teams. We present here
some work in which a dynamic walker is stabilised by using a fast heavy
rotor, a gyro. The dynamics of a symmetric, fast rotating gyro is dif-
ferent from that of a non-rotating solid body, e.g. in the case of small
disturbances it tends to keep the axes the same. Results show that the
rotor enhances the stability of the walking in the simulations. In a model
for an actuated robot the rotor is used as a reaction wheel, i.e. the pitch
of the robot is stabilised by accelerating and decelerating it. We see this
method –though it is not biologically inspired – as an intermediate step
for learning balancing in biped robots. The control algorithm responsible
for balancing the pitch is discussed in detail. The simulations show that,
by using this kind of stabilisation, movements like stand up, walk and
jump are easily possible by using open loop control for the legs, how-
ever high torques for the rotor are necessary. Finally, a robot design that
consists just of a trunk is presented.

1 Introduction

Balancing men-like walking is still one of the biggest challenges of robot control.
The use of trajectory-based control and zero moment points for statically stable
walking are among the classical approaches to the problem [1]. Nevertheless,
these methods tend to perform slower movements and still consume more energy
(far beyond humans of the same weight and size, cf. e.g. the Honda Asimo
specifications [2]). Recently, several new approaches have appeared that aimed
to overcome this situation. The so-called passive dynamic walking robots (PDW
robots) are certainly among the most pronounced examples in this category [4].

The present work proposes the use a heavy fast rotating gyro attached to the
robot’s body (e.g. a PDW) as a way to stabilise roll and yaw. The principle of the
application of the gyro was already outlined in the literature [9]. The dynamics
of the gyro can be described by the Euler equations.

Results from an investigation using a gyro to stabilise an – apart from the
gyro – non-actuated passive dynamic walker are presented in the first part of the
results of this paper. Additionally, this work also explores how accelerations and
decelerations in the rotation of the gyro can be controlled in a way such that
the pitch is also balanced – gyro serves as a reaction wheel (also called inertia

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 71–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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actuator). A non-legged rolling robot actuated only by the gyro/reaction wheel
effect was simulated. Finally, further investigations of the application of these
same principles in an actuated robot are also presented. In a final discussion we
concentrate on how such a device can be realized.
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Fig. 1. Above left: Scheme for the proposed actuator in a biped robot. The rotor
is marked bold. The rotor’s axis is parallel to the hip. Above right: Schematic view
from the left side of the robot. The pitch angle is α and the speed of the rotor θ̇. The
positive values mean both the velocity and the pitch angle have the same direction.
Below: Feedback loop for pitch balancing: The controller uses information about the
attitude of the robot and the encoder values from the rotor as input, giving α as the
output (e.g. gyroscope and gravity sensor combination). The parameters A, B, C have
to be adapted to the properties of the robot.

1.1 Passive Dynamic Walking

The idea behind PDW is to exploit the natural dynamics of pendulum-like legs
so as to achieve fast and economic walking in bipedal robots. Explicit methods
of motion analyses like Poincaré Return Maps are often used in order to find the
stable attractors of the physical motion dynamics. By doing this PDW research
seeks feasible designs which, for being controlled, require least energy consume
or are optimal with respect to some other eligible criteria.

Usually two-dimensional walkers [3, 7] are used as an intermediate towards
fully-dimensional PDW systems. For instance, PDW walkers such as those stud-
ied by McGeer and colleagues show a moderately stable gait at downhill slopes
without using any control whatsoever. With respect to speed and smoothness
of movements these walkers can compete with state-of-the-art humanoid robots,
provided the slope is sufficiently steep - however, speed is determined by the
slope and payload, being unchangeable for a given design.
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In 2D PDW, only the dynamics throughout the cross-sectional vertical plane
is considered, leaving roll and yaw stable by definition. This is done either by
disregarding depth information in simulations or by designing iso-static shaped
legs for directions outside the plane of study in real robots. This is often seen as a
valid first approach for concerning only about pitch dynamics on the way towards
fully-dimensional implementations. Still, it is a big technological challenge to
further the balance control over all three directions – pitch, roll and yaw –
simultaneously.

1.2 Gyro/reaction Wheel Actuator

Gyros are symmetric rotors that spin fast giving rise to very specific physical
properties of rigidity, precession and nutation. Gyros became well known for
being applied both as sensors (e.g. gyroscopes) and as actuators (e.g. camera
stabilisers). In the present time gyros are being used in many technical devices
such as satellites, artillery, navigation units, cameras, planes and so forth. As for
robotics, gyros are certainly most well known as pan/tilt sensors (gyroscopes).
Nevertheless, there are a few works in the robotics field in which gyro are explored
as means for stabilising and (less common) acting as a reaction wheel. A worth-
mentioning robotic gyro-actuator approach accounting for both stabilisation and
inertial effects is the Gyrover robot [8]. Gyrover is a robot in s wheel-shaped
body which rotates on its own axis, driven by an asymmetric internal rotor
(stabilising effect in external body and reactive inertial effect due to internal
mass). Approaches for the use of gyro-actuators in biped robots have also been
done in previous studies [10, 11]. In these studies the axis of the rotor was set
parallel to the direction of motion of the robot, whereas in the present study the
axis of the gyro is set parallel to the hip.

By positioning the gyro parallel to the hip, additionally to roll and yaw sta-
bilisation, the gyro reaction wheel effect can be controlled such as to balance the
pitch.

Summarising, this gyro/inertia actuator can influence the robot’s dynamics
in either of two ways:

1. by stabilising roll and yaw through rotation – the higher the speed, the slower
the robot reacts to perturbations. In this case care should be taken on what
refers to precession and nutation unusual and unexpected effects;

2. by acting as a reaction wheel, exploiting inertial effect through accelerations
and decelerations. This is only useful if controlled in closed-loop.

These features were simulated in different robotic configurations and results
from these investigations are presented in this paper.

1.3 Simulation Engine

The Open Dynamics Engine (ODE) open source mechanics and dynamics sim-
ulator was used as a framework for the experiments herein mentioned [12]. The
value of the gravitation constant was set to 9.81 units, so as to couple metric
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interpretation to all physical measures. Therefore, one time unit in the simula-
tion can be interpreted as one second and one distance unit can be interpreted
as one meter.

2 Gyro Stabilised Passive Dynamic Walker

The slope was set to 3.0 degrees. The walker was designed simple. The hips
and knees were hinge joints and the round shaped feet were fixed at the end
of the each respective lower leg. The gyro’s rotor axis was implemented as an
unbounded hinge joint parallel to the hip axis, perpendicular to the direction
of motion. The masses of the parts were the following: upper leg 0.07 kg, lower
leg 0.012 kg, middle part 0.011 kg, rotor (heavy gyro) 0.565 kg. The speed of
the gyro was set to 175 rad/s. The hinge joints of the knees were bounded to
stop at an angle of 0.23 rad, which allows a stable stance during walking. The
joints were hinge joints without friction. The starting conditions were optimised
manually.

The walker was not actuated except for the heavy gyro which was capable of
spinning in a constant constant speed. In turning on/off the gyro-actuator the
resulting effects due to gyro properties could be readily detected. Simulations
demonstrated the PDW robot could walk several more steps with the rotating
gyro than with the gyro disabled.

For screen-shots of the simulated passive dynamic biped please cf. Fig. 3. The
walker was able to walk up to five steps in the simulation with the rotating gyro.
In contrast, for the case of the non-rotating gyro, the walker wasn’t able to walk
more than one or two steps.

3 Pitch Balance Controller

As for the pitch it is better to have it as close as possible to the – possibly
unstable – balance point. For doing so the authors propose a feedback control
system, which necessarily supposes the existence of a sensor for pitch angle error
(i.e. actual pitch against desired one). The actual pitch angle could be detected
by a gyroscope. In the following this pitch error shall be referred to as α.

The control equation was implemented as

θ̈r = − A sin(α) + Bα̇ + Cρ(θ̇) (1)

Where θ̈r is the motor speed control signal sent to the motor controller, e.g.
a PID controller. Dynamics of this motor controller were not taken into con-
sideration. The constants A, B and C depend on the size, weight and current
shape of the robot and have to be optimised similarly as it happens in a PD
controller.

The principle of the actuator is the one of a reaction wheel. As in PD control
there are parameters that can to be calculated analytically if the values of the
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Fig. 2. Motion patterns of walking in the actuated biped robot. On top: the state of
the waling behavior. Middle: Motion pattern of the left hip. The motion pattern is not
entirely regular. Below: The state of the pitch value (α). A small oscillation is to see.

inertia tensors of the controlled robot and the rotor are known, which is compa-
rable to the P value in the PD controller paradigm. The parameter B prevents
the overshoot and is thus analogous to the D value of PD controller paradigm.

The parameter C and the the function ρ(..) can be designed so as to keep the
speed of the rotor within an operable range. The specific design of ρ(..) depends
in particular on the type of the balance point. For example if the balance point
is unstable the following function ρ(..) can be applied in the controller equation

ρ(θ̇) = H
(
θ̇ − θ̇opt

)
(2)

where H(x) is a piecewise linear function, which is whether equal to x if within
the limits of |x| < Hlim or either of Hlim or −Hlim for bigger or lower values
of x, respectively. This design makes the robot move slightly ahead its balance
point if the rotor speed is low and behind it if the rotor speed is too high. It
causes a continuous ingression – or degression, respectively – of the rotor speed
in order to balance the robot. In case of a stable balance point just the inverse
can be used

ρ(θ̇) = −H
(
θ̇ − θ̇opt

)
(3)

in order to control the rotor speed. The parameters C, Hlim should be chosen to
be small enough not to interfere with the balancing, yet strong enough to keep
the rotor speed in its limits and to let it converge against β̇opt.
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Fig. 3. Simulation results for three variant types of robots: First row shows a non-
actuated passive dynamic biped walker (PDW) that is stabilised with a gyro that
rotates with constant speed (open loop control). Second row shows an actuated biped
robot with 3 degrees of freedom per leg and an actuated gyro (close loop control). The
third row shows the same robot walking using an open loop control for the legs. Fourth
row shows an robot the only consists of a trunk. This robot can move just by using
the acceleration and deceleration of an internal reaction wheel.

4 Results for an Actuated Walker with Gyro Reaction
Wheel

The pitch balance controller was tested on a biped robot with 3 degrees of
freedom in each leg. The simulation resulting in standing up, walking and in
jumping was done with the following parameters:

Body width 1.0 u ——— rotor radius 0.25 u
Body height 1.3 u foot length 0.80 u
Body depth 0.6 u foot height 0.20 u
upper leg length 0.5 u foot width 0.50 u
lower leg length 0.6 u Dist. betw. legs 0.35 u

The values are given in units of the simulation program which might be thought
as metric units since gravitation was set to 9.81 units.

In the simulations the walker control was able to perform the following three
functions: Stand up, walk and jump. For walking the step length was variant and
had a maximum of about 0.4 units per step. The robot was able to walk for a
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long period without falling down. However, the speed of the rotor tended for go
out of its boundaries, so that the robot should stop while by while and recover
the optimal speed of the rotor. The reason for this is that phases of stable and
unstable balance occur during the walking, and thus the optimal control (i.e.
leaning forward and backward) interchanges eventually driving rotor speed out
of its boundaries. The graph in Fig. 2 shows that the walking (indicated by the
regular pattern of hip movements) is anticipated by an oscillation of the pitch
angle (α). This happened because the constant A was set such as to make the
pitch controller have a moderated suboptimal control. Experiments showed that
less strict pitch control resulted in better walking patterns than the more strict
ones. So it turned out to be useful that the walking is anticipated elastically by
the hip movement. In addition, the swinging leg is moving downward before it
hits the ground. During jumping the robots attitude could be controlled while
it was completely in the air.

The motor specifications in the simulations tend to be out of the limits of
present technology. However, they can be adapted by using a more advanced
control and some mechanical tricks like brakes (please cf. the discussion section
of this paper).

5 Robot Without Legs

Briefly a non-legged robot was simulated that used only the gyro for locomo-
tion. The robot consists of two relevant parts with regard to its dynamics: A
symmetric rotor and the body. The body is moved by its own inertia while the
rotor is accelerated and decelerated. The control of this robot can be performed
manually. Preliminary experiments show that the The design seems suitable for
very light robots. The robot designed here is similar to the Gyrover [8]. The
main difference between our robot and the Gyrover is that the first has its
locomotion supported by an asymmetry in the robots body, whereas the the
locomotion in the Gyrover is supported by an asymmetry of the shape of the
rotor.

6 Summary of the Results and Conclusion

We investigated the applicability of a combined reaction wheel/gyro actuator to
a biped walker by using numerical simulations. As simulation environment the
open dynamics engine (ODE) realistic mechanic simulator [12]. We presented
three examples, two of legged and one of a non-legged robot to demonstrate the
virtues of this kind of approach. In total we demonstrated three approaches:

1. A biped passive dynamic walker with a non-actuated gyro. In this approach
the balancing by the rotor was restricted to yaw and roll. Though stable
walking was not accomplished the simulations showed that a rotating gyro
resulted in an improved stability in comparison to the non-rotating case.

2. A biped robot with three actuated degrees of freedom in each leg. The gyro
stabilised the pitch by accelerating and decelerating. The walker was able to
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Fig. 4. Biped with realistic specifications of a motor/brake combination standing up

walk for virtually infinite times, though the walking has to be interrupt time
by time to adjust the rotor speed.

3. A non-legged robot with only one degree of freedom that was the actuated
gyro. This robot was able to move by just accelerating and decelerating the
speed of the gyro. Thus, in this case the gyro is used not only for balancing
but also for locomotion of the robot.

7 Discussion

Intention of this work was to design an applicable control for balancing the robot.
We achieved this goal in the simulation framework. Still there are issues that are
open to future work and considerations.

The first and biggest issue is how to build a real world robot of this type. The
design of a biped robot that uses the gyro effect – similar to the first example
– is rather simple to realize. The rotor can be designed with sufficient precision
with professional tools. Some preliminary experiments were done already. Fig. 5
shows an example for such a robot.

One more difficult task is to design a reaction wheel actuator that produces
sufficient torque. A robot of the size of Sony’s Qrio needs roughly a torque of
5-10 Nm in order to stand up.

It seems easy to produce any torque with a motor and a gear-head. The
problem is that this torque has to prevail over a sufficient time. The higher
the gear transmission ratio is the faster the rotor reaches it maximum rotation
speed. In addition, the effect of the gyro vanishes if the rotation of the rotor
is not sufficiently fast. Another way to produce torque is to use mechanical or
electrical brakes. Thus, a control can accelerate the rotor slowly in a first phase
and then by using the brake it can rapidly change the attitude of the robot. On
example of standing up has been simulated for a biped robot.

We did one additional simulation with ODE that showed that such a design
is possible if the brake/rotor system can produce sufficient torque. Fig. 4 shows
a motion pattern for standing up for a real world robot. The simulated brake
can produce 2 Nm; the rotor speed is about 4000 RPM. By using an appropriate
leg control the robot was able to stand up.
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Fig. 5. A experimental setup for a gyro/reaction wheel (at Freiburg University)

For the project proposed to NEDO the brake method has been suggested and
presently such a motor brake combination is being designed.

On additional important question is what the possible applications could be
appropriate for such kind of actuator. First, the rotor can be thought as an addi-
tional balancing device that supports the balancing in an intermediate step of the
design of a biped robot. For example during the early stages of a reinforcement
or evolutionary learning process of walking and running, rough terrain tasks and
others more. In this kind of intermediate steps the speed of the rotor can be
reduced more and more and thus, the yaw and roll stabilisation be learned in
convenient steps. With regard to the non-legged robot we see our experiments
as preliminary tests for a possible design of a simple locomotion for a robot. One
possible area for application is the case that the robot is in a medium where the
usage of flexible materials, or gaskets is not possible. One example for this could
be underwater robotics in great depth. In this case the cover of the robot can
be hard and the actuator is inside the robot, not directly interacting with the
surrounding environment.
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Abstract. This paper proposes a novel method for supervised classifica-
tion based on the methodology of Q-analysis. The classification is based
on finding ‘relevant’ structures in the features describing the data, and
using them to define each of the classes. The features not included in the
structural definition of a class are considered as ‘irrelevant’. The paper
uses three different data-sets to experimentally validate the method.

1 Introduction

Designing autonomous robots capable of operating in different environments
requires, among other things, the necessary sensor information to adapt to each
specific situation.

In principle, the designer can a priori provide the robot with the set of nec-
essary sensing capabilities. Although this is the most frequent approach, it lacks
the flexibility desired for autonomous systems. Moreover, unforeseen situations
and possible sensor damage limit the success of the approach.

Another approach would be to design robots with extensive, and even redun-
dant, sensor capabilities. This approach achieves robustness through redundancy
(eg. spare sensors) and flexibility through the usage of extensive sensing capabil-
ities. Although theoretically sound, this approach becomes impractical mainly
because of the dimensionality implications of adding ‘one more sensor’. This
impracticality is exemplified in the following.

Figure 1(a) illustrates a mobile robot with a unique bumper sensor (x1) such
that in this case, the robot’s sensory space is only composed of two states, i.e.
when x1 is pressed (x1 = 1) or not-pressed (x1 = 0). Figure 1(b) and 1(c)
illustrate the same robot with added sensors. The sensory space formed by two
sensors has four possible states ({0, 0},{0, 1},{1, 0},{1, 1}), three sensors result in
eight possible states, and so on. As it can be seen, the size of this sensory space
grows exponentially as a function of the number of sensors, in this particular
case, in the order 2n for n sensors. The exponential growth of a hyperspace (e.g.
sensor space) as a function of its dimensions (e.g. sensors) is known as the curse
of dimensionality [1], and has direct effect on the computational complexity of
a system using such spaces. For instance, a neural network with many inputs
or dimensions will need a large quantity of resources (i.e., network size, training
data, training time) to represent the resulting hyperspace.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 81–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Adding sensor capabilities

To alleviate the problems of dimensionality, a novel method based on the Q-
analysis methodology is proposed, which discovers ‘relevant sensor information,
thus reducing the total number of dimensions by eliminating ‘irrelevant’ sensors.
The process of discovering relevant sensors or features is known in the literature
as feature selection. The main task of feature selection is: given a set of n features
describing some entities, selecting a sub-set of m relevant features, where m <
n such that the sub-set provides the same or similar information about these
entities [2]. Usually the relevance of a feature is measured in the context of
classification, where relevant features are those which provide useful information
for discriminating entities of different classes [2].

The method developed in this paper is demonstrated on three experiments, an
experiment based on the CorrAL synthetic data-set, another based on Fisher’s
iris data-set and finally, one based on data from the RoboCup Simulation League.
In particular, the experiments are focused on discovering the relevant sensors or
features for classifying particular entities into predefined classes, i.e., feature
relevance in relation to supervised classification. In this paper the terms feature
and sensor are used synonymously.

The following section introduces some of the theoretical aspects of the Q-
analysis methodology that are relevant to this paper.

2 The Q-Analysis Methodology

Q-analysis is a multidimensional generalisation of network theory introduced
by Atkin [3]. Q-analysis is able to model general n-ary relations between mul-
tidimensional data elements. This analysis is specially suited for discovering
relational structure in the data.

2.1 Representation of Multidimensional Sensor Data

Let us assume that a robot has p-active binary sensors. For example, p pressed
bumper sensors or p-active camera pixels. Then in Q-analysis, a relation between
the set of these active sensors {x1, x2, ..., xp}, can be considered to determine a
new object called a simplex, denoted by: σ = 〈x1, x2, . . . , xp〉.

Simplices can be represented by polyhedra in multidimensional spaces. Let
an individual, xi, be called a vertex, denoted by 〈xi〉. Then a simplex with one
vertex is a point (Figure 2(a)), a simplex with two vertices is a line (Figure
2(b)), a simplex with three vertices is triangle (Figure 2(c)), a simplex with
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(a) Point (b) Line (c) Triangle (d) Tetrahedron

Fig. 2. Simplices

four vertices is a tetrahedron (Figure 2(d)), and so on. In general, a simplex
with p + 1 vertices is a p-dimensional object and is referred to as a p-simplex.
Following the previous example, a robot with only one active or pressed bumper
is represented by a point, a robot with two active bumpers is represented by a
line, three activated bumpers are represented by a triangle, and so on.

Typical robotic sensors provide their responses in continuous ranges (eg. a
luminosity sensor which provides a response from 0 to 255 proportional to the
luminosity it receives). The assumption that sensors are binary and represented
by simplices can be made without loss of generality, as the method presented
here can also deal with continuous sensors. The next section explains how Q-
analysis defines structural relationships in the robot’s sensory information using
its simplex representation.

2.2 Multidimensional Data Relationships in Q-Analysis

Let the intersection of two simplices be defined as their shared faces. For ex-
ample, Figure 3 illustrates some shared faces between simplices. Figure 3(a)
illustrates two 1-simplices sharing a face which is a point. Figure 3(b) illustrates
two 2-simplices sharing a line. Figure 3(c) illustrates two 3-simplices sharing a
triangular face. An important notion in Q-analysis is that of q-nearness. Two
simplices σ and σ′ are said to be q-near if their shared face has at least q dimen-
sions. Thus, the simplices in Figures 3(a), 3(b) and 3(c) are 0-near, 1-near and
2-near, respectively.

ó
ó’

(a) 0-connected

ó’

ó

(b) 1-connected

ó’

ó

(c) 2-connected

Fig. 3. q-connected simplices

A fundamental hypothesis is that q-nearness is a measure of structural sim-
ilarity between simplices, i.e., simplices that share faces are considered similar.
Thus q-nearness can be used as the basis for association or classification of mul-
tidimensional data. In our example, simplices represent active sensors, so that
q-nearness is a measure of the structural similarity of a robot’s active sensory
inputs. Hence, two situations which activate a set of similar sensors will result
in q-near simplices.
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The notion of q-nearness alone does not solve the problem of feature rele-
vance, as two simplices could be q-near by sharing irrelevant, redundant or even
noisy features (sensors). The next section introduces the idea of a hub, which
generalises the notion of q-nearness between a pair of simplices into a set of
simplices.

2.3 Hubs and Stars

Given a set of simplices, σ1, σ2, . . . , σn, their hub is their largest shared face
[4]. Thus, hub(σ1, σ2, . . . , σn)= ∩n

i=1σi. Figure 4(a) illustrates five simplices,
σ1, σ2, . . . , σ5, representing five different active sensor configurations. As can be
seen, although the five configurations are different, they all share, 〈x1, x2, x3〉,
which is their hub. Figure 4(b) illustrates this hub (grey triangle). Any simplex
sharing a given hub is known as being part of the hub’s star.
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(a) Simplices σ1, σ2, σ3, σ4 and σ5
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(b) hub(σ1, σ2, σ3, σ4, σ5)

Fig. 4. Simplices and their hub

As seen previously, q-nearness between simplices provides some measure of
their structural similarity; similarly hubs provide the structural similarity of a
set of simplices.

Consider that the hub shared by the five previous simplices is in some sense
‘relevant’ in relation to a class. Then these simplices could be representing five
elements of the same class. For example, a class bird could have the following rel-
evant hub: 〈alive, wings, non-mammal, vertebrate〉, such that any animal shar-
ing these essential characteristics would be classified as a bird, irrespective of the
value of other possible features, such as colour, size or weight.

Relevant hubs are known in here as classifier hubs. Simplices sharing the
same classifier hub are considered to be of the same class, even if they don’t
share all of their faces. This last remark is important, as the faces which are
not contained in the classifier hub are considered ‘irrelevant’ for that particular
class. The problem of identifying relevant features, is then the problem of finding
classifier hubs from a set of simplices.
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3 Simple Classification Using Classifier Hubs

This section presents a simple example of a classification task using classifier
hubs. For this example, the CorrAL data-set has been used [2] which contains
one target class and uses six binary features to describe it: (A0, A1, B0, B1,
I, C). The target class is (A0 ∧ A1) ∨ (B0 ∧ B1). Thus (A0, A1, B0, B1) are
relevant features, I is an irrelevant random feature, and C is correlated to the
target class 75% of the time. In total, the data-set contains 40 instances, 20 of
which are of the target class.

3.1 Star-Hub Analysis

The star-hub analysis takes each one of the data instances represented as sim-
plices, and searches for their shared hubs. Broadly speaking, this is done by
intersecting the simplices and finding their shared vertices. Each hub has an
associated value that indicates the number of simplices of each class that share
the hub. Table 1 illustrates some of the hubs from the CorrAL data-set ordered
by their probability of occurrence.

Table 1. Some hubs from the CorrAL data-set

hub #target #¬target total specificity broadness
〈A1〉 16 8 24 16/24 24/40
〈C〉 15 5 20 15/20 20/40
〈A0〉 12 6 18 12/18 18/40

〈A0, A1〉 10 0 10 10/10 10/40
〈B0, B1〉 10 0 10 10/10 10/40

〈A1, B0, C〉 8 1 9 8/9 9/40
〈A0,A1, I, C〉 3 0 3 3/3 3/40

For example, the hub 〈A1〉 is the hub with highest probability of occurrence.
〈A1〉 contains 24 simplices, 16 of which belong to the target class and 8 which
don’t. The table also illustrates two statistical measures, specificity and broad-
ness. The specificity of a hub is the maximum class conditional probability given
a hub, i.e., the maximum probability of any simplex being of class C when it
shares hub H , P (C|H). For example, the probability of a simplex being of the
target class given the hub 〈A1〉 is 16/24. The broadness of a hub is its probability
of occurrence. There are three important characteristics to observe from Table 1.
(i) In general, hubs of higher q-dimension are shared by fewer simplices than hubs
with lower dimension. This is because high dimension hubs pose more require-
ments (number of vertices) to be satisfied, and fewer simplices satisfy them. (ii)
Some hubs contain only simplices related to a unique class (specificity = 1). For
example, hub 〈A0, A1〉 is shared by 10 simplices, and all of them are of the target
class. In principle, such hubs are good for classification, as a simplex sharing this
hub has a high probability of belonging to the target class. (iii) Hubs with few
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vertices and low specificity, eg. the hub 〈A1〉 has a specificity of 16/24 ≈ 0.66,
when taken in combination with other vertices becomes more specific, eg. A1
taken in combination with A0, 〈A0, A1〉, has a specificity of 1. This means that
a vertex could be irrelevant for classification (having low specificity) when taken
individually, but become relevant when is combined with other vertices.

3.2 Heuristic Selection of Classifier Hubs

The total number of hubs found in a data-set is potentially very large, eg. the
small CorrAL data-set contains approximately 60 different hubs. Moreover, not
all these hubs are interesting for classification, as many of them represent the
connection of different classes through irrelevant or noisy features. For example,
hub 〈A1〉 is shared by the 16 target and 8 no-target classes, thus providing no
clear-cut distinction between the classes.

Ideally, a small set of classifier hubs must be selected from the total set of
hubs. To this end a heuristic method to select classifier is presented. The method
operates as follows: (i) hubs are ordered by their broadness, that is starting from
the hubs with highest probability of occurrence. (ii) Starting from the broadest
hub, a hub is selected as a classifier if its specificity is higher than a threshold, and
if it is shared by a minimum number of simplices. As the CorrAL is noise-free, the
specificity threshold is set to 1; this means that only classifier hubs with a 100%
class-conditional probability can be selected. In robotic applications, where data
are noisy, the threshold will have to be lower than 1 (accepting classifier hubs
that contain elements of different classes) and manually selected by the designer.

Following this heuristic, only two classifier hubs are selected to represent the
target concept; these are 〈A0, A1〉 and 〈B0, B1〉. These two classifiers represent
the correct target function (A0 ∧ A1) ∨ (B0 ∧ B1) as any simplex will be
considered of the target class if it shares any of the two classifiers, 〈A0, A1〉 or
〈B0, B1〉. It is important to observe that these classifiers do not contain any
of the irrelevant or correlated features (I,C) initially present in the data. These
have been filtered as ‘irrelevant’ by the heuristic method. To extend these results,
two more experiments are described in the following sections.

4 Experiments with the Iris Data-Set

In this experiment, the popular Fisher’s iris data has been used. This data-
set contains four measurements, the sepal and petal sizes (sepal width, sepal
length, petal width and petal length) of three different types of plant, setosa,
versicolor and virginica. The complete data-set contains 50 instances of each
plant. The task consists in classifying each plant on the basis of their sepal and
petal sizes. Figure 5 illustrates the iris data-set, where the vertical axis represents
the sepal and petal sizes in centimetres, and the horizontal axis represents the
plant instances ordered as follows. From 1 to 50 setosa, from 51 to 100 versicolor,
and 101 to 150 virginica.

Before classifying, the complete iris data-set is divided into training and test
data-sets. Each of these contains half of the complete data, i.e., 75 instances of
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Fig. 5. Iris data

plants, 25 of each class. The aim of this experiment is three-fold: to (i) find the
classifier hubs for the training data-set, (ii) measure the classifier’s accuracy in
classifying the unseen plants of the test data-set, and (iii) study the relevance of
the classifier’s features.

4.1 Simplex Representation of Continuous Features

To represent the continuous features (see Figure 5) using binary values, each
feature has been first normalised to a 0 to 1 range and then segmented into 10
equal intervals. This segmentation results in each continuous feature having 10
possible binary features. Let us refer to each of these binary features as: swi

(sepal width), sli (sepal length), pwi (petal width) and pli (petal length); each
with i = 1, 2, ...10. Of the total of 40 binary features, only four will be present for
any given plant. In other words, each plant will be represented by a 3-simplex.

4.2 Star-Hub Analysis and Classifier Hubs

The star-hub analysis is used on the iris training data to discover its hubs. A
total of 526 different hubs are found. The heuristic method presented in Section
3.2 is now applied to this set of hubs to find classifier hubs. In this case, although
the data contains random fluctuations and noise (see Figure 5) the specificity
threshold was set to 1, thus only the hubs related to a unique class are considered
as possible classifiers. Table 2 illustrates the resulting classifier hubs.

4.3 Results in Classification Using Classifier Hubs

The test data-set is now used to measure the classification accuracy of the clas-
sifier hubs of Table 2. A plant is of a certain class if it shares a classifier hub
related to that class. For example, if a plant shares hub 〈pl1〉, it will be classi-
fied as class setosa. Using the previous classifiers on the iris test data provides
a 100% accuracy on classifying instances of setosa, 80% on the versicolor and
80% on the virginica. The remaining 20% for both versicolor and virginica are
unclassified instances, as their simplices do not share any of the existing classifier
hubs. These results indicate that a small number of classifier hubs, 12 in total,
can be used to classify with acceptable accuracy.
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Table 2. Classifier hubs from the iris data

setosa vesicolor virginica
classifier hub spec broad classifier hub spec broad classifier hub spec broad

〈pl1〉 20/20 20/75 〈pl5〉 8/8 8/75 〈pw8〉 7/7 7/75
〈pw1〉 19/19 19/75 〈pw5〉 4/4 4/75 〈pw9〉 6/6 6/75
〈pw2〉 6/6 6/75 〈pl4〉 4/4 4/75 〈pl9〉 6/6 6/75

〈sl5, pl6〉 6/6 6/75 〈pl10〉 6/6 6/75
〈sl3, pl8〉 5/5 5/75

4.4 Study of Feature Relevance

In the experiment presented in Section 3 it was easy to validate whether the
features composing the classifier hubs were relevant or not, as the data-set itself
defined which features were relevant, irrelevant and correlated. In the iris data-
set there is no straightforward definition of which features are relevant and which
are not. Thus, in order to study the features’ relevance the following experiment
is conducted.

Two multilayer neural networks are used to classify the iris data, one us-
ing the complete set of features and the other using only the features that
compose the classifier hubs of Table 2. That is, the first network takes as in-
put the 40 features described in Section 4.1. The second network uses only 14
features, i.e. (pl1, pw1, pw2, pl5, pw5, pl4, sl5, pl6, pw8, pw9, pl9, pl10, sl3, pl8). Both
networks have 3 hidden neurons, 3 outputs, and are trained using backpropaga-
tion with 10 training instances of each class of plant.

The trained networks are tested five times against the remaining plant in-
stances, and the average of their classification error is measured. The results
of the classification are summarised in Figure 6. In black is the result for the
40-input network, in white is the result of the 14-input network. Figure 6(a) illus-
trates the misclassification error and Figure 6(b) illustrates the unclassified error.
These show that the 14-input network results in a slightly better classification
accuracy. Although this accuracy is not significant to decide that the 14-input
network outperforms the 40-input network, it can be said that both networks
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have an almost similar accuracy. Thus, removing what the heuristic considered
as irrelevant features does not decrease the network’s prediction accuracy. This
implies that those features were irrelevant in the first place.

5 Experiments with the RoboCup Data-Set

One of the important behaviours in robot soccer is that of ball-passing. If the
player with the ball decides to pass, it must also decide which is the ‘appropriate’
team-mate to pass to. In order to make this decision, the passer evaluates many
features. For example, it could measure the positions, distances, speeds, direction
of movements of each player, including features of low relevance such as the
players’ names. Now, the question is to find which of these features are most
relevant for a successful pass.

To investigate this question, the following experiment applies the previous
method to a data-set extracted from the RoboCup 2003 Simulation League final
game. The data-set is composed of the successful passes in the game. For each
pass, the data-set indicates some arbitrary features that the passer sensed with
respect to the receiver as well as with respect to the remaining team-mates [5], in
other words, the state of the receiver and the non-receiver team-mates as “seen”
from the passer’s perspective. The next section describes these features.

5.1 Simplex Representation of the Pass Data-Set

The state of each team-mate player (receiver or not) is described by fifty binary
features:

{d1, . . . , d5, α, RN, R̄N, LN, L̄N, OPP, ¯OPP , d(f,l), . . . , d(b,l), p(1,2), . . . , p(3,4)}

Some are illustrated in Figure 7. Figure 7(a) illustrates a set of features related to
the players’s ‘controlled area’. This area is defined by the distances (d1, . . . , d5)
and the angle (α) between the four players seen in the figure, namely, the passer,
the team-mate in focus (in grey) and its two neighbouring players, which may or
may not be of the same team. These features have four possible states indicating
their values (‘very small’, ‘small’, ‘big’ or ‘very big’). Figure 7(b) illustrates eight
directions (d(f,l), . . . , d(b,l)) in which the team-mate player could be located, these
are defined from the passer’s perspective and the attacking direction. Figure 7(c)
illustrates the playing field divided into twelve positions (p(1,2), . . . , p(3,4)), in
which the team-mate player could be located. These positions are also relative
to the attacking direction. Figure 7(d) illustrates how the previous features are
measured with respect to the team-mate player (in grey). The non-illustrated
features, i.e., RN , R̄N , LN , L̄N , OPP and ¯OPP , have the following significance.
The response of ‘right neighbour’ r(RN) and ‘left neighbour’ r(LN) is 1 if the
neighbouring players (see Figure 7(a)) of the player in focus are also team-mates.
The response of ‘opponent closer’ r( ¯OPP ) is 1 if a neighbouring players is an
opponent, and is closer to the ball. The features R̄N , L̄N and ¯OPP are the
opposite of the previous.
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Of these fifty features only eleven are active for any given pass, because some
of the features are exclusive. For example, if d1 is ‘very small’ it can not be any
of the other remaining values (‘small’, ‘big’, ‘very big’). Given this definition of
the state of a team-mate player, each pass determines a 10-simplex with respect
to each player, that is, one simplex representing the receiver’s state, labelled
as receiver ; and nine simplices representing the remaining team-mates’ state,
labelled as non-receiver. The pass data-set contains 1062 ‘non-receiver’ and 118
‘receiver’ instances.

The next section applies the star-hub analysis to investigate if there exists
any structural difference between the simplices representing ‘receivers’ and those
representing ‘non-receivers’.

5.2 Star-Hub Analysis

The star-hub analysis applied to the pass data-set produces over 53000 hubs.
From these, a selection is presented in Table 3. As can be seen in the table,
there are some hubs that occur more in relation to ‘receiver’ players than in
relation to ‘non-receiver’ ones. This indicates that some structural differences
exist between the state of ‘receiver’ and the ‘non-receiver’ players, as also shown
in [5].

The two last hubs in the table show a similar probability of occurrence in
both classes. Thus, in principle, if these features do not appear as relevant in
other hubs, they could be considered as irrelevant for these classes.

A complete analysis, including the heuristic method for finding classifier hubs,
is not applicable in this experiment. The reasons are: (i) a relatively small data-
set, containing 118 ‘receiver’ instances and 1062 ‘non-receiver’ instances, results
in a huge number of hubs, approximately 58000. In such a large hub space,
most hubs are only shared by two simplices. Thus they do not provide reliable
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Table 3. A selection of hubs from the pass data

hub receiver non-receiver
〈R̄N, ¯OPP 〉 43% 24%
〈d1(s), L̄N〉 36% 15%

〈R̄N, L̄N, ¯OPP 〉 24% 10%
〈d1(s), R̄N, L̄N〉 20% 9%

〈d1(s), d5(vb), α(vs), ¯OPP 〉 15% 4%
〈d1(vs), R̄N, LN, ¯OPP 〉 8% 2%

〈d2(s), d3(s)〉 13% 10%
〈d3(s), d4(b)〉 9% 7%

statistics of ‘specificity’ and ‘broadness’. (ii) Some of the players labelled as ‘non-
receivers’ share similar features to those labelled as ‘receivers’. This is because
it is possible for many team-mates to be in a good passing states, but only one
of them can become a ‘receiver’.

6 Conclusions

This paper has introduced feature selection methods as a possible solution to
the problems related to dimensionality. Feature selection methods were defined
in the context of classification.

The Q-analysis methodology was described, and a method for supervised
classification based on it was presented. The method consisted of representing
training instances as simplices and applying the star-hub analysis to discover
the hubs in the training data. Then, a heuristic method was used to discover
classifier hubs. Other well-known supervised classification methods exist, such
as inductive trees, which use different criteria for selecting the relevance of the
features. Thus, it will be necessary to extend the experiments in this paper to
evaluate and contrast different supervised classification methods.

The main idea behind classification using classifier hubs, is that if a set of
simplices share ‘relevant’ vertices or features (i.e. the classifier hub), then these
simplices can be considered to belong to the same class. By definition, the vertices
or features not contained in the set of classifier hubs are ‘irrelevant’ for the
classification. Thus, discovering (ir)relevant features is seen as the task of finding
classifier hubs.

Two experiments, one based on the CorrAL data-set and one based on the iris
data-set were used to validate experimentally the classification method. The re-
sults from those experiments indicate that it is possible to classify using classifier
hubs; and that eliminating the features not contained in the set of classifiers did
not deteriorate the classification accuracy. Thus, those features were irrelevant,
and were correctly identified as such by the heuristic method.

A third experiment based on data from the RoboCup Simulation League
was also proposed. Although the results from this last experiment were not
conclusive, the Q-analysis method was capable of finding structural differences
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between the classes in that data. These are promising results, but require further
heuristics to alleviate the combinatorial explosion of having to compute the
complete set of hubs.
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lag. (1977)
4. Johnson, J.H.: Stars, Maximal Rectangles, Lattices: a new perspective on Q-analysis.

International Journal of Man-Machine Studies 24 (1986) 293–299
5. Iravani, P., Johnson, J.H., Rapanotti, L.: Robotics and the Q-analysis of behaviour:

International Symposium on Artificial Life and Robotics (2005)



Keepaway Soccer: From Machine Learning
Testbed to Benchmark

Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and Yaxin Liu

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{pstone, kuhlmann, mtaylor, yxliu}@cs.utexas.edu

Abstract. Keepaway soccer has been previously put forth as a testbed
for machine learning. Although multiple researchers have used it suc-
cessfully for machine learning experiments, doing so has required a good
deal of domain expertise. This paper introduces a set of programs, tools,
and resources designed to make the domain easily usable for experimen-
tation without any prior knowledge of RoboCup or the Soccer Server. In
addition, we report on new experiments in the Keepaway domain, along
with performance results designed to be directly comparable with future
experimental results. Combined, the new infrastructure and our concrete
demonstration of its use in comparative experiments elevate the domain
to a machine learning benchmark, suitable for use by researchers across
the field.

1 Introduction

Keepaway soccer in the Soccer Server used at RoboCup has been previously
put forth as a testbed for machine learning [15]. Since then it has been used for
research on temporal difference reinforcement learning with function approxima-
tion [16], evolutionary learning [12], relational reinforcement learning [20], and
behavior transfer [18].

These successes notwithstanding, the domain has remained inaccessible to
many potential users due to the considerable implementation effort required. In
particular, though the domain itself is publically available, it has been necessary
for each researcher to build up agents capable of following the rules of Keepaway
and executing the required low-level behaviors such as intercepting a moving
ball, passing the ball, and moving to open space. Due to the complexity of the
simulator, building up such agents is no simple task. As a result, researchers who
have no prior experience in RoboCup, or who are unwilling to invest considerable
start-up effort, have not been able to use the testbed.

Even if willing to invest this effort, the resulting experiments are not directly
comparable with previously published results. Because each experiment is done
with different underlying agents, the performance results may vary more from
inter-agent differences than from the learning algorithms under study.

These two barriers — inaccessibility to the non-domain-experts and incom-
parability of results across studies — have prevented the Keepaway testbed from

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 93–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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serving as a benchmark for the machine learning community. This paper reports
on new resources that elevate the Keepaway testbed to a benchmark problem
for machine learning. In particular, it describes a repository that:

1. Provides standard, open source implementations for all aspects of the prob-
lem except the learning algorithm itself;

2. Provides a step-by-step tutorial for non-domain-experts to get up to speed
easily; and

3. Provides the graphical tools necessary to evaluate progress.

In addition, we report concrete numerical results for several easily replicable
approaches using the material from the repository. These numerical results are
designed to be directly comparable with future experimental studies.

Finally, we illustrate the use of this benchmark by presenting an empiri-
cal study of different function approximators used within a temporal difference
learning approach to the problem. Previous results indicated that using a form
of linear tile-coding (a CMAC [1]) to approximate the value function led to re-
sults that were better than hand-coded approaches. However, it was not known
to what extent the CMAC itself was responsible for these results. In this pa-
per we directly compare the CMAC against other function approximators, in-
cluding a variation of CMAC based on radial basis functions, as well as neural
networks.

2 Background

This section introduces the Keepaway task, surveys previous examples of learning
in this domain, and specifies a standardized learning scenario to be used as a
machine learning benchmark.

2.1 The Keepaway Task

Keepaway is a subproblem of RoboCup simulated soccer in which one team, the
keepers, tries to maintain possession of the ball within a limited region, while
the opposing team, the takers, attempts to gain possession [15]. Whenever the
takers take possession or the ball leaves the region, the episode ends and the
players are reset for another episode (with the keepers being given possession
of the ball again). Parameters of the task include the size of the region, the
number of keepers, and the number of takers. Figure 1 shows a screen shot of
an episode with 3 keepers and 2 takers (called 3 vs. 2, or 3v2 for short) playing
in a 20m× 20m region1.

2.2 The Soccer Server

Since late 2002, the Keepaway task has been part of the official release of the
open source Soccer Server used at RoboCup2. Agents in the simulator [11] re-
ceive visual perceptions every 150 msec indicating the relative distance and angle
1 Flash files illustrating the task are available at
http://www.cs.utexas.edu/∼AustinVilla/sim/keepaway/

2 Starting with version 9.1.0.
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to visible objects in the world, such as the ball and other agents. They may ex-
ecute a primitive, parameterized action such as turn(angle), dash(power), or
kick(power,angle) every 100 msec. Thus the agents must sense and act asyn-
chronously. Random noise is injected into all sensations and actions. Individual
agents must be controlled by separate processes, with no inter-agent communica-
tion permitted other than via the simulator itself, which enforces communication
bandwidth and range constraints. Full details of the simulator are presented in
the server manual [6].

Boundary

Keepers

Takers

Ball

Fig. 1. A screen shot from the middle
of a 3 vs. 2 Keepaway episode in a 20m
x 20m region

When started in a special mode, the
simulator enforces the rules of the Keep-
away task, as described above, instead
of the rules of full soccer. In particu-
lar, the simulator places the players at
their initial positions at the start of each
episode and ends an episode when the
ball leaves the play region or is taken
away. In this mode, the simulator also in-
forms the players when an episode has
ended and produces a log file with the
duration of each episode.

2.3 Previous Studies

Although the Keepaway task has been available in the server for some time, it
required knowledge of player development to be useful as a machine learning
testbed. Nonetheless, there are a few examples of machine learning research
involving RoboCup Keepaway.

In addition to our own previous work [16, 18], work by DiPietro et al. [12]
applied evolutionary algorithms to train 3 keepers against 2 takers in the Soccer
Server. Other work by Walker et al. [20] used relational reinforcement learning
to learn the value function for a keeper coordinating with 2 “smart” teammates
against 2 takers.

There has been additional previous work in Keepaway using simulators other
than the Soccer Server. Whiteson et al. [21] used neuroevolution to train keep-
ers in the SoccerBots domain [3], an extension of the more abstract TeamBots
simulator [2]. Also, Hsu and Gustafson [9] evolved keepers for 3 vs. 1 Keepaway
in the TeamBots simulator3.

Clearly it is not possible to to directly compare performance of work using
simulators with different primitive actions and different game dynamics. But
even work within the same simulator cannot typically be compared directly
because the approaches differ in their set of high-level behaviors, implementation
of basic skills, fixed opponent policies, and sometimes even performance metrics.
It is exactly this problem that our benchmark repository seeks to address.
3 Gustafson has made some code available that contributes to this more ab-

stract simulator having some of our defined properties of a benchmark:
http://www.cs.nott.ac.uk/∼smg/kas/keepaway-v0.01.html
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2.4 Standardized Task

When Keepaway was introduced as a testbed [15], a standard task was defined.
The main contribution of the current work is the infrastructure required to easily
implement that task (Section 3). This section reviews the standardized task as
previously formulated.

Takers

Keepers

Ball

Fig. 2. This diagram depicts the 13 state variables
used for learning with 3 keepers and 2 takers. There
are 11 distances to players, the center of the field,
and the ball, as well as 2 angles along passing lanes.

The Keepaway problem
maps fairly directly onto
the discrete-time, episodic,
reinforcement-learning frame-
work. As a way of incorpo-
rating domain knowledge, the
learners choose not from the
simulator’s primitive actions
but from a set of higher-level
macro-actions implemented
as part of the player. These
macro-actions can last more
than one time step, and the
keepers have opportunities
to make decisions only when
an on-going macro-action
terminates. To handle such
situations, it is convenient to

treat the problem as a semi-Markov decision process, or SMDP [13, 5]. The
macro-actions used (and fully provided as a part of our repository) can be found
in [16]. The agent can make decisions at discrete SMDP time steps, at which
macro-actions are initiated and terminated.

For the purpose of defining a standardized task, we focus on training the
keepers, but training the takers can be done similarly in the Keepaway domain,
as suggested in [16]. The keepers learn in a constrained policy space. They have
the freedom to decide which action to take only when in possession of the ball.
A keeper in possession may either hold the ball or pass to one of its teammates.
Keepers not in possession of the ball are required to execute the Receive macro-
action in which the player who can get there the soonest goes to the ball and
the remaining players try to get open for a pass.

For training the keepers, the behavior of the takers is “hard-wired” and rela-
tively simple. The two takers that can get there the soonest go to the ball, while
the remaining takers, if present, try to block open passing lanes. Similarly, for
training the takers, the keepers may be hard-wired. These hard-wired behaviors
are provided in the repository.

Also as a way of incoporating domain knowledge, the learners do not make
decisions based on raw positional information but based on higher-level features
that form the states for the Keepaway learning task. The keepers’ states com-
prise distances and angles of the keepers K1, . . . , Kn, the takers T1, . . . , Tm, and
the center of the playing region. Keepers and takers are ordered by increasing
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distance from the ball and when learning takes place, K1 is always the keeper
in possession of the ball. The 13 state variables for 3v2 Keepaway are (see Fig-
ure 2):

– Distances from players to center of region,
– Distances from other players to K1,
– Distances from teammates to their closest opponent, and
– For each Ki (i = 2, . . . , n), the minimal angle with the vertex at K1 between

Ki and an opponent.

We can easily vary the size of the Keepaway region, the number of keepers,
and the number of takers to change the Keepaway task. Our framework provides
a standard interface to the learner in terms of macro-actions, states, and rewards.

We choose episode duration as the performance measure for this task. The
keepers attempt to maximize it while the the takers try to minimize it. To this
end, it is natural to give the learners a constant positive reward for each time
step an episode persists. Complete details on the task and the learning scenario
can be found elsewhere [16].

3 Benchmark Repository

We have implemented a standardized Keepaway player framework in C++ and
released its code base for public use in an online repository4. The code base
provides an open source implementation for all aspects of the Keepaway problem
except the learning algorithm itself, which is intended to be the object of study
by each individual researcher.

3.1 Standardized Keepaway Player

We have created an implementation of a standardized player built upon the
player framework developed by the UvA Trilearn team [8]. This framework han-
dles communication and synchronization with the server, world model update,
localization, and low- and mid-level skills.

On top of this framework, we added additional skills necessary for Keepaway
and implemented the fixed policy carried out by the keepers when they do not
have the ball. Also, we have implented hand-coded takers that follow the policy
described previously.

By default, a player in the Soccer Server is only able to see objects in a
90-degree cone in front of them. A difficult problem in developing agents that
are meant to coordinate in dynamic environments with limited vision is trying
to maintain a correct distributed world model. This requires agents to decide
where to look, what to communicate, whom to listen to, and how to incorporate
second-hand information. Although we have previously demonstrated that it is
possible to get learning to work in this scenario [10], the players do not per-
form at as high of a level. For this reason, the players operate with 360-degree
4 http://www.cs.utexas.edu/∼AustinVilla/sim/keepaway/
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(but still noisy) vision by default. A rudimentary implementation of communi-
cation and information-gathering actions is included, but is not recommended.
We hope that in future development of the players, the level of play in the 90-
degree case can be increased such that the 360-degree assumption is no longer
necessary.

Learning Agent Interface. The Keepaway player implementation is con-
structed in such a way that the details of the Keepaway domain are completely
abstracted from the high-level action selection. This was done to allow new
learning algorithms to be integrated into the players with minimal effort.

From the learning algorithm’s perspective, the Keepaway problem is presented
as a generic SMDP. The state is represented as a fixed-length vector of con-
tinuous values. A macro-action is represented as an integer ranging from 0 to
numActions − 1. The reward is a single continuous value received after each
macro-action terminates.

A new learning agent must implement the SMDPagent interface, which
consists of the following three functions:

– int startEpisode( double state[] )
This function is called the first time this player has an action opportunity in
an episode. In other words, it is called when the player first has possession
of the ball. If the player never obtains the ball, this function will never be
called. The agent is supplied with the current state and is expected to return
a macro-action to be executed.

– int step( double reward, double state[] )
This function is called at every action opportunity for this player after the
first one. The reward accumulated during the execution of the previous
macro-action is given along with the new state. A macro-action is again
expected to be returned.

– void endEpisode( double reward )
This function is called when the player receives notice from the server that
the episode has ended. The agent is supplied with the reward accumulated
from the last macro-action up until the end of the episode. Note that this
function is called after every episode, even when this player never touches
the ball.

Although the players do not come with any learning code, a few fixed policies
are supplied:

– Random - choose actions uniformly at random
– Always Hold - always choose the hold action
– Hand-coded - a simple handcoded policy that holds the ball when no takers

are nearby and passes to the most open teammate otherwise. More details
can be found in [16].

The known performance of these policies as reported later in this paper (see
Section 4) serve as a sanity check for new installations of the system.
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3.2 Tools

The player source code package comes with a set of scripts that are helpful in
running experiments and analyzing the resulting data. There are scripts to start
and stop the simulation. Another script can be executed during the simulation
to launch the Soccer Monitor, the standard visualization tool for the simulator,
in a special mode that displays the Keepaway region on field. Additional scripts
use the known structure of the .kwy log files to compress and decompress them
much more compactly than using a standard compression utility.

One of the most useful tools is a script that converts the episode duration data
in a .kwy file into a representation that is appropriate for generating a learning
curve using a tool such as gnuplot. This script uses a “sliding window” to find
average episode durations for each fixed-sized sequence of episodes. Along with
the size of the window (number of episodes), the script takes in an additional
parameter that specifies the coefficient of a low-pass filter used for smoothing
the curve. A gnuplot style file is also supplied to produce graphs similar to the
ones included in this paper (e.g. Figure 4).

Finally, there is a tool to generate histograms of episode durations. The in-
tended purpose of this tool is to allow someone to visualize the distribution of
episode durations when evaluating a fixed policy. Again, a gnuplot style file is
included for generating figures appropriate for publication.

3.3 Online Tutorials

In addition to source code itself, the web site repository contains a step-by-step
tutorial of how to use the code. The goal of the tutorial is to allow for someone who
is not an expert in the RoboCup simulated soccer domain to get up to speed easily.

The tutorial is divided into two sections. The first section walks through the
necessary steps for downloading and installing the simulator and players, starting
a simulation using one of the supplied hand-coded policies, and generating a
learning curve. Two graduate students from our lab that had never worked in
the Keepaway domain before were able to successfully complete this section in
a matter of minutes.

The second part of the tutorial discusses how to incorporate a new learning
algorithm into the provided player source code. We include skeleton code for
download from within this section of the web site that can serve as the starting
point for a new learning agent implementation. Thus, the main effort required
on the part of a new user is exactly the porting of one’s own learning approach
to the place-holders within the provided source code.

4 An Empirical Study

Though many learning approaches are possible in this domain, we now consider
a particular learning approach to learning Keepaway for the keepers. The keep-
ers learn their task using episodic SMDP Sarsa(λ) [17, 16], a well-understood
temporal difference algorithm and naturally fit into the SMDPagent interface.
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The state variables are continuous and therefore suggest value function ap-
proximation. We consider episodic SMDP Sarsa(λ) but with different function
approximators. A function approximator in a Sarsa(λ) learner maps states to a
vector of state-action values, one entry for each action, and the Sarsa(λ) learner
uses the state-action values to perform on-policy learning.

Within this framework, a question that arises is the efficacy of different func-
tion approximators. By using an implementation of the SMDPagent interface we
are able to easily substitute different function approximators, a key component
of a value-based RL learning. In this section we compare three such function ap-
proximators, CMACs, a novel extension to CMACs using radial basis functions
which we denote RBF networks, and neural networks, in the Sarsa approach
to the Keepaway task. The training performs a version of Sarsa using function
approximators [14], with adaptations for SMDPs.

Table 1. This table details the average
possession time and standard deviation in
seconds for three simple policies included
in our distributed code on three different
Keepaway tasks. 3 vs. 2 is run on a 20m
x 20m field, 3 vs. 4 is run on a 25m x 25m
field, and 5 vs. 4 is run on a 30m x 30m field.
These numbers may be used as benchmarks
to be compared against other learned poli-
cies.

Static Keepaway Policies
Policy 3 vs. 2 4 vs. 3 5 vs. 4
Always Hold 3.4±1.5 4.1±1.8 4.8±2.2
Random 7.5±3.7 8.3±4.4 9.5±5.1
Hand-coded 8.3±4.7 9.2±5.2 10.8±6.7

In order to quantify the learning
rates of different learning algorithms
and function approximators, we an-
alyze the .kwy files produced by the
Soccer Server in Keepaway mode. To
produce a learning curve we “win-
dow” the data so that every point
on a learning graph is the average of
1000 Keepaway episodes. The noise
in the sensors and actuators is large
enough that the variance between dif-
ferent episodes is large, even within a
single trial using a static policy. By
averaging episodes over time we are
able to reduce much of the noise in
our graph and still show representa-
tive curves.

The possession times for the three static policies provided can be found in
Table 1. Note that the standard deviation is a measure of the difference of win-
dowed averages across trials, not a measure of the variation in episode lengths
within a single trial. We will see that both function approximators examined
allow players to learn an average possession time better than these three static
policies. While past research [16] has shown that CMAC function approxima-
tion allows learning in the Keepaway domain, this is the first research showing
comparable, or perhaps better, learning results, in this case using the new RBF
function approximator.

4.1 CMAC Function Approximation

CMACs are a form of linear tile-coding function approximation that have been
successfully used in many reinforcement learning systems [1]. CMACs allow us to
take arbitrary groups of continuous state variables and lay infinite, axis-parallel
tilings over them (see Figure 3). Using this method we are able to discretize the
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Tiling #1

Tiling #2

Dimension #1
D
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2

Fig. 3. The tile-coding feature sets are formed from multiple overlapping tilings. The
state variables are used to determine the activated tile in each of the different tilings.
Every activated tile then contributes a weighted value to the total output of the CMAC
for the given state. Increasing the number of tilings allows the tile-coding to generalize
better while decreasing the tile size allows more accurate representations of smaller
details. Note that we primarily use one-dimensional tilings but that the principles
apply in the n-dimensional case.

continuous state space by using tilings while maintaining the capability to gener-
alize via multiple overlapping tilings. The number of tiles and width of the tilings
are hardcoded and this dictates which state values will activate which tiles. The
function approximation is learned by changing how much each tile contributes
to the output of the function approximator. By default, all the CMAC’s weights
are initialized to zero. This approach to function approximation in the RoboCup
soccer domain is detailed by Stone et al. [16].
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Fig. 4. This figure presents the learning
curves for 24 independent 3 vs. 2 trials us-
ing a CMAC function approximator

CMACs have been used previ-
ously in the Keepaway domain [16].
We include results here as a point
of comparison. In Figure 4 we see
that the keepers learn to increase
the time they are able to control
the ball through training. The av-
erage learned possession time over
24 trials after 30 simulator hours
of training is 15.69 seconds with a
standard deviation of 2.81 seconds.
Again, the average possession time
for each trial is averaged over 1000
episodes to reduce the impact of
noise.

4.2 RBF Function Approximation

A radial basis function (RBF) is a generalization of the tile coding idea to a
continuous function [17]. In the one-dimensional case, an RBF approximator is
a linear function approximator f̂(x) =

∑
i wifi(x), where the basis functions
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have the form fi(x) = φ(|x − ci|), x is the current state, and ci is the center
for feature i. A CMAC is a special type of RBF approximator with ci’s equally
spaced and φ(x) a step function. Here we use Gaussian radial basis functions,
where φ(x) = exp(− x2

2σ2 ), and the same ci’s as a CMAC. The learning for RBF
networks are identical to that for CMACs except for the calculation of state-
action values where the RBFs are used. As is the case for CMACs, the state-
action values are computed as a sum of one-dimensional RBFs, one for each
feature. By tuning σ, the experimenter can control the width of the Gaussian
function and therefore the amount of generalization over the state space. In our
implementation, a value of σ = 1.0 creates a Gaussian which roughly spans 9
CMAC tiles, a value of σ = 0.5 spans 5 tiles, and σ = 0.25 activates roughly
3 tiles. We found the value of σ = 0.25 to perform the best, but more tuning
would possibly produced better results than reported here.
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Fig. 5. This figure presents the
learning curves for 40 independent
3 vs. 2 trials using an RBF function
approximator

In Figure 5 we see keepers can successfully
learn to keep the ball with an RBF function
approximator for successively longer periods
of time after training. The average learned
possession time over 40 trials after 30 simu-
lator hours of training is 14.23 seconds with
a standard deviation of 3.14 seconds.

By comparing Figures 4 and 5, we note
that the RBF trials appear to be learn-
ing faster: they have better performance be-
tween the 5-hour and 25-hour marks (though
not significantly different average perfor-
mance). The best-case performance of RBF
at the 30-hour mark is comparable to that
of CMAC, but more RBF trials land at the
worst-case end.

4.3 Neural Network Function Approximation

Feedforward neural networks are a very popular type of function approximator
and have had some notable past successes in reinforcement learning [7, 19]. We
use three seperate 13-20-1 networks, one for each action. Inputs to the neural
network are set to the value of state variables and each network’s output corre-
sponds to an action. Nodes in the hidden layer have a sigmoid transfer function
and output nodes are linear. We use standard backpropagation to modify the
weights in the neural networks to back up Sarsa(λ) values.

In Figure 6 we see keepers also learn to keep the ball with a neural network
function approximator for longer periods of time after training. The average
learned possession time over 20 trials after 30 simulator hours of training is
10.13 seconds with a standard deviation of 0.29 seconds.

By comparing Figure 6 to Figures 4 and 5, we note that neural networks do
not learn as fast as CMACs or RBFs, but have a lower variance. However, we did
not try to optimize the neural networks’ parameters and ran fewer experiments
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Fig. 6. This figure presents the learning curves for 20 independent 3 vs. 2 trials using
a neural network function approximator

relative to the CMACs and RBFs. Neural networks can theoretically have
better performance: they can encode arbitrarily complex interactions among
state variables while CMACs and RBFs in our implementation only combine
effects of different state variables in a simple way (summation).

5 Future Work

In the Section 4 we give an example study comparing the efficacy of two dif-
ferent function approximators using the Keepaway benchmark. Other function
approximators and learning algorithms can be easily inserted into the testbed
and directly compared to these two function approximators, allowing experi-
menters to quickly test the relative benefits of different techniques.

The infrastructure is of course not limited to function approximation studies.
Different reinforcement learning algorithms, both value-based and policy search,
may be compared. Evolutionary methods (as in [12]) may be evaluated and
compared directly to temporal difference methods; different temporal difference
methods may be directly compared (such as Sarsa vs. Q-learning as in [16]).
Multi-agent learning questions may be addressed, such as how learning rates are
affected when opponents or teammates learn simultaneously with an agent, learn
sequentially, or do not learn at all. Different state representations can be easily
expressed, enabling the investigation of state abstraction. Alternate actions can
be implemented, allowing the investigation of hierarchical RL questions such as
using options to speed up learning. We anticipate exploring some of these areas
in the future using this infrastructure.

Our Keepaway benchmark infrastructure provides an easy way of consistently
comparing the relative performance of different methods when investigating any of
the previously mentioned research questions. By using the same benchmark plat-
form, researchers will be able to make quantitative comparisons between different
learning methods. To that end we will make every effort to not make changes to
the infrastructure that affect performance, thus making direct comparisons across
versions of our implementation legitimate. However, we intend to make improve-
ments to the communication and distributed sensing code for use with limited
vision. Because of this and other possible changes, when reporting results, we en-
courage researchers to always cite the implementation version number as well as



104 P. Stone et al.

any non-default settings that were used. Doing so will ensure the validity of direct
comparisons as well as enable the repeatability of all experiments.

6 Conclusion

This paper makes two main contributions. First and foremost, it introduces a
source code repository including a set of tools and tutorials designed to enable all
machine learning researchers to use the Keepaway soccer domain as a benchmark
task. Second, it introduces a function approximation method not previously
tested in this domain and empirically evaluates it on this benchmark task. The
RBF network performs at least as well as, and perhaps a little better than, the
previously-used CMAC method.

While there is an established repository for supervised machine learn-
ing benchmarks [4], there is currently no comparable repository of sequen-
tial decision-making tasks. For this reason, releasing our new benchmark pro-
vides a valuable service. We plan to continue maintaining the repository
at http://www.cs.utexas.edu/∼AustinVilla/sim/keepaway/ for the foresee-
able future. It is our hope that it will be a benefit to both the RoboCup and
the machine learning communities. For people already involved in RoboCup, it
standarizes a benchmark for machine learning research within the domain, and
could serve as a domain of interest for the Special Interest Group (SIG) on multi-
agent learning. 5 For the machine learning community it makes experimentation
within the RoboCup domain accessible to everyone.
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Learning to Approach a Moving Ball
with a Simulated Two-Wheeled Robot
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Abstract. We show how a two-wheeled robot can learn to approach a
moving ball using Reinforcement Learning. The robot is controlled by
setting the velocities of its two wheels. It has to reach the ball under
certain conditions to be able to kick it towards a given target. In order
to kick, the ball has to be in front of the robot. The robot also has to reach
the ball at a certain angle in relation to the target, because the ball is
always kicked in the direction from the center of the robot to the ball. The
robot learns which velocity differences should be applied to the wheels:
one of the wheels is set to the maximum velocity, the other one according
to this difference. We apply a REINFORCE algorithm [1] in combination
with some kind of extended Growing Neural Gas (GNG) [2] to learn
these continuous actions. The resulting algorithm, called ReinforceGNG,
is tested in a simulated environment with and without noise.

1 Introduction

In this paper we propose using a reinforcement-based learning method to learn
the actions of a simulated two-wheeled robot to approach a moving ball. The
ball has to be reached under certain conditions in order to kick it towards a
given target. First, the ball has to be in front of the robot. Second, since the
ball is always kicked in the direction from the center of the robot to the ball,
the angle between the vector from the robot to the ball and the vector from the
robot to the target has to be sufficiently small (as sketched in Fig. 4).

While there are algorithms to find optimal trajectories for two-wheeled robots
to reach a given static target [3], the problem gets significantly harder if the
target is moving and has to be reached under certain conditions. Although the
basic principles of these algorithms of either turning around or moving forward
may be applicable in this case, they are far from optimal if there is noise in
perception or in the execution of actions. Under these circumstances there have
to be small corrections every step. There is no straightforward way to design
a good control strategy. We would have to simulate the ball’s movement and
possible movements of the robot to determine the point where we could meet
the ball under the right conditions.

As far as we know our work is the first attempt to learn continuous actions for
a two-wheeled robot in a problem as complex as sketched above. There have been
some limited attempts with learning algorithms on similar problems. For example

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 106–117, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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in [4] a robot arm learns to grasp a rolling ball, but only with a fixed initial
situation and discrete actions. In [5] a simulated autonomous underwater vehicle
with controls very similar to a two-wheeled robot is used in a two-dimensional
environment. While the vehicle learns the continuous actions to reach the given
static targets, the resulting trajectories do not look particulary time-optimal.

For learning we use a REINFORCE algorithm [1] together with an extended
Growing Neural Gas (GNG) [2] in an actor-critic architecture [6]. The GNG
is a self-organizing map which is able to adapt to the local dimension and the
local density of an unknown possibly high-dimensional input distribution. This is
particulary useful in the context of action learning because the input distribution
is generally not known in advance and changes during training. Also, the data
often stems from some lower-dimensional structures in the input space due to
implicit dependencies between the data. The GNG is able to detect and to adapt
to these structures. Using a REINFORCE algorithm to learn continuous actions
should lead to smooth trajectories and should faciliate learning because similar
situations should require similar actions.

In the next section we give a short description of the GNG and of the neces-
sary extensions for function approximation. Since the data in our experiments
have a specific order, i.e. they stem from trajectories, there have to be some fur-
ther modifications to the original GNG. After describing these, we give a short
introduction to REINFORCE algorithms and show how to use the extended
GNG as a function approximator for these kind of algorithms. In section 4 we
explain the simulation environment and show some results.

2 Growing Neural Gas for Function Approximation

2.1 Growing Neural Gas

The Growing Neural Gas (GNG) [2] is a self-organizing map without a fixed
global network dimensionality, i.e. its topological structure adapts to the local
dimensionality of the input data. It consists of a set of neurons {c1, c2, . . . , cN}
where each neuron ci is associated with a position wi ∈ Rd in input space.
Neurons may be connected by undirected edges. If there is an edge between the
neurons ci and cj , we denote it by ei,j = ej,i. The neighbors of a neuron ci (i.e. the
neurons having a common edge with ci) will also be indexed ci,j , j = 0, . . . , Ni,
where Ni is the number of neighbors of ci and ci,0 = ci by convention. We
use this notation for other variables as well, e.g. wi,j is the position of the j-th
neighbor of ci.

Whenever some input data point x ∈ Rd is presented to the network during
training, the idea is to move the best matching (i.e. the closest) neuron cb by
some fraction αb and its neighbors cb,i by some smaller fraction αn towards x. If
we have different x we will also write cb(x) to make clear which x is meant. Edges
are always created between the closest neuron and the second-closest one, which
leads to the induced Delaunay triangulation [7]. As the neurons move around,
some aging scheme has to be used to delete edges which are no longer part of the
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induced Delaunay triangulation. Therefore, each edge ei,j has a counter named
agei,j , and edges with an age agei,j exceeding a certain agemax are deleted. New
neurons are inserted from time to time in regions with a high quantization error
until a maximum number Nmax of neurons is reached. To estimate the local
quantization error, every neuron is equipped with an error variable erri which
is updated with the current quantization error every time the respective neuron
is the best matching neuron. Figure 1 shows the GNG algorithm.

Repeat (until some stopping criterion fulfilled):

1. Observe x ∈ Rd

2. Find neurons cb and cb′ with smallest euclidean distances to x:
‖x − wb‖ ≤ ‖x − wb′‖ ≤ ‖x − wi‖ ∀i �= b, b′, b �= b′

3. Increase the age ageb,i of all edges eb,i emanating from cb by 1
4. If edge eb,b′ does not exist, create it
5. Reset ageb,b′ to 0
6. Update error variables:

Δerr b = ‖wb − x‖2

Δerr i = −δerr · err i, i = 1, . . . , N with constant 0 < δerr < 1
7. Update position vectors:

Δwb = αb (x − wb)
Δwb,i = αn (x − wb,i) for all neighbors cb,i, i = 1, . . . , Nb of cb

8. Remove edges with age i,j > agemax and neurons without neighbors
9. If N ≤ Nmax, add a new neuron cs every Nsteps steps as follows:

– Find the neuron cq with the largest error err q

– Choose its neighbor cq,r with the largest error err q,r, r = 1, . . . , Nq

– Insert a new neuron cs between cq and cq,r

– Reduce the errors errq and errq,r and set the error errs of the new neuron:
Δerrq = −δnew · errq

Δerrq,r = −δnew · errq,r

errs = 0.5 · (errq + errq,r)

Fig. 1. The GNG algorithm

2.2 Growing Neural Gas for Function Approximation

The easiest way to approximate a function f : Rd → R from training examples
(x, y) with a self-organizing map is to associate each neuron ci with a value
vi ∈ R and to have a local constant approximation by assigning the same value
vb to all input vectors x with ‖x− wb‖ < ‖x− wi‖ for all i �= b.

In order to improve the approximation quality of such a network we do not
only use the best matching neuron’s value vb but also the values vb,i of its
neighbors cb,i. We then calculate normalized weights mb,i(x) for these values
using Gaussian functions as it is done in Radial Basis Function Networks (RBF).
The radii of the Gaussians used for calculating these weights are set to the
average lengths of all edges emanating from cb,i following the suggestion in [8].
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mb,i(x) =
exp

(
− ‖x−wb,i‖2

l2b,i

)
∑Nb

j=0 exp
(
− ‖x−wb,j‖2

l2b,j

) i = 0, . . . , Nb (1)

lb,j = average length of all edges emanating from neuron cb,j

The final approximation F̃ (x) is then calculated as a weighted sum:

F̃ (x) =
Nb∑
i=0

mb,i(x)vb,i (2)

Please note that we only use the values of the best matching neuron and
its neighbors for calculating the final approximation F̃ (x) instead of using all
values as it is done in the common RBF approach or in [8]. There are two
reasons for this: first, it is faster since we do not have to calculate weights
for all neurons, and second, using all values did not work well in the learning
experiments described below. We think that is because the concept of “distance”
is quite problematic if different input dimensions have different meanings (e.g.
distances, angles and angular velocities). This problem is eased using (2) because
neurons which are close to each other but are not direct neighbors have no
influence on the approximation1.

Whenever we observe some training data (x, y), the values of the best match-
ing neuron and its neighbors vb,i are trained by gradient descent with learning
rate αv:

Δvb,i = αvmb,i(x)
(
y − F̃ (x)

)
i = 0, . . . , Nb. (3)

2.3 Learning from Trajectories

An important difference to pure function approximation tasks is that in action
learning the data stem from trajectories through the state space running from an
initial state x0 to some terminal state xT . If we use the standard GNG algorithm,
these data would lead to strange results because the neurons would concentrate
at the ends of the trajectories. Therefore, we keep the neurons’ positions fixed
during an episode (i.e. the time span between t = 0 and t = T ) and accumulate
the changes in auxiliary variables ŵi attached to each neuron. We keep track of
how often we changed these auxiliary variables by a counter zi for each neuron.
At the end of an episode we use these variables to change the positions of the
neurons according to the averages of all changes:

Δwi =
ŵi

zi
for all neurons i = 1, . . . , N with zi > 0 (4)

Furthermore, we postpone the insertion of new neurons and edges as well as
the deletion of edges until the end of an episode (steps 4, 5, 8, and 9 of the
1 Of course, in contrast to RBF networks the resulting approximation is not continuous

anymore, but has some points of discontinuity where the best matching neuron
changes.
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algorithm in Fig. 1). Therefore, we keep track of all pairs of neurons closest and
second-closest to the input vectors xt occurring during an epsiode in a list P .
Figure 2 provides an overview of the complete algorithm for training. For look-
up one has to perform only steps 1 and 2 as well as the steps 9 and 10 of the
first part.

During an episode:

1. Get input pair (x, y)
2. Find the two nearest neurons cb and cb′ (Fig. 1 step 2)
3. Increase the age ageb,i of all edges emanating from cb by 1
4. If the pair (cb, cb′) is not in list P , add it
5. Update quantization error variables (Fig. 1 step 6)
6. Update auxiliary position variables:

Δŵb = αb (x − wb)
Δŵb,i = αn (x − wb,i) for all neighbors cb,i, i = 1, . . . , Nb of cb

7. Increase counter variables zb and zb,i of cb and of all of its neighbors cb,i by 1
8. If N + Ninsert < Nmax, increase insert counter Ninsert every Nsteps steps by 1
9. Calculate the weights mb,i(x) according to (1)

10. Calculate the final approximation F̃ (x) according to (2)
11. Train the values vb,i according to (3)

At the end of an episode:

1. Update the weights wi according to (4)
2. If there are any pairs (ci, cj) in P without edges ei,j , create them
3. Set the ages ai,j of edges ei,j with a pair (ci, cj) in P to 0 and delete P
4. Remove edges with age i,j > agemax and neurons without neighbors
5. Insert Ninsert new neurons (analogous to Fig. 1 step 9) and set the values of

the new neurons according to the current approximations at their positions:
vs = F̃ (ws)

6. Set all ŵi, counters zi and Ninsert to 0

Fig. 2. The extended GNG algorithm for data from trajectories

3 ReinforceGNG

In reinforcement learning problems there is an agent which perceives the states
xt of an environment and chooses some action at at each time step t. The agent
also receives some reward rt ∈ R which rates the situation xt it is in and the
action at−1 it has chosen the last time step. The goal of the agent is to maximize
the sum of rewards it receives over time. Transitions between states and rewards
may be stochastic and the rewards may also be delayed.

3.1 REINFORCE Algorithms

The reinforcement learning component of ReinforceGNG is based on the class
of REINFORCE algorithms introduced by Williams in 1992 [1]. The general
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setting for REINFORCE algorithms is a network of (stochastic) units ui which
propagate an input x through the net to produce an output a. This output
leads to a direct scalar reinforcement signal R that is used by the units in the
net to adjust their weights wi. A stochastic unit ui draws its output ai from a
probability distribution depending on its input xi and its weight vector wi. In
the continuous case the probability distribution is given by a density function
gi(ξ, xi, wi).

REINFORCE algorithms try to maximize the expectation value of the im-
mediate reinforcement values R over time. Under certain stationary and inde-
pendence conditions on the environment’s choice of inputs and reinforcement
signals, this expectation value only depends on the units’ weight vectors wi.
Therefore, we will assume a weight matrix W consisting of all weight vectors wi

and will write E {R|W} for this expectation value. Williams shows that with an
update of the form

Δwi = αi(R− bi)ei (5)

the average update vector lies in a direction where this performance measure
E {R|W} is increasing. In this update equation αi > 0 is some learning rate
(depending at most on the time t and wi), bi is the reinforcement baseline (just
some value conditionally independent of the output ai given W and xi) and

ei =
∂ ln gi(ai, xi, wi)

∂wi
(6)

is the characteristic eligibility of wi.
In the following we assume that we have only one unit u and omit all the

indices i. An interesting possibility is to draw the output a from a normal distri-
bution N(μ(x), σ(x)) with input dependent means μ(x) and standard deviations
σ(x) as weights. The standard deviations σ(x) can be used to control the be-
havior of the algorithm: large σ(x) lead to an explorative behavior while small
σ(x) lead to the exploition of the behavior learned so far. Using the density of
the normal distribution we get the following characteristic eligibilities:

∂ ln g (a, μ(x), σ(x))
∂μ(x)

=
a− μ(x)
σ(x)2

(7)

∂ ln g (a, μ(x), σ(x))
∂σ(x)

=
(a− μ(x))2 − σ(x)2

σ(x)3
(8)

Williams suggests setting the learning rates to ασ(x)2 and to choose the rein-
forcement baseline b(x) according to a reinforcement comparison scheme, i.e. to
an estimate of the upcoming reinforcement based on the experience so far. This
leads to the update equations:

Δμ(x) = α(R− b(x))(a − μ(x)) (9)

Δσ(x) = α(R− b(x))
(a− μ(x))2 − σ(x)2

σ(x)
(10)
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These equations give some insight in how the algorithm works: if the agent
gets an reinforcement signal R better than the reinforcement baseline b(x), μ(x)
is moved in the direction of the output a, if R is worse than b(x), μ(x) is moved
in the opposite direction. In (10) the standard deviation σ(x) is changed to make
the occurance of a more likely if R is better than the reinforcement baseline b(x),
and vice versa. E.g. if R > b(x) and the distance |a− μ(x)| is greater than the
standard deviation σ(x), σ(x) is increased.

3.2 ReinforceGNG

Since the task we want to learn involves delayed rewards, but REINFORCE
algorithms learn only from direct reinforcement signals2, we first have to think
about how we can get a direct reinforcement value from delayed rewards. The
standard way to do this is to use some kind of actor-critic architecture [6]. The
actor chooses an action at for a state xt and receives a direct reinforcement
value Rt+1 from the critic one time step later. This reinforcement value is used
to improve the policy (i.e. the mapping from situations to actions) π used by
the actor. The critic learns an approximation Ṽ (x) of the value function V π(x)
for the current policy π of the actor. The value V π(xt) of a state xt for a certain
policy π is given by the expectation value of the discounted sum of rewards
gained when starting in this state and following the policy π until the last time
step T .

V π(x) = Eπ

{
T∑

k=0

γkrt+k+1

∣∣∣∣∣ xt = x

}
(11)

The future rewards rt+k+1 are discounted by γ to decrease the influence of later
rewards in favor of more immediate ones. Usually, the value function cannot be
calculated exactly, because the transition probabilities between states and the
expectation values of the rewards are not known. Reinforcement learning meth-
ods often try to approximate this function. One way to learn an approximate
value function, known as Temporal Difference (TD) learning, is to base the esti-
mation of the value of a state xt on the sum of the immediate rewards and the
discounted approximated value of the next state rt+1 + γṼ (xt+1). This sum can
also be used as a direct reinforcement signal Rt+1for the actor rating the last
action at. Since rt+1 and Ṽ (xt+1) are only known in the following timestep, the
updates for time t are performed at time t + 1.

The extended GNG is used to learn the approximate value function Ṽ (x), the
means μ̃(x), and the variances σ̃(x) used for determing the actions. The neurons’
values vi are used for approximating the value function Ṽ (x). They are trained
as in (3) with the data pairs

(
xt, rt+1 + γṼ (xt+1)

)
. Two additional variables are

added to each neuron: μi and σi. These are used to calculate the approximations
μ̃(x) and σ̃(x) as weighted sums analogous to (2). They are trained according

2 There is one exception for episodic tasks with only a single reward that is delivered
at the end of an episode.
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to (9) and (10) taking the weights mb(xt),i(x) into account. With Ṽ (xt) as the
reinforcement baseline we get3:

Δμb(xt),i = αμmb(xt),i(xt)
(
rt+1 + γṼ (xt+1)− Ṽ (xt)

)
(at − μ̃(xt)) (12)

Δσb(xt),i = ασmb(xt),i(xt)
(
rt+1 + γṼ (xt+1)− Ṽ (xt)

) (at − μ̃(xt))
2 − σ̃(xt)2

σ̃(xt)
(13)

If there are minimum and maximum values for actions amin and amax, it has
to be assured that the resulting μi are within these bounds by setting them to
their respective limits. The same holds for the σi with minimum σmin and max-
imum σmax to ensure proper exploration behavior. Figure 3 gives an overview of
the complete ReinforceGNG algorithm. For look-up only the approximate mean
μ(xt+1) has to be calculated and is then used as action at+1.

1. Receive situation xt+1 and reward rt+1

2. Calculate Ṽ (xt+1), μ̃(xt+1) and σ̃(xt+1) as weighted sums according to (2)
3. Train the extended GNG with

(
xt, rt+1 + γṼ (xt+1)

)
according to the extended

GNG algorithm as described in Fig. 2
4. Train the μb(xt),i of last time step’s best matching neuron cb(xt) and its neigh-

bors cb(xt),i according to (12)
5. Train the σb(xt),i of last time step’s best matching neuron cb(xt) and its neigh-

bors cb(xt),i according to (13)
6. Determine action at+1 ∼ N (μ̃(xt+1), σ̃(xt+1))

if at+1 < amin ⇒ at+1 = amin; if at+1 > amax ⇒ at+1 = amax

Fig. 3. The complete ReinforceGNG algorithm

4 Experiments

It was intended to use ReinforceGNG to learn an “intelligent” approach ball
behavior for the 3D Simulation League. Unfortunately, simulated two-wheeled
robots with an explicit kick-effector were not yet available at the time of our
experiments. So we had to create our own simulation environment, but we tried
to build the simulation meaningful with respect to the Simulation League.

4.1 Simulation Setup

We decided two use circular robots with a diameter of 0.44 m, which was the
size of the robots in the 3D Simulation League in RoboCup 2004 and is also
3 This can be regarded as using a reinforcement comparison scheme since the value of

a situation is an estimate of the upcoming rewards based on the experience so far.
The resulting expression rt+1 + γṼ (xt+1) − Ṽ (xt) is known as TD error.
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about the size of a midsize robot. The maximum velocity of the robot is 2 m
s .

We do not consider acceleration, braking or friction for the robot’s movements
and do not simulate collisions. The robot is able to change the velocities of its
wheels every 100 milliseconds. The diameter of the ball is 0.22 m. The velocity
of the ball decreases exponentially with vB

t+1 = 0.995vB
t every simulation step of

10 milliseconds, i.e. every second the ball loses about 40 percent of its velocity.
The goal is to position the robot relative to the ball so it is able to kick the

ball towards a given target. Figure 4 shows the situation. To kick the ball, the
distance between the robot and the ball dB

t has to be 0.07 m or smaller and
the angle between the orientation of the robot and the ball αB

t has to be no
bigger than 22.5◦ in either direction. The ball is kicked in the direction of the
vector from the center of the robot to the center of the ball. Therefore, to reach
the target the angle αT

t between this vector and the vector to the target should
not be bigger than 12.25◦. If these conditions are met, the trial is considered
successful. A trial is canceled after 25 seconds of simulation time if the robot
does not reach the ball under the right conditions.

We concentrate on the situation where the ball is on the ground and not
too fast. We think that otherwise it would be almost impossible to approach
the ball at the required angle due to noise in the perception of the ball and in
the execution of the actions. Also, we assume that the ball is somewhere near
the robot, because this is very easy to achieve with some hand-coded behavior.
Therefore, at the beginning of a trial, the ball is set to an arbitrary point up to
5 m away from the robot with a velocity of up to 4 m

s . The target is set to an
arbitrary point 5–15 m away from the ball.

The action we learn is a continuous value a between -1 and 1. It encodes the
difference in velocity which should be applied to the wheels, i.e. if the action is

target

ball

robot

dB
t

αB
t

αT
t

a)

target

ball

robot
b)

Fig. 4. Sketch of different situations with the relevant distance and angles. a) Some
random initial situation with a possible solution trajectory. b) The terminal situation
to reach in order to kick the ball towards the target. The dashed lines show the limits
for the angle between the robot’s orientation and the ball and for the angle between
the kick direction and the target direction.
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greater then zero, we apply a velocity of 1 to the left wheel and 1− 2 |a| to the
right wheel and vice versa. So, the robot always tries to move as fast as possible.

The situation is encoded in a five dimensional input vector with the following
dimensions (see Fig. 4):

– the distance dB
t from the robot to the ball

– the angle αB
t between the current orientation of the robot and the direction

towards the ball
– the angle αT

t between the direction from the robot towards the target and
the direction from the robot towards the ball

– the difference ΔαB
t = αB

t − αB
t−1 in αB

t between the last and the current
time step

– the difference ΔαT
t = αT

t − αT
t−1 in αT

t between the last and the current
time step

These dimension are normalized to lie roughly between 0 and 1. Every time step
the robot does not reach the required conditions, it gets a penalty of −0.01dB

t . If
the trial is successful, the robot gets a reward of 100. The small penalty on the
distance makes successful trials more likely in the beginning because the robot
tries to minimize the distance to the ball and will eventually meet the ball under
the right conditions.

To choose the learning parameters we did some preliminary tests with differ-
ent settings but they were not really optimized systematically. The maximum
number of neurons is set to 1000, we started with 35 = 243 neurons evenly dis-
tributed in the hypercube [0, 1]5. New neurons are inserted every 100 steps. The
learning rates for the movement of the neurons αn and αb are set to 0.01 and
to 0.025. The maximum age of edges is 100. The neurons’ errors are reduced
with rate δerr = 0.001 every time step and with δnew = 0.01 if a new neuron
is inserted. In the beginning all μi and vi are initialized to 0, σi to 0.25. The
minimum and maximum values of σi are set to σmin = 0.1 and σmax = 0.25.
The learning rates αμ and ασ are set to 0.1 and the discount factor γ to 0.9.

4.2 Simulation Results

To assess how well the simulated robot has learned the task we perform a fixed
set of predefined tests. In each test the ball is set 2 m away in front of the
robot. We put targets at 10 m distance from the ball and at 8 different angles
relative to the robot’s orientation (−180◦,−135◦,−90◦, . . . , 90◦, 135◦). The ball
either moves at 4 m

s in one of the four directions −180◦,−90◦, 0◦, 90◦, or does
not move at all. So all in all we have 40 different tests.

We performed several experiments and the robot always learned to approach
the rolling ball within the required angles for all test situations. In Fig. 5 one
can see some of the learned trajectories, which look quite smooth. The targets
are almost always hit with high precision.

We also did experiments with noise in perception and in the execution of ac-
tions. For perceptional noise, we added normal distributed noise of N(0, 0.0965)
to the distance information and normal distributed noise of N(0, 0.1225) to an-
gular information as it is done in the 3D Simulation League. For noise in the
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a) b)

Fig. 5. Trajectories of the learned approach ball behavior. The robot is the bigger
empty circle, the ball is the smaller empty circle and the target is the filled circle. The
objects were drawn every 100 milliseconds. The straight lines show the direction the
ball is kicked in at the end of each episode. a) The four different directions for the
moving ball with one target. The ball moving towards the agent can hardly be seen
because it is reached significantly faster than all other balls. b) Trajectories of the robot
following an upward moving ball with shots to all eight different targets.

0

2

4

6

8

10

12

0 5000 10000 15000

trials

s
e
c

no noise

exec. noise

perc. noise

exec. & perc. noise

Fig. 6. Average simulation time needed per test from single runs without noise, with
noise in the execution of the action, with noise in the perception, and both

execution of actions, we added normal distributed noise of N(0, 0.05) to the ve-
locities of the wheels every simulation step. ReinforceGNG was again able to
learn to approach the rolling ball in all test situations. Noise in the execution of
actions had practically no influence on the robot’s performance. Figure 6 shows
the development of the average simulation time needed per test. All 40 tests were
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performed every 100 trials. The values shown are from single runs. All in all we
did 10 individual runs for all kinds of noise and the results always look very
similar to those in the figure. We see that the method learns relatively quickly
but sometimes the performance gets worse during learning. Therefore, we keep
track of the best average time so far and if we get a better value, we save the
current network for later use.

5 Conclusion

We showed how a REINFORCE algorithm in combination with an extended
GNG with some modifications regarding the learning from trajectories can suc-
cessfully learn to approach a moving ball under certain conditions with respect
to a given target. For the future we plan to use this method in our agent for the
3D Simulation League. We also plan to do experiments with moving targets and
train networks for different requirements on the precision of the kick. Unprecise
but fast kicks should be used in situations were opponents are near and precise
kicks can be used if the agent has enough time. We also plan to incorporate the
proposed learning method into a midsize robot.
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Abstract. Agents in dynamic environments have to deal with world
representations that change over time. In order to allow agents to act
autonomously and to make their decisions on a solid basis an interpre-
tation of the current scene is necessary. If intentions of other agents or
events that are likely to happen in the future can be recognized the
agent’s performance can be improved as it can adapt the behavior to the
situation. In this work we present an approach which applies unsuper-
vised symbolic learning off-line to a qualitative abstraction in order to
create frequent patterns in dynamic scenes. These patterns can be later
applied during runtime in order to predict future situations and behav-
iors. The pattern mining approach was applied to two games of the 2D
RoboCup simulation league.

1 Introduction

Agents in dynamic environments have to deal with world representations that
change over time. In order to allow agents to act autonomously and to make their
decisions on a solid basis an interpretation of the current scene is necessary. Scene
interpretation can be done by checking if certain patterns match the current
belief of the world. If intentions of other agents or events that are likely to
happen in the future can be recognized the agent’s performance can be improved
as it can adapt the behavior to the situation. One step into this direction is the
recognition of formations [24].

We focus on qualitative representations as they allow a concise representation
of the relevant information. Such a representation provides means to use back-
ground knowledge, to plan future actions, to recognize plans of other agents, and
is comprehensible for humans the same time. In our approach we map quanti-
tative data to qualitative representations. We use time series which are divided
into different segments satisfying certain monotonicity or threshold conditions
[18, 19]. One example is that if the distance between two objects is observed it
can be divided into increasing and decreasing distance representing approaching
and departing relations (cf. [19]).

Additionally to the requirement to handle situations which change over time,
relations between arbitrary objects can exist in their belief of the world. In this
work we present an approach which applies unsupervised symbolic learning to a

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 118–129, 2006.
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qualitative abstraction in order to create frequent patterns in dynamic scenes.
Here, we apply an extended version of the sequential pattern mining algorithm
presented in [13] to data from simulated robotic soccer games of the 2D RoboCup
simulation league. We propose the application of the learned rules to predict
future situations and behavior in order to support behavior decision.

2 Related Work

Association rule mining addresses the problem of discovering association rules
in data. One famous example is the mining of rules in basket data [1]. Differ-
ent algorithms have been developed for the mining of association rules in item
sets (e.g., [2]). Mannila et al. extended association rule mining by taking event
sequences into account [15]. They describe algorithms which find all relevant
episodes which occur frequently in the event sequence. H”oppner presents an
approach for learning rules about temporal relationships between labeled time
intervals [8]. The labeled time intervals consist of propositions. Relationships are
described by Allen’s interval logic [3]. Other researchers in the area of spatial
association rule mining allow for more complex representations with variables
but do not take temporal interval relations into account (e.g., [11, 14, 16]).

The learning approach presented here combines ideas from different direc-
tions. Similar to H”oppner’s work [8] the learned patterns describe temporal
interrelationships with interval logic. Contrary to H”oppner’s approach our rep-
resentation allows for describing predicates between different objects similar to
approaches like [14]. The generation of frequent patterns comprises a top-down
approach starting from the most general pattern and specializing it. At each level
of the pattern mining just the frequent patterns of the previous step are taken
into account knowing that only combinations of frequent patterns can result in
frequent patterns again which is a typical approach in association rule mining
(e.g., [15]).

RoboCup is used as an application domain for learning approaches in differ-
ent papers (e.g., [10, 12, 17, 21, 22, 23, 25]). Many of the recent approaches apply
reinforcement learning to robotic soccer.

Riley and Veloso [20] use a set of pre-defined movement models and compare
these with the actual movement of the players in set play situation. In new set
play situations the coach then uses the gathered information to predict the oppo-
nent agent’s behavior and to generate a plan for his own players. The approach
uses probabilistic models and can be used both off-line and on-line.

Frank and colleagues [5] presented a real-time approach which is based on
statistical methods. The approach gathers information such as the percentage
of ball-holding of a certain player or which player passes the ball to which team
mate. The result is a thorough statistical analysis which can then be used to
derive information about a game being played. This can help for new future
developments of a team.

A hybrid approach to learn the coordinated sequential behavior of teams
was presented by Kaminka and colleagues [10]. The idea is to take time-series
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of continuous multi-variate observations and then parse and transform them
into a single-variable categorial time-series. The authors use a set of behavior
recognizers that focus only on recognizing simple and basic behaviors or the
agents (e.g., pass, dribble). The data are then represented in a trie (a tree-like
data structure) to support two statistical methods: (a) frequency counting and
(b) statistical dependency detection. Experiments showed that the latter method
is more suitable to discover sequential behavior.

Huang and colleagues [9] recently published an approach for plan recognition
and retrieval for multi-agent systems. The approach is based on observations
of agents’ coordinative behaviors. The basis are players’ element behaviors se-
quences (e.g., pass, dribble, shoot) which are sorted in a temporal order. The field
is decomposed into cells where each cell denotes one agent’s behavior at a time
slice. Interesting and frequent behavior sequences are considered as the team’s
plans on the assumption that the team’s plan is embedded in those sequences.
The discovery of significance of sequence patterns are based on statistical evi-
dences. The promising results are plans based on observation.

Most similar to our work are the approaches of Kaminka et al. [10] and Huang
et al. [9] as they also create a sequence of certain events or behaviors and search
for frequent sequences. The main difference to our approach is the representa-
tional power of the learned patterns. Our representation allows for using variables
in the learned rules and for identifiying arbitrary temporal relations between
predicates (e.g., like Allen’s interval logic).

3 Qualitative Motion Description

Our approach to qualitative motion description maps quantitative data to quali-
tative representations. Time series are divided into intervals which satisfy certain
monotonicity or threshold conditions [19, 18]. Time series include absolute mo-
tion of single objects and relative motion of pairs of objects, which is described
by changes in their pairwise spatial relations over time.

Fig. 1. Distance and direction classes
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Fig. 2. Generation of motion description

On a quantitative level the objects’ absolute and relative motion is described
by four types of time series: the motion direction and speed of each object, and
the spatial direction and distance for each pair of objects. In a first abstraction
step each time series is segmented into time intervals of homogeneous motion
values. We use two different segmentation methods: a threshold-based segmen-
tation method, which represents the values of an interval by their average value
and a monotonicity-based segmentation method, which groups together increas-
ing, decreasing and constant values sequences. This preserves the dynamic of
motion and allows for the description of dynamic aspects as, e.g., acceleration
or approaching/departing. In a second step the attribute values describing the
intervals are mapped onto qualitative classes for direction, speed or distance,
respectively (see Fig. 1). We distinguish eight direction classes and five speed
respective distance classes, which are organized in distance systems [7]. The ra-
dius of each distance class is double the size of the radius of the previous one.
For the soccer domain we use the heading of each player as reference axis for the
representation of the spatial relations to the surrounding objects which leads to
an egocentric point of view.

Fig. 2 shows an example of the entire process of motion description for a time
series of object distances, segmented by the monotonicity-based segmentation
criterion.

The interval shown in the example in Fig. 2 is interpreted as an approaching
of the objects p and q, which is expressed by the term holds(approaching(p, q),
〈tn, tn+k〉). The predicate holds expresses the coherence between a certain sit-
uation (here approaching) and the time interval 〈tn, tn+k〉 in which it is taking
place or is valid [4].

As input for the learning algorithm described in the following section we use
a subset of the motion description including intervals concerning the relations
meets, approaches and departs between a player and the ball. For the relation
approaches we restrict to intervals in which the two objects approach at least
until they are at a medium distance. For the relation departs we restrict to
intervals in which the two objects are in medium distance or closer when starting
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Fig. 3. Pattern and prediction rule generation

departing. Additionally further higher-level relations like pass and ball control
are extracted from the scenes.

4 Sequential Pattern Mining

Here, a dynamic scene is represented symbolically by a set of objects and pred-
icates between these objects as created by the qualitative abstraction described
in the previous section. The predicates are only valid for certain time intervals
and the scene can thus be considered as a sequence of (spatial or conceptual)
predicates. These predicates are in specific temporal relations regarding the time
dimension. An example for such a sequence can be seen at the top of Fig. 3.

Each predicate r is an instance of a predicate definition rd. We use the letter r
for predicates/relations; the letter p is used for patterns.Rschema = {rd1, rd2, . . .}
is the set of all predicate definitions rdi := 〈li, ai〉 with label li and arity ai, i.e.,
each rdi defines a predicate between ai objects. Predicates can be hierarchically
structured. If a predicate definition rd1 specializes another predicate definition
rd2 all instances of rd1 are also instances of the super predicate rd2.

If we have to handle more than one dynamic scene, let S = {s1, s2, . . .}
be the set of the different sequences si. A single sequence si is defined as
si = (Ri, T Ri, Ci) where Ri is the set of predicates, T Ri is the set of tem-
poral relations and Ci is the set of constants representing different objects in
the scene. Every constant is an instance of a class (default is the top con-
cept “object”) and classes form an inheritance hierarchy. Each predicate is de-
fined as r(c1, . . . , cn) with r being an instance of rdi ∈ Rschema, having arity
n = ai, and ci,1, . . . , ci,n ∈ Ci are representing the objects where the pred-
icate holds. The set of temporal relations T Ri = {tr1, tr2, . . .} defines rela-
tions between pairs of elements in Ri. Each temporal relation is defined as
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tri(ra, op, rb) with ra, rb ∈ Ri. op is the set of valid temporal relations. If
Allen’s temporal relations between intervals [3] are used, this set is defined as
op ∈ {<, =, >, d, di, o, oi, m, mi, s, si, f, fi}. It is also possible to use other tem-
poral relations, e.g., those defined by Freksa [6].

4.1 Pattern Representation and Pattern Matching

Patterns are abstract descriptions of sequence parts with specific properties. A
pattern defines what predicates must occur and how their temporal interrela-
tionship has to be. Let P = {p1, p2, . . .} be the set of all patterns pi. A pattern
is (similar to sequences) defined as pi = (Ri, T Ri,Vi).
Ri is the set of predicates rij(vij,1, . . . , vij,n) with vij,1, . . . , vij,n ∈ Vi. Vi is

the set of all variables used in the pattern. A class is assigned to each variable.
T Ri defines the set of the temporal relations which have already been defined
above.

A pattern p matches in a (part of a) sequence sp if there exists a mapping of a
subset of the constants in sp to all variables in p such that all predicates defined
in the pattern exist between the mapped objects and all time constraints of p
are satisfied by the time intervals in the sequence without violating the class
restrictions. In order to restrict the exploration region a window size can be
defined. Only matches within a certain neighborhood (specified by the window
size) are valid.

During the pattern matching algorithm a sliding window is used, and at each
position of the window all matches for the different patterns are collected. A
match consists of the position in the sequence and an assignment of objects to
the variables of the pattern. Fig. 3 illustrates a sample pattern and one of the
matches in the given sequence. In this example temporal relations as defined by
Freksa [6] are used.

4.2 Pattern Generation

Different patterns can be put into generalization-specialization relations. A pat-
tern p1 subsumes another pattern p2 if it covers all sequence parts which are
covered by p2: p1 � p2 := ∀sp, matches(p2, sp) : matches(p1, sp).

If p1 additionally covers at least one sequence part which is not covered by p2 it
is more general: p1 � p2 := p1 � p2∧∃spx : matches(p1, spx),¬matches(p2, spx).
This is the case if p1 � p2 ∧ p1 �� p2.

In order to specialize a pattern it is possible to add a new predicate r to
Ri, add a new temporal relation tr to T Ri, specialize the class of a variable,
unify two variables, or specialize a predicate, i.e., replacing it with another more
special predicate. Accordingly it is possible to generalize a pattern by removing
a predicate r from Ri, removing a temporal relation tr from T Ri, inserting a
new variable, or generalizing a predicate r, i.e., replacing it with another more
general predicate.

At the specialization of a pattern by adding a predicate a new instance of any
of the predicate definitions can be added to the pattern with variables which are
not used in the pattern so far. Specializing the class of a variable means that the
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Fig. 4. Pattern generation

current class assigned to a variable is replaced by one of its subclasses. If a pattern
is specialized by adding a new temporal relation for any pair of predicates in the
pattern (which has not been constrained so far) a new temporal restriction can
be added. A specialization through variable unification can be done by unifying
an arbitrary pair of variables, i.e., the different predicates can be “connected”
via identical variables after this step. Another specialization would be to replace
a predicate by a more special predicate. These different specialization steps can
be used at the top-down generation of rules (see Fig. 4).

In order to evaluate the patterns (and to just keep the k best patterns in
the steps of the pattern learning algorithm) an evaluation function was defined.
Right now our evaluation function takes six different values into account: rela-
tive pattern size, relative pattern frequency, coherence, temporal restrictiveness,
class restrictiveness, and predicate preference. Further criteria can be added if
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necessary. The overall evaluation function of a pattern computes a weighted sum
of the different single criteria.

The coherence gives information how “connected” the predicates in the pat-
tern are by putting the number of used variables in relation to the maximum
possible number of variables for a pattern. The temporal restrictiveness is the
number of restricted predicate pairs in the pattern to the maximum number
of time restrictions. The class restrictiveness is the relation of the number of
variables which cannot be specialized anymore to the total number of variables.
Further information about the evaluation criteria can be found in [13].

Compared to the work presented in [13] the representational power was ex-
tended by introducing classes and allowing temporal parallelism of time points
and limiting the patterns to keep by discarding those patterns which create more
special patterns without loss of frequency. With these extensions it is possible
to restrict variables in patterns to specific classes, e.g., indicating that an object
must be a player or a ball. Allowing identical time points for start and end time
points of different predicates extends the number of learnable temporal relations
(e.g., meets and starts; cf. [3]). Discarding general patterns which are not more
frequent than their specialized patterns reduces complexity in further steps of
the algorithm because the overall number of kept pattern decreases.

4.3 Situation and Behavior Prediction

Fig. 5 illustrates the idea how to use sequential pattern mining for situation
and behavior prediction. We assume that the quantitative data perceived from
the sensors is mapped to a qualitative representation. This should be a concise
representation with all relevant information for behavior decision where similar

Fig. 5. Pattern learning for situation and behavior prediction
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(quantitative) information is mapped to one qualitative class. This can include
various information, e.g., about distances, regions, ball possession, score, time
etc. This information is used as input for the learning algorithm. The start and
end time points where different predicates are valid are known and can be used
to set up a (temporal) sequence of predicates describing a dynamic scene. In the
current setting learning is performed off-line. The result of learning is a set of
prediction rules which give information what (future) actions or situations might
occur with some probability if certain preconditions are satisfied. During a game
these rules can be applied in order to predict what future actions or relations are
likely to happen. This information can be used to perform a behavior decision
on a better basis.

5 Application to Simulated Robotic Soccer

In the current status the qualitative mapping and the pattern learning approach
are realized. The automated extraction and application of behavior prediction
rules has to be done in future work. In order to evaluate our approach soccer
games of the RoboCup 2D simulation league (TsinghuaAeolus vs. FC Portugal at
June 22nd 2002 and FC Portugal vs. Puppets at June 21st 2002) were analyzed
and a qualitative motion description as presented in Section 3 was created.

s; closerToGoal; 9; 8; 1
s; closerToGoal; 9; 11; 1
s; front; 9; 7; 1
s; front; 9; 10; 1
s; front; 9; 2; 2
s; front; 9; 3; 2
e; front; 9; 2; 2
e; front; 9; 3; 2
s; closerToGoal; 9; 10; 3
s; closerToGoal; 9; 7; 4
e; front; 9; 7; 6
e; front; 9; 10; 6
s; front; 9; 8; 8
...

s; pass; 16; 18; 338
e; front; 16; 18; 338
s; closerToGoal; 18; 19; 341
s; closerToGoal; 18; 20; 341
s; closerToGoal; 18; 21; 341
s; closerToGoal; 18; 22; 341
s; front; 18; 12; 341
s; front; 18; 15; 341
e; closerToGoal; 16; 18; 341
e; closerToGoal; 16; 19; 341
e; closerToGoal; 16; 20; 341
e; closerToGoal; 16; 21; 341
e; closerToGoal; 16; 22; 341
...

Fig. 6. Sample input for the pattern mining algorithm

P_137

front(X_7 X_8 )[r_1]

front(X_15 X_16 )[r_2]

pass(X_19 X_20 )[r_3]

closerToGoal(X_25 X_26 )[r_4]

[ X_7 = X_19; X_8 = X_20; X_15; X_16; X_25; X_26;]

[X_7 = player X_8 = player X_15 = player X_16 = player

X_19 = player X_20 = player X_25 = player X_26 = player ]

[r_1 older r_2, r_1 younger-equal r_3

r_1 younger-equal r_4, r_2 older r_3 ]

Fig. 7. Learned pattern
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[r1] hasBall(X_1),

[r2] front(X_1, X_2),

[r3] uncovered(X_2)

=> [r4] pass(X_1, X_2)

[r1] older [r4],

[r2] older [r4],

[r3] older [r4]

Fig. 8. Example for a prediction rule

Fig. 6 shows a sample input for the learning algorithm. This input represents
a sequence of predicates with their start and end time points. The first column
identifies if a relation starts (“s”) or ends (“e”). The second column is the name
of the predicate (e.g., pass). The identifiers of the objects for which the predicate
holds are the third and fourth value in each line. The last column denotes the
time stamp of the start or end time point of this relation. Temporal parallelism
can be recognized by identical values in the last column.

The learning algorithm performs a top-down generation of patterns. During
learning the predicates in the input file are used to generate new patterns with
variables. One example of a learned pattern can be seen in Fig. 7. It consists of
four predicates (front [2x], pass, and closerToGoal). Among other information
it says that a player (X 7/X 19) is in front of another (X 8/X 20) after a pass
between those two was performed. The three segments below the predicates show
the restrictions w.r.t. variable unification (X 7 = X 19), class information (X 7
= player), and temporal relations (r 1 older r 2). This pattern was learned
from a snippet of the sequence from the first game. Fig. 8 shows an example of
a prediction rule.

6 Conclusion

In this paper we presented an approach to situation and behavior prediction. A
sequential pattern mining algorithm is applied in order to learn frequent patterns
in the data. These patterns are then transformed into prediction rules which can
be applied to estimate what is likely to happen in the future. One characteristic
of the learning approach is high representational power with the potential of
learning complex patterns with predicates and variables from relational and
temporal data.

The drawback of the approach is the high complexity of the learning algorithm
as discussed in [13]. The experiments support the assumption that without lim-
iting the search space during pattern generation the algorithm cannot be used
to learn complex patterns on-line due to time and space complexity. It is neces-
sary to develop heuristics which allow an efficient learning of patterns without
cutting off a large number of potentially good patterns.

We are currently working on improvements in order to handle the complexity
of the learning task. In future work the performance of the learned patterns for
predicting future behaviors and situations must be analyzed.
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8. F. Höppner. Learning temporal rules from state sequences. In Proceedings of the
IJCAI’01 Workshop on Learning from Temporal and Spatial Data, pages 25–31,
Seattle, USA, 2001.

9. Z. Huang, Y. Yang, and X. Chen. An approach to plan recognition and retrieval
for multi-agent systems. In M. Prokopenko, editor, Workshop on Adaptability in
Multi-Agent Systems, First RoboCup Australian Open 2003 (AORC-2003), Sydney,
Australia, 2003. CSIRO.

10. G. Kaminka, M. Fidanboylu, A. Chang, and M. Veloso. Learning the sequential
coordinated behavior of teams from observation. In G. Kaminka, P. Lima, and
R. Rojas, editors, RoboCup 2002: Robot Soccer World Cup VI, LNAI 2752, pages
111–125, Fukuoka, Japan, 2003.

11. K. Koperski and J. Han. Discovery of spatial association rules in geographic infor-
mation databases. In Proceedings of the 4th International Symposium on Advances
in Spatial Databases, SSD, pages 47–66, Portland, Maine, 1995.

12. G. Kuhlmann and P. Stone. Progress in 3 vs. 2 keepaway. In RoboCup 2003: Robot
Soccer World Cup VII. Springer, Berlin, 2004.

13. A. D. Lattner and O. Herzog. Unsupervised learning of sequential patterns. In
ICDM 2004 Workshop on Temporal Data Mining: Algorithms, Theory and Appli-
cations (TDM’04), Brighton, UK, November 1st 2004.

14. D. Malerba and F. A. Lisi. An ILP method for spatial association rule mining.
In Working notes of the First Workshop on Multi-Relational Data Mining, pages
18–29, Freiburg, Germany, 2001.

15. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1:259–289, 1997.



Sequential Pattern Mining for Situation and Behavior Prediction 129

16. J. Mennis and J. W. Liu. Mining association rules in spatio-temporal data. In
Proceedings of the 7th International Conference on GeoComputation, University of
Southampton, UK, 8 - 10 September 2003.

17. A. Merke and M. Riedmiller. Karlsruhe Brainstormers - a reinforcement learning
way to robotic soccer. In RoboCup 2001: Robot Soccer World Cup V. Springer,
Berlin, 2002.

18. A. Miene, A. D. Lattner, U. Visser, and O. Herzog. Dynamic-preserving qualitative
motion description for intelligent vehicles. In Proceedings of the IEEE Intelligent
Vehicles Symposium (IV ’04), pages 642–646, June 14-17 2004.

19. A. Miene, U. Visser, and O. Herzog. Recognition and prediction of motion sit-
uations based on a qualitative motion description. In D. Polani, B. Browning,
A. Bonarini, and K. Yoshida, editors, RoboCup 2003: Robot Soccer World Cup
VII, LNCS 3020, pages 77–88. Springer, 2004.

20. P. Riley and M. Veloso. Recognizing probabilistic opponent movement models.
In A. Birk, S. Coradeschi, and S. Tadokoro, editors, RoboCup-2001: Robot Soccer
World Cup V, number 2377 in Lecture Notes in Artificial Intelligence, pages 453–
458, Berlin, 2002. Springer Verlag.

21. P. Riley and M. Veloso. Coaching advice and adaption. In RoboCup 2003: Robot
Soccer World Cup VII, LNCS 3020, pages 192–204. Springer, Berlin, 2004.

22. P. Stone and R. S. Sutton. Scaling reinforcement learning toward robocup soccer.
In Proceedings of the 18th International Conference on Machine Learning, 2001.

23. P. Stone and M. Veloso. A layered approach to learning client behaviors in the
robocup soccer server. Applied Artificial Intelligence, 12:165–188, 1998.
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Abstract. In Robocup Middle-Size League (MSL) the challenge to rec-
ognize signals given by the referee by whistling has been introduced from
this year as a way to reduce the interaction via radio-link. We present
Whistle Recognizer (WR), a system able to recognize different whistling
patterns, after a relatively short training done in advance. This composite
system encompasses neural networks and more traditional information
processing techniques. It demonstrated to be quite effective and can be
easily integrated in a multi-thread control architecture, as the vast ma-
jority of those used in the league; thus, it candidates itself as a potential
off-the-shelf module to be used by MSL teams not interested in research
about signal processing and analysis.

1 Introduction

In Robocup Middle-Size League (MSL) the challenge to recognize signals given
by the referee by whistling has been introduced from this year as a way to
reduce the interaction via radio-link. Whistling has been introduced as a signal
to be detected at the end of a half: detection is not compulsory, but the teams
able to recognize this event will gain points for the challenge competition. Since
many Robocup teams are not directly interested in signal processing and whistle
analysis, an off-the-shelf package for this task would be clearly useful.

Whistle recognition has been faced in different domains to automatically de-
tect interesting events or summarize multimedia data in sport events [1].

In this paper, we present Whistle Recognizer (WR), a composite system able
to recognize different whistling patterns, after a relatively short training done in
advance. This composite system (i.e., a system encompassing neural networks
and more traditional information processing techniques [2]) is quite effective and
can be easily integrated in any thread-based control architecture, as an off-the-
shelf whistle sensor.

The tool we describe in the following sections recognizes whistle events and
patterns from a raw audio data stream. With the term “pattern” we refer to
a sequence of a predefined number of whistles at the rate of 1-2 whistles per
second; we consider this as a possible future extension to the simple start/stop
bit of information provided by a single whistle. A typical use of WR is to gather
the raw audio stream using a microphone placed on the robot body and a cheap

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 130–141, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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sound-card; output of the system is a message sent to the controlling process
to communicate the whistle type: short single, long single, or multiple, with
multiplicity.

Since whistles and referees are different from game to game, a key issue for a
whistle recognition system is fast tuning and adaptation in order to reduce set-up
time and increase robustness. This is obtained by implementing the recognition
system using a composite approach to first extract the characteristic features
from the signal, and then applying a neural classifier to detect whistling events.
The system is integrated with a learning tool used to set recognition parameters
basing on a short recorded sample of whistle and background noise. Section 2
gives a detailed description of the system architecture and algorithms; all design
choices are explained there, while the following section gives a summary of the
learning tool.

2 System Architecture

As introduced in the previous section, the system is based on a classical digital
signal processing algorithm to extract signal features followed by a neural stage
and an event counter. Figure 1 shows the schema of this architecture. The signal
is acquired by a commercial sound-card (section 2.1) connected to a microphone;
the periodogram is computed from the raw signal by a fast algorithm to extract
features related to the spectral power of the whistle. To improve classification
capabilities, a frequency mask has been introduced to give only the interesting
samples in input to the neural stage (section 2.3). Finally, a non-linear percep-
tron (section 2.4) recognizes the presence of the whistle signal and passes this
information to an output event counter, which produces the recognition message.

2.1 Data Acquisition and Feature Extraction

Raw data is acquired from the computer sound-card and signal level is adjusted
by acting on the pre-amplifier through the IGAIN feature. Considering a whistle
power spectrum concentrated below the 4 Khz we used a sampling frequency of
8 KHz and a quantization of 8 bit/sample proved to be adequate for the job. The

Fig. 1. System architecture
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elemental block on which the system operates to detect a whistle is a 64-sample
sequence, yielding a time resolution of 8 ms.

2.2 The FFT and the Periodogram

The features used by the neural classifier are taken from the signal periodogram
and, as it can be expected, this computation is the system bottleneck; so, we
have designer it with special attention to to make it as fast as possible. Let us
consider the Discrete Fourier Transform (DFT) formula [3, 4]:

Xk =
N−1∑
n=0

xnW−nk
N (1)

where N is the number of samples, n is the time index (from 0 to N−1), k is the
frequency index (from 0 to N−1) ,WN = e−j 2π

N and Xk is an N -sample sequence
representing the original sequence xk in the frequency domain. In general, the
so-called Fast Fourier Transform (FFT) algorithm is used instead of the basic
formula, to lower the N2 complexity to N log N . This is done by subdividing the
original sequence in two sub-sequences, x2n and x2n+1, and then applying the
algorithm recursively on them. In the particular case of N power of 4, the original
sequence can be directly subdivided in 4 sub-sequences, so obtaining another 25%
improvement (0.75N log N). In this case the situation is the following:
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where Gk,Hk,Lk and Mk are the following sequences:

Gk =

N
4 −1∑
n=0

x4nW−nk
N
4

Hk =

N
4 −1∑
n=0

x4n+1W
−nk
N
4
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x4n+2W
−nk
N
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Mk =

N
4 −1∑
n=0
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−nk
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Let us point out that the computation of the W matrix does not need any
multiplication, so, given Gk,Hk,Lk and Mk, the Xk sequence can be computed
performing only 3 complex multiplications (W−k

N ∗ and so on), while the standard
2-subsequences FFT algorithm will have needed 4 complex multiplications. In
doing so, we obtain a 25% gain on the total number of multiplications and this
is the most important reason to select a 64-samples sequence.

The FFT of the 64-samples sequence can be easily computed with 3 stages
of recursion. In fact, the 64-samples sequence is subdivided in 4 16-samples sub-
sequences; each 16-samples sequence is subdivided in 4 4-samples subsequences,
whose FFTs are then atomically calculated.
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To drastically reduce the average computation time, another property of the
DFT can be used: symmetry. As xn (the elemental 64-samples sequence) is
a sequence of real numbers, we can build a 64-samples sequence of complex
numbers in the following way:

sn = xn + jyn (3)

After the calculation of the FFT of sn, Sk, the Xk and Yk sequences can be
rebuilt using only sums and subtractions, by the following formulas:

�(Xk) =
1
2
[�(Sk) + �(S−k)], �(Xk) =

1
2
[�(Sk)−�(S−k)] (4)

�(Yk) =
1
2
[�(Sk) + �(S−k)], �(Xk) =

1
2
[�(S−k)−�(Sk)] (5)

This reduces by 50% the average number of multiplications, as we can get two
DFTs by applying a single FFT, and, once the FFT has been calculated, the
periodogram is given by:

Pk =
|Xk|2
64

, with k = 1, . . . , 32. (6)

2.3 Frequency Mask for Feature Selection

When the periodogram is computed, many of its samples represent frequencies
which should not be used for recognition, as they are far from the whistle power
spectrum and do not contain useful information. All these frequencies act as noise
for the classifier and should be reduced to improve classification performances.
So, the problem is: how many and which samples should be considered?

Since the whistle signal has a bandwidth of about 30÷40 Hz centered around
its average frequency and the periodogram has a resolution of fNyquist

32 = 4KHz
32 =

125Hz, a window of 3 samples can be adequate. A pure whistle signal can, in
fact, cause no more than 2 samples in the periodogram to raise, in absence of
background noise.

However, listener and source can move, and we need to face also the Doppler
effect. Suppose a stationary source is generating sound waves with frequency f
and wavelength l = v/f , being v the speed of sound. A stationary observer at
a certain distance from the source will hear a sound with pitch f . f times each
second the observer sensor will be pushed in and pulled out as pressure crest
and pressure trough reach it. The time period between two consecutive crests is
T = 1/f . Assume the observer in this case is a robot and starts driving away
from the source. Assume that at time t1 a pressure crest reaches the “robot ear”
at position x. The next crest will be at position x at time t1 + T , but the “ear”
will no longer be there. In this case the crest has to travel an extra distance
before it reaches the observer and this takes an extra time interval Δt. The
time interval between subsequent crests reaching the ear of the observer is now
T ′ = T + Δt.
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While the observer has traveled a distance Δx = vo ·(T +Δt), at speed vo, the
wave has traveled a distance Δx+l = v·(T +Δt). Therefore, using l = v/f = v·T ,
we have vo · T + vo · Δt + v · T = v · T + v · Δt, or Δt = vo · T/(v − vo). Thus,
we obtain:

T ′ = T + vo · T/(v − vo) = v · T/(v − vo), (7)

f ′ = f(v − vo)/v. (8)

The period has increased, the apparent frequency of the wave has decreased,
the pitch has decreased. If the observer is driving towards the source, then the
time interval between successive crests reaching the sensor will be shorter than
T. The apparent frequency of the sound wave reaching the observer is thus

f ′ = f(v + vo)/v. (9)

The perceived pitch of a sound wave also changes if the observer is station-
ary and the source is moving. Then the apparent frequency of the sound wave
reaching the observer when the source is moving towards him with speed vsis:

f ′′ = fv/(v − vs) (10)

Whenever the source and the observer move with respect to each other, the
wavelength of the sound reaching the ear will be Doppler shifted:

f = f ′′(v ± vo)/v = fv/(v ∓ vs) · (v ± vo)/v = f(v ± vo)/(v ∓ vs). (11)

The Doppler effect, computed with reasonable parameters (i.e., robot speed
= 5 m/s, whistle speed = 2 m/s, as worst case hypothesis), gives a frequency
shift of about 60 Hz at whistle average frequency (about 3 KHz). For this rea-
son, the observation window can be optionally extended from 3 to 5 samples to
compensate the Doppler effect.

The next problem to face is now: which frequencies should be considered?
Different whistles (or different environments) will lead to different choices of
frequencies and this calls for an adaptive system to reduce set-up time. To face
this issue, the concept of data separation has been introduced. Given a few
examples of whistle signal and background noise, these can be used to determine
which are the frequencies (i.e., the periodogram samples) that better characterize
the whistle sound and make it possible to distinguish it from the background
noise. Data separation gives a measure of how many samples can be correctly
recognized with a fixed threshold by observing a periodogram sample.

Figure 2, on the left, shows the situation for samples 21, 22, 23, and 24 of
the periodogram. Whistle examples (light gray) are obtained by transforming
sequences marked as “whistle” by a supervisor; the same applies to noise (dark
gray) examples. For each sample, all the examples are classified in two sets:
W(histle) and N(oise); so, for a generic sample, we have the situation shown in
Figure 2, on the right. Data separation (DS) for the sample k is defined as:

DSk � 1− Wk ∩Nk

Wk ∪Nk
(12)
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Fig. 2. Data separation

Once DS has been calculated for all 32 periodogram samples, the 3 samples with
the highest DS values are selected and marked as “1” in the frequency mask.
All other samples are marked as “0” in the frequency mask.

2.4 Perceptron with Hysteresis and Event Counter

The inputs used in the neural classifier are 3 (or 5, if Doppler compensation is
enabled) samples of the periodogram. Being reasonable to consider low values
of these samples as belonging to noise and high values to whistle signal, we
can use a hyper-ellipsoid as separation surface for the perceptron. When the 3
(or 5) inputs identify a point internal to the hyper-ellipsoid, the sample will be
recognized as noise, otherwise it will be recognized as whistle.

To avoid spurious commutations in noise-to-whistle and whistle-to-noise tran-
sients, we have introduced hysteresis, i.e., we implemented a recurrent perceptron
that uses its previous state as switching condition. Figure 3 shows the non-linear
perceptron with hysteresis used in the system. Calling s01 the noise-to-whistle

Fig. 3. Perceptron with hysteresis
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(turn-on) threshold and s10 the whistle-to-noise (turn-off) threshold, the output
of the neuron is:

Out =

⎧⎪⎪⎨
⎪⎪⎩

if PreviousState = −1
{

+1 if
∑32

n=0(
xn

Wn
)2 > 10

s01
10

−1 Otherwise

if PreviousState = +1
{
−1 if

∑32
n=0(

xn

Wn
)2 ≤ 10

s10
10

+1 Otherwise

(13)

where +1 is the output chosen to denote whistle sound detection, and -1 is
the output corresponding to “noise”, s01 and s10 are expressed in dB and
PreviousState is the previous perceptron’s output.

During the learning procedure, thresholds s01 and s10 are forced to 0 and the
best separation surface can be found by applying the learning rule:

E = 1
2 (target− output)

Wk = Wk − γ · xk ·E
(14)

where γ is an appropriate learning rate, target is the desired output, as specified
by the supervisor, output is the output of the perceptron to the current sample,
and E is the error, which can be +1, 0 or -1. For instance, if the perceptron
outputs +1 (whistle) while no whistles are being blown, we have:

– outupt = +1 (The perceptron’s output)
– target = −1 (The correct output, provided by the supervisor).

This results in error E to be -1; this means that a noise point, which should be
internal to the ellipsoid, has been actually classified as external. Since Wk is the
ellipsoid radius on the k axis, it must be raised to let the ellipsoid include the
example, in order to classify it as a noise sample. This is done for those axes of
the ellipsoid (from W1 to W32) that are not filtered out by the frequency mask.

Doing the dual reasoning when error is +1, and combining the two cases, we
obtain the learning rule 14.

The perceptron output refers to the analysis of 64 samples (8 ms) of data, and
states whether this block of audio signal contains a whistle sound. Time elapsed
between two consequent readings of elementary audio blocks is customizable, and
it will be called “timestep” in the following. The perceptron is thus designed to
produce an “event” (+1:whistle or -1:noise) every timestep; more precisely, the
FFT is called once on a pair of 64-samples sequences, so we obtain a pair of
events every 2·timestep.

A “counter” module of WR has to translate the sequences of events into one
of the following messages:

– Short whistle
– Long whistle
– Multiple whistle, which multiplicity is n
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Fig. 4. A short and a long whistles Fig. 5. A triple whistle

Table 1. Settings used in the examples

Parameter V alue

ShortIfLess 30 steps
LongIfGreater 50 steps

IntervalBetween 15 steps
MinWhistleLength 5 steps

MinNoiseLength 5 steps

The following parameters, expressed in numbers of timesteps, have to be pro-
vided by the user in order to define whistle timing specifics:

– Maximum length of a short whistle (ShortIfLess)
– Minimum length of a long whistle (LongIfGreater)
– Maximum interval length between two consecutive whistles (Interval

Between)
– Minimum whistle length (shorter whistles are filtered)
– Minimum noise length (shorter noises are filtered)

Events output by the perceptron (Whistle or Noise) are accumulated into
slots, which are groups of subsequent events of the same type. Slots are repre-
sented with colored boxes in figures 4 and 5. The generated slots are accumulated
into an event stack, as shown in figures 4 and 5: each line corresponds to the
status of the stack up to the occurrence of an event of different type.

The starting slot is “noise” from a sufficiently long time (N∞). So, for in-
stance, in figure 4, we have on the first line 17 “whistle” events (represented by
the W17 block). Then, on the second line, we have the situation of the stack
once the subsequent 15 “noise” events (N15) have been detected. Due to the
settings for this example, the “W17” slot is not filtered out (17 is greater than
15, the minimum whistle length parameter), so the subsequent noise events are
accumulated up to the maximum length of an interval between two whistles in a
multiple whistle (in this example, 15), as defined by the user (see settings in Ta-
ble 1). The stack situation shown on the second line is thus recognized as a single
whistle, and the corresponding notification message is issued. Then we have the
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recognition of a long whistle. Notice that the number of noise events detected (3)
is less that the minimum required to interrupt the sequence of whistle events, so
the N3 sequence is filtered out.

Figure 5 shows a triple whistle; the number on the right is the whistle multi-
plicity. Every time a new noise event occurs and the current whistle has not to
be filtered, multiplicity is incremented; in order to save space in the stack, each
pair of whistle-noise slots is eliminated when a new whistle slot is completed (see
the 3rd and 4th row in figure 5: “W15” and “N9” slots are eliminated and the
“W27” slot becomes the second slot); the system knows how many whistles were
blown in the past, memorized as multiplicity. As with the previous example, the
correct event is notified after a “N15” slot; here, the message is the multiplicity
of the whistle.

3 The Learning Tool

A software tool is provided to let the user set system parameters and neu-
ron weights. The higher part in the tool main window (Figure 6) is a sound
recorder with two buffers: one for whistle recording and one for background noise

Fig. 6. The learning tool
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(a) (b)

(c) (d)

Fig. 7. Background noise (a) and whistle (c) signals captured from outside the field
during a match. In (b) and (d) respective periodograms are reported.

recording. This separation is a simple way to let the user be the supervisor of
the acquisition process.

The lower part of the window integrates a set of tools to control and test the
perceptron. We can see a plot of data separation (on the left), which helps the
user in the selection of the frequency mask, a section dedicated to the perceptron
learning with a 3D visualization of the separation surfaces (in the center), and
a test section (on the right).

4 Results

The system has been tested both with samples recorded from outside the field
during competitions and on the robot during execution in our laboratory in
Milano–Bovisa1. In Figure 7(a) and (c) you can notice respectively the noise
and whistle signals captured during a match in Padova during the 2003 Robocup
competition. In this case, we do not have a pure whistle signal so we trained the
recognition system using background noise and a quite noisy whistle. Even in
these conditions, the system has been able to recognize perfectly the two short
whistles and the long whistle present in the sample.

Whenever we are interested on on-board whistle recognition, we should no-
tice that the highest level of background noise is caused by the robot motors
and body, which strongly vibrates while the robot is moving. This is clear in
Figure 8(a) where noise has been captured on-board during robot operation.
1 All samples used for experimental validation in this paper are available from
http://robocup.elet.polimi.it/MRT/WR.html.
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(a) (b)

(c) (d)

Fig. 8. Background noise (a) during execution and pure whistle (c) signals captured
from the robot. In (b) and (d) respective periodograms are reported.

This results in a very strong white noise2, which could be partially lowered by
mechanically isolating the microphone from the structure. In this case, we could
acquire the pure whistle signal, reported in Figure 8(c), but it has an intensity
lower than noise. If the whistle-to-noise and noise-to-whistle thresholds are ade-
quately set, the system proved to have a good behavior in rejecting noise in this
especially adverse situation, resulting in a 70% correct classification rate.

Eventual shocks of the robot during the match are well filtered by adequately
setting the whistle and noise minimum lengths. Human voice frequencies have
been measured and they are quite distant from the whistle characteristic fre-
quency, so this kind of background noise did not cause any problem. We also
tested the system using a sample with a spurious whistle coming from a different
field and it was able to reject it.

5 Conclusions

Aim of this paper was to present the design and features of WR, a system
enabling robots to detect the sound of the referee whistle during a match. A
composite approach, based on a spectrum analyzer followed by a neural output
stage and a counter was chosen to achieve the goal providing a flexible and easily
tunable system. Particular care has been taken to design a system as simple and
fast as possible. We have also implemented a software tool to support the user
to tune the system. During the tests, the system proved to be fast and accurate,
even in presence of quite strong background noise.
2 Actually the recorded signal resemble more to a pink noise due to the low-pass effect

of the microphone.
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Another important feature to be mentioned is that the system requires a very
low CPU load; in fact, the whole process (FFT, perceptron and counter) takes
about 150 μsec to complete on a P4 2.1 MHz, while it is called, with the default
timestep, every 40 ms.
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Abstract. The paper develops a new approach for robot self-
localization in the Robocup Midsize league. The approach is based on
modeling the quality of an estimate using an error term and numerically
minimizing it. Furthermore, we derive the reliability of the estimate an-
alyzing the error function and apply the derived uncertainty value to a
sensor integration process. The approach is characterized by high preci-
sion, robustness and computational efficiency.

1 Introduction

Autonomous robots need to know their position and heading to be able to solve
a given task like driving to a certain position. Especially in the Robocup Mid-
size league reliable position estimates are essential for higher level behavior like
path planning, strategy and multi-agent coordination. Since autonomous robots
cannot refer to global sensors which are fixed with respect to a global coordinate
system but all sensors are on-board they need a procedure of self-localization,
i.e. an algorithm to calculate their position and heading.

In this paper, we focus on a camera-based self-localization approach for the
Robocup Midsize league. Three main difficulties have to be faced: (a) the self-
localization process must be robust. The soccer field is not encircled by a board
that allows to distinguish objects inside and outside the field like spectators.
This may lead to misinterpretations of the visual information.

(b) Position estimates must be accurate: images of standard camera systems
exhibit a poor resolution of objects located more than a few meters away. Hence,
distance estimates are very noisy. Furthermore, the dynamics of the game with
large accelerations and collisions between robots leads to vibrations that further
affect the quality of self-localization (see fig. 1).

(c) The self-localization approach needs to be computationally efficient since
the robot control program must satisfy strict real time conditions: our goal is to
reduce the computation time to less than 15 milliseconds.

Mainly three approaches [10] have been used so far to solve the self-localization
task: (a) the use of colored landmarks combined with geometrical calculation, e.g.
[4], (b) the detection of white field markings combined with a Hough-transform,
e.g. [6], and (c) the detection of landmarks or field markings combined with a
sequential importance sampling [3] approach like Particle filtering [2].

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 142–153, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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All of these approaches have some merits but none of them solves all objectives
of self-localization satisfactorily: approaches using landmarks are easily mislead
by colored objects outside the field. Secondly, the large size of the field (8×16m)
and the small number of landmarks restricts the use of landmarks.

Using the Hough-transform needs the calculation of a three dimensional ac-
cumulator array. Hence, a lot of calculation is done for positions of no interest
and any increase in precision implicates a heavy increase of computation time.

Monte Carlo approaches like Particle filtering also spend a lot of time in eval-
uating positions of no interest since they follow a blind search paradigm. In ex-
periments we made with a Particle filtering approach of our Robocup team [7] we
observed that approximately 98% of the examined positions did not contribute
to the final position estimate since positions are evaluated even if neighboring
places have already been evaluated as poor estimates.

We therefore want to propose a new algorithm for robot self-localization that
overcomes the problems stated before and that fulfills all requirements: robust-
ness, accuracy and efficiency. It is based on guided update steps modeling the
localization problem as an error minimization task and using an efficient numer-
ical minimizer. Additionally, we derive a measure of reliability of the calculated
position analyzing the structure of the error function so that we can apply a
stochastic sensor fusion process that increases the accuracy of the estimate.

An extension of the algorithm described in a further section also allows to
solve the global localization problem, i.e. to find a robot’s position without any
prior knowledge. Finally, we compare the new approach with an existing imple-
mentation of Particle filtering for self-localization.

We assume the robots being equipped with an omnidirectional color camera
on top that perpetually takes pictures from the field area around the robot.
We further assume the case of omnidirectional driving capabilities although the
calculations can also be done for a differential drive in simplified form.

2 Interpreting the Pictures from the Camera

2.1 Image Preprocessing

The pictures from the camera (fig. 1) are preprocessed using a detector of line
points based on an efficient search along pre-defined radial scanlines. A descrip-
tion of this approach can be found in [7]. The result of preprocessing is a list of
positions relative to the robot position and robot heading where scanlines inter-
sect white field markings that have been observed in the image. In the following,
we will call these points detected line points or, simply, line points.

An example of such a list is given by the gray circles in figure 4 (left). The de-
tected line points are not linked, i.e. the list does not preserve the neighborhood
relationship of line points that belong to the same line.

2.2 Matching Visible Information with Position Estimates

To find the position and heading of the robot with respect to the information
we get from image preprocessing we define an error function that describes the
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Fig. 1. Pictures taken by the omnidirectional camera. Left: a neat picture taken when
the robot was not moving. Right: a blurred picture affected by vibrations when the
robot was moving. All field markings are blurred and some of them occur twice.

fitness of a certain estimate. The idea is, that the detected line points and the
known field markings match as best as possible if we assume the true robot
position and robot heading. Hence, maximizing the fitness (=minimizing the
error) yields the best estimate.

Let (p, φ) be a pair of a possible robot position p = (px, py) and heading φ
in a global coordinate system. The list of detected line points is given relative
to the robot’s pose as vectors s1, . . . , sn (see fig. 2). Its position in world coordi-

nates therefore is given by p +
(

cosφ − sinφ
sin φ cosφ

)
si. Minimizing the error between

detected line points and true field markings means to solve:

minimize
p,φ

E :=
n∑

i=1

err (d(p +
(

cosφ − sinφ
sin φ cosφ

)
si)) (1)

The mapping d(·) gives the distance from a certain point on the field to the
closest field marking. It is continuous and piecewise differentiable and can be
calculated from the knowledge of the field markings that are defined in the
Robocup rules.

err is an error function that punishes deviations between detected line points
and the model lines. The squared error function e �→ 1

2e2 which is standard for
many applications is not appropriate for the given task since it is not robust with

si

x

y

p
φ

world coordinate system

robot coordinate system

robot

detected line point

Fig. 2. Sketch of the fixed world coordinate system, the robot relative coordinate sys-
tem and a vector si pointing to a detected line point
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Fig. 3. Comparison of the squared error function (dashed line) and the more robust
M-estimator e �→ 1 − c2

c2+e2 (solid line)

respect to outliers [9]. Due to image noise and imperfect image preprocessing we
are faced with a substantial amount of erroneously detected line points that
would distort the estimate. Instead, we use the error function e �→ 1 − c2

c2+e2

with parameter c ≈ 250, see fig. 3. This error function is very similar to the
squared error function for errors e ≤ c and is bounded above by a constant for
larger errors, thus the influence of outliers onto the estimate is bounded.

Figure 4 (right) shows the error function for a certain set of detected line
points. Obviously, the error function exhibits a large number of local minima.
Due to the non-linearity of the minimization problem (1) we cannot analytically
calculate its solution but we need a numerical minimizer.

Since d is almost everywhere differentiable we can build its gradient almost
everywhere and interpolate the gradient at the non-differentiable places. Hence,
we can use gradient descent to solve (1). Due to quick convergence and high
robustness we use 10 iterations of RPROP to solve the minimization task [8].
RPROP was originally developed as learning rule for multi layer perceptrons but
it can also be used to solve other types of unconstrained optimization problems.

Fig. 4. Left: The set of line points (gray circles) and the field markings (solid lines) for
an optimal position estimate. The estimated robot position and heading is indicated by
the symbol “R”. Right: A graylevel plot of the error function for the same clipping as
in the left-hand figure. The 3D-error function was projected onto the two-dimensional
field assuming optimal heading of the robot. Dark areas indicate positions with large
error, bright areas positions with small error. The black circle indicates the optimal
position estimate. The error function exhibits a distinctive global minimum.
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Using the idea of error minimization we can realize the draft version of a
robot localization algorithm:

1. start with a known position estimate
2. calculate the movement of the robot since the latest update of the position

estimate and add it to the latest estimate
3. optimize the position applying the error minimization approach
4. repeat 2. and 3. every time a new camera image is received

2.3 Dealing with the Aperture Problem

Figure 4 shows a situation with a distinctive global minimum, i.e. the optimiza-
tion task is well-posed and all parameters can be estimated reliably. Unfortu-
nately, situations occur in which the optimization task is ill-posed due to a small
number of line points or a poor structure of the line points. Such a situation is
depicted in figure 5: the robot is located next to the touch-line of the field and
all line points refer to the touch-line. Hence, the distance to the touch-line, i.e.
the y-coordinate, can be estimated very reliably while the x-coordinate remains
vague. The error function is characterized by a long valley of similar small values.

To tackle the aperture problem we have to recognize three possible situations:
(a) the error function exhibits a distinctive global minimum. Hence, we can
estimate p and φ reliably. (b) The error function is completely flat due to a
small number of line points. Thus, we cannot estimate any parameter. (c) The
error function exhibits a valley structure around the minimum. Here, we can
estimate parameters robustly which refer to a coordinate axis orthogonal to the
valley but we cannot estimate parameters that refer to a coordinate axis parallel
to the valley. E. g. in fig. 5 we can estimate py and φ but not px.

To determine the structure of the error function around the minimum we
propose the analysis of the second order derivatives of the error function: the
value of ∂2E

(∂px)2 is small in the case of a valley parallel to the x-axis and in a

Fig. 5. Aperture problem: The left hand figure shows the mapping of the line points
onto the known field markings while the right hand figure shows the error function in the
same way as in figure 4. The error function shows a valley of small error values. Hence,
the position estimate is very reliable with respect to the y-coordinate but unreliable
with respect to the x-coordinate.
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completely flat case while it is large if E shows a distinctive minimum with
respect to the x-axis. Analogously we can analyze ∂2E

(∂py)2 and ∂2E
(∂φ)2 .

From a practical point of view the calculation of the second order derivatives
simplifies: The function d is build out of the line markings on the field. Most of
them are lines parallel to the coordinate axis, only the corner arcs and the center
circle are no straight geometrical objects. Hence, the function d is piecewise linear
in most parts of the field and its second order derivatives are zero in these areas.
Using this simplification we get:

∂2E

(∂px)2
≈

n∑
i=1

err ′′(si) · (
∂d(si)

∂x
)2 (2)

∂2E

(∂py)2
≈

n∑
i=1

err ′′(si) · (
∂d(si)

∂y
)2 (3)

∂2E

(∂φ)2
≈

n∑
i=1

(
err ′′(si) ·

(∂d(si)
∂x

(− sin φ − cosφ)si +
∂d(si)

∂y
(cos φ − sinφ)si

)2

+ err ′ ·
(∂d(si)

∂x
(− cosφ sin φ)si +

∂d(si)
∂y

(− sinφ − cosφ)si

))
(4)

where err ′ and err ′′ denote the first and second order derivative of err .
Unfortunately, the error function e �→ 1− c2

c2+e2 used in (1) is not completely
positive definite and therefore the curvature criterion may be mislead, i.e. the
second order partial derivative may be small also the minimum is distinctive.
However, this problem is caused only from outlying observations since the error
function is positive definite in the interval (− c√

3
, c√

3
). To avoid this problem we

adopt the following artifice: in (2)–(4) we replace the original error function by
the squared error function e �→ 1

2 ( e
c )2 and ignore outlying observations. Hence,

E becomes positive definite and the curvature criterion yields sound results.

3 Tracking and Smoothing

The approach described so far estimates the robot position and heading that
matches optimally to the information extracted from the camera image. Due to
vibrations of the robot, especially in the case of high velocity or due to collisions,
this position is affected by a reasonable amount of noise and inaccuracy (see fig.
1 (right)). The dotted line in figure 6 (left) shows an example of a trajectory
build out of the positions calculated only from the image information. Obviously,
the noise of the self-localization process is severe.

To reduce the noise we propose to evaluate the temporal dependency of posi-
tions estimated from subsequent images. Since subsequent positions of the robot
are neighbored and linked using some transition depending on the robot velocity
we can use a stochastic weighted averaging approach that is in fact a simplified
application of the Kalman filter (see e.g. [5]).

We thereto enclose all estimates with variances that model the degree of un-
certainty. We don’t use covariances to simplify the modeling. Let denote (rt, ψt)
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the estimate of the robot’s position and heading at time t and σ2
rx,t, σ2

ry,t, σ2
ψ,t the

respective variances. After a robot movement the position estimate and variances
are updated using the motion model of an omnidirectional robot with velocity
v and rotational velocity1 ω:

ψ̂t+τ = ψt + ω · τ (5)

r̂t+τ =

⎧⎪⎨
⎪⎩

rt + v · τ if ω = 0

rt + 1
ω Rψt

(
sin(ωτ) cos(ωτ)−1

1−cos(ωτ) sin(ωτ)

)
R−ψtv if ω �= 0

(6)

with Rψ denoting the rotation matrix by the angle ψ. The velocity and rota-
tional velocity is measured by odometers. The update of the variances takes into
account the inaccuracy of the movement:

σ2
ψ̂,t+τ

= σ2
ψ,t + α(ψ̂t+τ − ψt)2 (7)

σ2
r̂x,t+τ = σ2

rx,t + α(r̂x,t+τ − rx,t)2 (8)

σ2
r̂y,t+τ = σ2

ry,t + α(r̂y,t+τ − ry,t)2 (9)

The parameter α > 0 controls the assumed accuracy of the movement.
In (8) and (9) we ignore the non-linear dependency between rotational and

translational movements of a robot. Ignoring it keeps the statistical model-
ing efficiently tractable while considering the dependency would require time-
consuming statistical techniques like e.g. sequential importance sampling. As
long as the frequency of updates remains high, the additional error made by the
assumption of independence remains small.

After receiving an image from the camera and calculating the optimal estimate
with respect to the image information (p, φ) we are able to calculate a smoothed
position estimate combining (p, φ) and (r, ψ). Therefore we introduce variances
for (p, φ) that model the uncertainty of the image-based estimator.

The reliability of the image-based estimator is influenced by several aspects:
the precision of the optical system, mechanical vibrations, camera calibration
errors, the accuracy of image preprocessing and the structure of detected line
points. While we can only make crude assumptions about the accuracy of the
former aspects we need to model the latter aspect, i.e. the structure of line
points, carefully to avoid erroneous estimates.

In section 2.3 we discussed the aperture problem recognizing that the estimate
may be reliable in some parameters and unreliable in others. This means, the
assumption of uncertainty is different for each of the parameters px, py and φ.
We therefore propose to use the curvature criterion to individually determine
the variance of each parameter: a small second order partial derivative should
be related to a large variance while a large second order partial derivative should
be related to a small variance. We use a heuristic function to map second order
partial derivatives onto variances. It was determined from a set of experiments
by visual inspection.
1 v and ω refer to the global coordinate system and describe the movement at time t.
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The sensor fusion step consists of averaging two independent Gaussian distri-
butions. Denoting with σ2

φ the variance of φ we get:

ψt+τ =
σ2

φψ̂t+τ + σ2
ψ̂,t+τ

φ

σ2
φ + σ2

ψ̂,t+τ

(10)

σ2
ψ,t+τ =

σ2
φ · σ2

ψ̂,t+τ

σ2
φ + σ2

ψ̂,t+τ

(11)

The sensor fusion steps for rt+τ can be calculated analogously.
Using the filtered estimates helps to improve both, robustness and precision.

A single misleading camera image does not lead any more to a loss of track since
the filter does not allow to jump to a completely different position which would
be possible using the simple algorithm shown in section 2.2.

Additionally, the aperture problem is tackled appropriately: even if the image-
based estimate is unreliable with respect to some coordinate axis sensor fusion
leads to reliable estimates for all parameters. Moreover, the precision is increased
by the sensor fusion due to its implicit smoothing. Hence, erroneous image in-
formation do not have a strong impact on the final estimate.

4 Solving the Global Localization Problem

Section 3 discussed the problem of tracking a robot’s position starting with a
known initial position, i.e. to look for the locally optimal estimate. To solve the
global localization problem means to find the global minimum of the error E
from (1) even if no initial estimate is available. Certainly, it is not possible to
solve the global minimum search under hard real time constraint every cycle.

We therefore propose to apply the tracking approach several times in parallel
with random initial positions. The estimates converge very quickly to the next
local minima of E. Hence, we can compare the different estimates and choose
the best one as our main estimate while the sub-optimal estimates remain under
inspection as possible alternatives. By repeated random reinitialization of the
alternative estimates we successively scan the whole parameter space.

To avoid premature switches between main estimate and an alternative due
to random effects we introduced a discounted scoring system: the best estimate
in a cycle gets one point while the others don’t get any point. By comparing
the discounted sums of points we can evaluate which of the estimates is the
overall best one over a longer period of time. Switching the main estimate to an
alternative happens only if the score of the alternative becomes greater than the
score of the current main estimate.

5 Experiments and Comparison

5.1 Accuracy

All experiments explained here were made on the robots of the Brainstormers
Tribots team. The algorithms were implemented in C++ under Linux and ran
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on JVC sub-notebooks with 1GHz Pentium processor. We used a test field which
had the dimensions of the fields used in the Robocup 2004 competition.

We made experiments using the joystick to control the robot. In all cases
the self-localization approach worked fine. Figure 6 (left) shows a trajectory of
self-localization positions that were calculated while the robot drove on a curved
trajectory of 6m length. The trajectory based on the Kalman filtered positions is
very smooth. In contrast, the trajectory build out of the image-based estimates
without Kalman filtering exhibits deviations up to 43cm and erratic outliers
orthogonal to the direction of movement.

In figure 6 (right) we repeated the same experiment with a Particle filtering
based self-localization [7]. Both approaches worked on exactly the same input so
that they can be compared directly. Obviously, the Particle filter exhibits large
deviations from the curved trajectory that are even worse than the deviations
of the image-based trajectory in figure 6 (left). These examples show the high
precision of the new approach that clearly outperforms the hitherto used Particle
filter. In further experiments these results have been confirmed.

5.2 Computational Efficiency

We also measured the computation time and compared it to the Particle filter
with 200 and 500 particles. The average computation time is given in table 1.
The Particle filter needed four times (with 200 particles) and ten times (with
500 particles) as much computation time as the error minimizing algorithm. In
the given framework with hard real-time constraints this saving of time allowed
us to increase the number of camera images analyzed per second to 30 which
was far not possible with the Particle filtering approach.

Figure 7 shows the cumulative distribution function of the time needed by
the error minimizing self-localization algorithm. The computation time linearly
depends on the number of line points. It varied between none and 300 per cycle.
The maximal computation time was 11ms while the average was 4.2ms. One
possibility of restricting the maximal computation time is therefore to restrict

Fig. 6. Left: example of a robot driving with 2m
s

on a curved trajectory of 6m length.
The dotted line shows the trajectory of positions which are evaluated optimal consider-
ing the camera image. The solid line shows the smoothed trajectory using the Kalman
filter. Right: comparison of the error minimizing approach (solid line) with the Particle
filter with 500 particles (dotted line) on the same trajectory.
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Table 1. Computation time of different methods for self-localization in milliseconds

Approach Average computation time per cycle
Particle filter with 500 particles 48.3
Particle filter with 200 particles 17.9
Error minimizing self-localization 4.2

all line segments
maximal 100 line segments
maximal 50 line segments

 0

0.2

0.4

0.6

0.8

 1

 0  2  4  6  8  10  12

Fig. 7. Cumulative distribution function of the computation time per cycle of self lo-
calization in milliseconds (x-axis). The solid line refers to the case of unlimited number
of line points while the dashed (dotted) line shows the case of a maximum of 100 (50)
line points per cycle.

the number of line points used. E.g. restricting the number of line points to 100
(50) yields a maximal computation time of 6ms (4ms) without reducing the
accuracy of estimates considerably.

5.3 Global Localization

In a third experimental setup we measured the time that was needed to glob-
ally localize the robot. Thereto we repeatedly activated a random reset of self-
localization and measured the time needed to find the robot’s position again.

The global localization approach used one main estimate and three alternative
estimates which were repeatedly reinitialized after between 100ms and 2000ms,
depending on their quality. Although in every iteration only four positions were
evaluated the self-localization found the global optimum in most cases quickly.
On average, it took 2.9 seconds. The time needed for global localization heavily
depended on the number of line points and their structure: it was far easier to
localize in the penalty area in front of a goal with lots of horizontal and vertical
field markings than next to the touch line where only a few line points of only a
single field marking could been detected.

6 Related Work

There are two different approaches that are closely related to the error mini-
mizing approach: the two-step approach of Cox [1] and the so-called MATRIX -
approach [11]. The work of Cox uses a range finder to detect walls instead of



152 M. Lauer, S. Lange, and M. Riedmiller

Table 2. Comparison of three approaches for robot self-localization

Cox MATRIX Error minimizer

sensory system range finder/walls omnidirectional cam-
era/field markers

omnidirectional cam-
era/field markers

principle 2-step force-field gradient descend
error function squared error ≈squared error M-estimator
deals with outliers remove in advance weighted observa-

tions
M-estimator

optimizer analytically/2-step ad hoc RPROP
variance estimation analytically, only for

straight lines
none analyzing the Hes-

sian
sensor integration fusion of Gaussians none fusion of Gaussians
global localization none exhaustive search at

beginning
randomized parallel
search

experiments 1
40

m
s

robot velocity,
frame rate of 1

8
Hz

none 3m
s

robot velocity,
frame rate of 30Hz

field markers. Self-localization is based on assigning every observed wall point
to the closest true wall and minimizing the squared error. Since this approach
does not consider curved walls solving the optimization problem can be done
analytically. Experiments are presented only for very slowly moving robots.

The MATRIX -approach models the task using an artificial force field which
resembles a gradient vector field for the squared error measure. This approach
does not consider the aperture problem. Experimental results are missing.

Comparing the error minimizing approach with both alternatives (see tab. 2)
shows that the new approach completes its alternatives: in contrast to MATRIX
it tackles the aperture problem and allows sensor integration while in contrast to
Cox’ approach it can even deal with noisier sensors like optical systems and with
higher robot velocities which cause slippage and imprecise odometer signals.

7 Summary

We proposed a new approach to efficiently solve the robot self-localization prob-
lem in the Robocup Midsize league. The approach is based on an efficient nu-
merical approach to find the locally best match between the camera image and
the model of the field. Additionally, a stochastic sensor fusion step similar to the
Kalman filter is used to link the position estimates calculated from subsequent
images and to smooth the trajectory.

This approach enables a low-noise tracking of a robot’s position. Experiments
comparing the new approach with an existing Particle filtering approach point
out the immense noise reduction. Position estimates become more reliable and
more precise. Hence, they are much better suited for further calculations like
path planning. Thus, using the error minimizing self-localization enables the
development of higher level capabilities of robot control and team play.



Calculating the Perfect Match 153

While an increase in accuracy implicates an increase of computation time
using methods like Particle filtering and Hough transform the new approach is
very efficient. In experiments we could show that it needs only a tenth of the
computation time of a Particle filter. By restricting the number of line points it
was possible to restrict the maximal computation time to 4 milliseconds. Hence,
the new approach can be used even under hard real time constraints.

Although the basic modeling is not guaranteed to find the overall optimal
position we proposed an extension that also solves the global localization prob-
lem. We could show by experiments that the robot found its position on average
in only 2.9 seconds. Hence, even if the tracking approach is mislead by heavily
erroneous sensor information the robot is able to quickly find its position again.

The error minimizing algorithm for self-localization that is presented in this
paper is characterized by three properties: high accuracy, robustness and effi-
ciency. It outperforms Particle filtering in all of these aspects. It therefore is a
step towards a completely autonomous and robust soccer playing robot.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) SPP 1125.
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Abstract. In robotic soccer a good ball position estimate is essential
for successful play. Given the uncertainties in the perception of each in-
dividual robot, merging the local perceptions of the robots into a global
ball estimate often results in a more reliable estimate and helps to in-
crease team performance. Robots can use the global ball position even if
they themselves do not see the ball or they can use it to adjust their own
perception faults. In this paper we report on our results of comparing
state-of-the-art sensor fusion techniques like Kalman filters or the Monte
Carlo approach in RoboCup’s Middle-size league. We compare our results
to previously published work from other Middle-size league teams and
show how the quality of perceiving the ball position is increased.

1 Introduction

Estimating the ball position accurately and reliably is one of the central problems
in robotic soccer (RoboCup, [18]), especially in the Middle-size league, where the
robots often occlude the ball due to their size. Knowing where the ball is located
is central for the cooperation and coordination task of the team. As the rules
of the Middle-Size league allow for communication between the robots or to an
external host global sensor fusion can be applied for calculating a global ball
estimate. Merging the single estimates of the robots into a global ball position
is one of the keys to robust team-play as the perception of a single robot might
be wrong. With the knowledge of the team-mates the wrong estimate of a single
robot can be adjusted. This leads to a better overall team performance.

In this paper we evaluate state-of-the-art sensor fusion techniques for merging
the global ball position from the robot’s local perceptions, filtering out wrong
estimates and false positives. The methods comprise simple approaches based
on averaging and more sophisticated ones like the Kalman filter, or the Monte
Carlo approach. We tested the global sensor fusion with our team AllemaniACs
during the World Cup 2003 in Padua, Italy, and 2004 in Lisbon, Portugal, and the

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 154–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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German Open 2004 in Paderborn observing a significant increase in the quality
of the ball position estimate. Moreover, we use the global ball information to
detect when a robot is dis-localized.

We show that the best methods yield better results than reported before
in the literature for the RoboCup setting and that the one reported in [3] is
outperformed by an even simpler one. The presented experiments were conducted
in real game situations showing a significant increase in the availability and
quality of ball position estimates.

The paper is organized as follows. In Section 2 we give a brief overview about
the related work on sensor fusion in the robotic soccer domain. In Section 3 we
describe our hardware platform and the software system. Section 4 describes the
methods we use for merging the local robot perceptions to a global world model
and show their results in Section 5. We conclude with Section 6.

2 Related Work

The soccer domain is an interesting domain for research on sensor fusion. Most
of the work concentrates on merging perceptions of the ball to one consistent
estimate. The methods commonly used are probabilistic method as Kalman fil-
ters [9] or Markov Localization [6]. Here, we will concentrate on the related work
in the field of fusing ball estimates in the RoboCup domain. One can distinguish
between the so-called local sensor fusion and global sensor fusion. In the former
case the perceptions of several sensors on one robot are combined. The latter
refers to merging the perceptions of different robots.

Dietl et al. [3] present a ball tracking algorithm, which combines a Kalman
filter with Markov localization. They assign a new measurement to an existing
track of observation by minimizing the sum of squared error distances. For pre-
dicting the ball position a Kalman filter is used. For this Kalman filter they use
Markov localization as an observation filter. They report a mean error of 38 cm
for a moving ball while the robots did not move.

Stroupe et al. [16] represent each ball estimate as a two-dimensional Gaussian
in a canonical form. This allows to merge the single estimates of the robots simply
by multiplying them. For predicting the ball position they use a Kalman filter
approach.

Pinheiro and Lima [13] also represent sensor information about the ball as a
Gaussian applying Bayesian Sensor Fusion. They assume that the last position
is known and that the single estimates are close by each other.

The team Mostly Harmless [14] use local sensor fusion to integrate the per-
ceptions from the different sensors their robots are equipped with. They use a
Monte Carlo approach [2] to merge the data from the different sensors into a
local world model. They also provide a merged global world model.

The Milan RoboCup Team use an anchoring approach [1]. The Sensor data are
represented symbolically and are anchored with objects from the environment.
For the sensor fusion of the symbolical sensor data they use fuzzy logics.

Several other teams participating at the world championships are using local
sensor fusion.
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3 The Platform

In this section we give a brief overview of the relevant parts of our hard and
software system.

3.1 Hardware

The hardware platform is a self-development [20] with the aim of having robots
which are competitive in RoboCup and can also be used in office domains for
service robotics applications. The platform has a size of 39 cm × 39 cm × 40 cm
(Fig. 1). For power supply we have two 12 V lead-gel accumulators with 15 Ah
each on-board. The battery power lasts for approximately one hour at full charge.
The robot has a differential drive, the motors have a total power of 2.4 kW. This
power provides us with a top speed of 3 m/s and 1000 ◦/s by a total weight of
approximately 60 kg.

Fig. 1. The hardware platform

On-board we have two Pentium III PC’s at 933 MHz running Linux, one
equipped with a frame-grabber for a Sony EVI-D100P camera mounted on a
pan/tilt unit. Our other sensor is a 360◦ laser range finder from Sick Ibeo with a
Gaussian error distribution and a deviation σ ≈ 3 cm. It runs with a resolution
of 1 degree at a frequency of 10 Hz. For communication a WLAN adapter using
IEEE 802.11a is installed.

3.2 On-Board Software

For our software architecture we are using a three layered architecture consisting
of a low-level layer where sensory inputs and actuator outputs are controlled,
a mid-level where modules like collision avoidance and localization are located
and a high-level controller for making plans about future courses of actions.
Important aspects for the process of merging local ball estimates are the lo-
calization, the vision module which provides the ball estimates, and the world
model which communicates the local estimates to a global world model where
the fusion process takes place.

For self-localization our software provides the localize module using the 360 ◦

laser range finder following a Monte Carlo approach. As for RoboCup it is very
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important to have continuity in the position updates we track the robot’s po-
sition with odometry in between two position estimates from the Monte Carlo
localization module. The localization uses KLD sampling and cluster-based sam-
pling (e.g. cf. [4,11]). The position estimates provided by the localization have an
accuracy of about ±2.5 cm, position losses are very rarely. For more information
about the localization we confer to [15].

The ball, goals and flag-posts are localized with the vision module using
color segmentation and knowledge about the objects’ shape. Color segmenta-
tion is inexpensive, but the mapping between single objects and their colors or
chrominances, if reduced to two dimensions, must be known in advance. For each
shape detected object, we compute the chrominance histogram. The histograms
are combined based on the Bayes Theorem to obtain a lookup table [7], which
is used for color segmentation. To profit from the speed of color segmentation,
shape detection is only applied to regions containing the interesting object’s
color. The circular ball is detected by a randomized hough transform. The goals
and flag-posts are modeled as quadrilaterals, which are bordered by straight
lines. Object detection takes about 50 ms on a Pentium III with 933 MHz. The
entire vision system including the color segmentation and color recalibration step
runs at 10 Hz.

The world model consists of information like the ball and player position as
well as some other internal state information. We provide two kinds of world
model, a local one which is constructed from the own perception and a global
one which is the result of a world model fusion on an external computer.

For inter-process communication we use a blackboard communicating via
shared memory between the two on-board computers and via UDP between
the robots.

4 Sensor Fusion Techniques

In this section we give a brief overview of the sensor fusion techniques we use
in this case study. We start with simple ones like mean methods and go over to
more sophisticated ones like the Weight grid method, the Kalman filter, and the
Monte Carlo method. Finally, we test a combination between the Weight grid
and the Kalman filter. This method is similar to the one proposed in [3].

4.1 Arithmetic Mean

Each robot i seeing the ball contributes his local estimate (lbx, lby)(i) about the
ball position by communicating it to a central server. The global ball estimate
(gbx, gby) is calculated by averaging over the estimates from each robot, i.e.
gbx = 1

n

∑n
i=0 lb

(i)
x , gby = 1

n

∑n
i=0 lb

(i)
y .

Here, every local ball estimate has the same importance. The estimate of a
robot which is far away from the ball should not be weighted as much as the
estimate of a robot being close to the ball. Therefore, in a variant we weight the
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(a) Arithmetic mean (b) Monte Carlo ball localization

(c) Example situation for
the weight grid fusion
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(d) The weight grid for the situation in
Fig. 2(c)

Fig. 2. Fusion techniques

estimates according to the distance from the robot to the ball and a time factor
which denotes how long ago the robot has seen the ball for the last time:

wi = 1/disti · confb (i) · confp (i). (1)

confb is the ball confidence provided by the vision system. The role of this
confidence is to give some means of persistence to the ball estimate. If the ball
is not seen in one frame it is not reasonable to assume that the ball disappeared
from the previously detected position as the vision system has some detection
error. The confidence is modeled by a rapidly decreasing function over the time,
which is set to 1 if the ball is detected. This confidence helps stabilizing the local
ball estimates. The other confidence confp is provided by the localization system
and represents the confidence that the robot is located at the given position.
The weighted mean is then calculated as gbx = 1∑

n
i=0 wi

∑n
i=0 wi · lbx

(i) and

gby = 1∑n
i=0 wi

∑n
i=0 wi · lby

(i). An example of the weighted mean estimation is
depicted in Fig. 2(a). The local ball estimates are enumerated and marked with
the respective robot’s color. The merged estimate is numbered as estimate 5
(red ball).
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4.2 Weight Grid

This method uses a grid to represent positions on the field. The representation is
similar to an occupancy grid representation [12], but each cell can take weights
greater than 1. For each ball estimate a 2-dimensional Gaussian distribution is
calculated. The parameters for this Gaussian are taken from the distance error and
the pan error which areprovidedby the vision system. Fig. 3 shows the parameters.

The cell update works as follows: each local ball estimate is weighted by
the weight function given in the previous section (Eq. 1). These weights are
then multiplied with the Gaussian distribu-
tion and the result is stored in the respective
grid cells. Fig. 2(c) shows an example situa-
tion where the ball can be seen by the goal
keeper, the blue, and the black robot. The
perception of the goal keeper (brown) is clos-
est to the real ball position (dark blue) and
its distribution is due to the weighting more
narrow than ones from the other robots. The
merged ball position is depicted in red. Fig. 3. Ball confidence

4.3 Kalman

A Kalman filter [9] is used to estimate the state of a process variable x ∈ IRn

in a dynamic system. As we want to estimate the position of the ball we have
x = (gbx, gby)T . The basic equation describing the stochastic process is xk =
Axk−1 + Buk−1 + wk−1 with measurements zk = Hxk + vk, where wk and vk

represent the process and measurement noise, resp. They are assumed to be
independent of each other and normally distributed, i.e. p(w) ∼ N(0, Q) and
p(v) ∼ N(0, P ).

The matrix A represents the motion model relating the old process state with
the new one. In our case we do not integrate a motion model directly as the local
ball measurements from all robots are from the same point in time. Instead we
propagate the global ball position by the ball velocity which is calculated using
the last global ball estimates each time the Kalman filter is called. This simplifies
the application of the motion model. Otherwise a complex motion model has to
be found and applied. It turned out that applying the motion model this way
works fine for the ball tracking task. To integrate control inputs in the estimate
the variable B ·u is added to xk. In our case u = 0. Therefore, the state equation

results in
(

gbx,k

gby,k

)
=

(
1 0
0 1

)(
gbx,k−1

gby,k−1

)
+ wk−1.

To integrate the sensor measurements zk the matrix H is used denoting the
observable components of x. In our case it is also the identity matrix as we
can observe both coordinates of the ball. The process noise covariance matrix
Q was empirically found as Q = diag(3, 3)T , the measurement noise covariance
matrix P is initially set to P = diag(4, 4)T . For the first time when the filter is
started we take the very first measurement from one robot as initial value for
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x0. Applying the time update and measurements update equations (cf. eg. [10])
we estimate the global ball position from the robots’ local estimates.

As another variant we use the Kalman reset filter. Here, the matrix P is reset
to its initial value each time a global ball position is calculated, which in our case
happens 10 times a second. This means that the actual measurement receives
more attention.

4.4 Monte Carlo Localization

Monte Carlo Localization was introduced in [5] as an improvement of the Markov
Localization [6]. Both techniques originally were developed for the self-localiza-
tion of a robot.

The main idea of Markov Localization is to provide a probability distribution
Bel(l) over the space of possible positions. New sensor readings are used to
re-calculate the distribution with the help of Bayes’ rule. The distribution is
represented in an occupancy grid.

The Monte Carlo (Ball) Localization represents the distribution Bel(l) with
a set of weighted samples instead of the grid which is used in the Markov lo-
calization. For the ball fusion we take samples that represent the ball position
hypotheses. Therefore, a sample xi consists of a possible ball position l = 〈x, y〉
and a weight wi which is also called importance factor : xi = 〈〈x, y〉 , wi〉.

In Fig. 4 the Monte Carlo Algorithm is shown based on [19] using a set of
samples X the ball velocity vel and a set of local ball estimates LB. In one
iteration of the algorithm m samples from the sample set are drawn by chance
according to their importance factor. A sample with a high weight is drawn
more often than one with a lower weight. Additionally, some new samples are
generated around new local ball estimates. Then, the algorithm works in two
steps. First the motion model is applied to the drawn samples. This is done
by promoting the samples according to the ball velocity and some noise. In the
second step the samples are re-weighted with the new local ball estimates using
the measurement error covariance matrix around the estimated ball position.

In practice it turned out that Monte Carlo is applicable with a set size of
1000 samples in our time constraints. With more than 1500 samples we are not
able to fulfill our time constraints of 100 ms of computation time any more. In

AlgorithmMCL(X, vel, LB) :
X ′ = ∅
f o r i = 0 to m do

generate random x from X accord ing to w1, ..., wm

generate random x′ ∼ p(x′|vel, x)
w′ = p(LB|x′)
add〈x′, w′〉 to X ′

endfor
normal ize the importance f a c t o r s w′ in X ′

re turn X ′

Fig. 4. MCL
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Fig. 2(b) the samples of the distribution approximation are depicted. The dark
blue ball resembles the true position of the ball, the red one is the fusion result.
The black dots show the samples.

4.5 Combined Fusion

Inspired by the work of the CS Freiburg Team [3] we combined the weight grid
technique (Sect. 4.2) with the Kalman filter (Sect. 4.3). All local ball estimates
are used to calculate a reference ball by using our weight grid algorithm. Only
those local balls are used as input for the Kalman filter that are in between a
radius of 1 meter to the reference ball. If the resulting ball of the Kalman filter
is too far away from the calculated reference ball the Kalman filter receives a
reset.

5 Experiments and Results

To get significant and realistic results about the quality of the presented fusion
techniques we tested them in real game situations. We made several test games
at the Philips RoboCup team in Eindhoven. To get ground truth for the real
ball position we used a ceiling camera. All relevant data were logged and can be
replayed. The ground truth data were manually added to the log data. As this is
rather elaborate, we do not have any ground truth data from the German Open
or the RoboCup championships.

In the game against Philips, we picked 6 different sequences lasting between
one and three minutes with significant action on the field. For example, in one
sequence the ball was blocked between two robots so that the other robots of the
team did not see the ball at all. One sequence is a typical game start situation,
in another one the Philips robot kicked very often (and very hard, as usual)
resulting in a rapidly moving ball. During some of the sequences one or more
robots were dis-localized reporting wrong ball estimates.

The evaluation results are shown in Fig. 5(a). The data represent the mean
error in meters together with its deviations over each test run1. Not very sur-
prisingly, the arithmetic-mean method yields the worst results, followed by the
weighted arithmetic mean. The reason is that one outlier is enough to drag the
merged position into the wrong direction. Even with weighting the estimates ac-
cording to their distance to the ball this bias cannot be prevented. The grid-based
method (combined and weight grid) are in the midfield wrt. to their accuracy.

The first three places are taken by the Kalman, Kalman with reset, and Monte
Carlo. Depending on the game sequence one of the three scored first place. One
can see that in the mean these method have an error of about 20 cm. This is
better than the results reported on in [3]. They reported on a position error of
about 38 cm. Moreover, they conducted their experiments in a static setting,
where the robots did not move during the experiments.

1 For the whole testing time we had 8.520 cycles where the fusion module calculated
a global ball estimate.
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Fig. 5. Comparison of the methods

With respect to the computation times one can state that the Kalman filter
methods clearly outperform the other methods. With an average computation
time of 0.8 ms and an error of about 20 cm the Kalman filter methods are
accurate and fast. What surprised us most was that combining a Kalman filter
with a weighted grid which is similar to the method proposed in [3] does not
seem to pay off, as a simple Kalman performed better, both in accuracy and
computation time. To give an impression about the tracking of these methods
we show one sample trajectory in Fig. 6(a). Fig. 6(b) shows the same trajectory
over the time from a reverse angle. The tracking results of the two Kalman
methods and the Monte Carlo method are depicted in Fig. 6(d). To get a feeling
about the quality of the tracking methods we moreover depicted the robots’ local
ball estimates in Fig 6(c).

In the next experiment we tested another typical RoboCup scenario: it hap-
pens very often in RoboCup that the referee picks up the ball, for instance after
the ball passed the side line or was stuck between robots. Then, no robot can see
the ball. The referee places the ball at some restart spot again. In this situation
it is important to get stable ball estimates as soon as possible. In our second
experiment, the robots took their kick-off positions and two helpers staying at
the opposing restart points randomly placed a ball at one of these points.

In this experiment, again the Kalman reset method showed the best results.
The Kalman reset had a mean error of 0.45 m, which is reasonable with respect
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Fig. 6. Sample run

to a minimum distance of 5 meters between the robots and the ball. Moreover,
the computation time of 0.6 ms is a good result, especially compared to Monte
Carlo which takes in the order of two magnitudes longer.

6 Conclusion

In the RoboCup domain it is very important to have a good estimate about the
ball position. As the ball is perceived by only some robots most of the time a
stable global ball estimates helps to increase the team performance. The result
for RoboCup’s Middle-size league is that the Kalman reset filter shows the best
performance.

The quality gain using a ball fusion technique is significant. The availability
of a global ball estimate lies at over 80 % in our experiments while each robot
itself has seen the ball only 50 % of the time.

Another nice effect of using a ball fusion technique is that one is able to detect
when a robot is dis-localized. Comparing local and global estimates it is easy to
notify when those values differ too much in order to detect a wrong localization
position. Of course, it is crucial to find that value as false positives must be
avoided. It turned out that using the Kalman reset method we detected all dis-
localizations during the test runs having only one false positive. More details
about that can be found in [8].
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Another problem is to gather ground truth data for empirical evaluation.
In our experiments we installed a ceiling camera and associated the real ball
position with the logged data by hand. This is a very time consuming process.
Recently, Stulp et al. [17] proposed a ceiling camera system to acquire ground
truth data for the robots and the ball. With these data, we could evaluate the
methods on a wider data basis. For the future we would like to conduct further
experiments with real tournament data.

As the presented results are very specific to the RoboCup domain in general
it turns out that one should try out several methods for the specific application
domain in order to find the most appropriate method. Further, one can observe
that applications of the Bayes filter (Kalman, Monte Carlo) provided the best
estimates for the fusion task.
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Abstract. To put more emphasis on real-world problems, the authors
propose to extend the RoboCup competitions. In order to foster progress
in the desired abilities the authors propose to expand the existing chal-
lenges by a set of simple tests. The passing of the entire set should lead
to robots that are capable of working both autonomously and in co-
operation with humans in different realistic scenarios. Robots from all
RoboCup leagues but also from outside of RoboCup should be allowed
to participate. The new league especially aims at fostering the develop-
ment of practical solutions and applications for supporting humans in
everyday life.

1 Introduction

1.1 The Aim of RoboCup

On the first page of the official RoboCup web-site [1] it is stated literally that:
RoboCup is an international joint project to promote AI, robotics, and related

field. It is an attempt to foster AI and intelligent robotics research by providing
a standard problem where wide range of technologies can be integrated and
examined.

Furthermore it says:
The ultimate goal of the RoboCup project is, By 2050, develop a team of

fully autonomous humanoid robots that can win against the human
world champion team in soccer.

It ends with:
One of the major application of RoboCup technologies is a search and rescue

in large scale disaster. RoboCup initiated RoboCupRescue project to specifically
promote research in socially significant issues.

1.2 Achieving the Aim

To achieve the RoboCup mission statement the closed environments of present
day leagues are not enough. The social interaction between humans and robots
is, due to the ’no human intervention’ rules in most leagues, almost non existing.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 166–172, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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But soccer playing and rescue also include social aspects. For example, robots
have to cooperate with humans in rescuing efforts. The authors think that after
almost a decade of RoboCup it is about time to take the first steps out of
the artificial environment. The rescue league is making a good progress in this
direction but the disaster scenario in the Rescue league is for sure not a usual
but an exceptional case humans encounter. There is a need for application based
progress, for robots cooperating with humans. The RoboCup X-games are more
AI based than the other leagues, since social intelligence and interaction with
both humans and robots will play a big role.

2 RoboCup eXtends

The RoboCup X-games are a proposal to advance robotic technologies beyond
what nowadays is or seems possible. It is also meant to inspire people from
different leagues to use and recombine existing technology and work together on
new solutions and useful applications. The X in the name of the league stands
for eXtended or eXpanded, eXperimental, eXtreme and for the celebration of the
Xth/10th anniversary of RoboCup. It is not about a single specific topic, but
about the building of re-usable real-life robotic solutions. It is extended because
it widens the scope of RoboCup beyond rescue and soccer, experimental because
new technologies can be applied and extreme because it puts robots in uncertain
real-life situations where they have not been before.

To retain the necessary attention and acceptance of society and economy to
continue high quality research, we have to prove that the results of our work are
useful and promising. Coping with self-explaining real-life tasks seems a good
way to do this. The RoboCup initiative has the quality needed, but not all
elements are there yet.

2.1 Competition

RoboCup is a versatile set of challenges where the robots compete against each
other. The element of competition accelerates the process of research and offers
the possibility of benchmarking. A drawback of the competition element is that
in some leagues the approaches used in hardware and software seem to converge
to a specific set of solutions, pushed by the rules of the competition. In the
RoboCup X-games, the real world robot league, this should be avoided, while
retaining the competitive elements. The proposal is to have a group of tests
that benchmark a robot on its ability to fulfill useful tasks in applied, real-life
scenarios with a lot of human intervention. As a consequence, effective human-
machine interaction will play a big role in this league.

The tests in this league are rated with points. In the end, the one with the
highest amount of points wins. By choosing new tests the community is able to
rapidly steer the research in desired directions. The idea to propose a new league
instead of adjusting an existing one is that it is probably tough to change a league
so dramatically that it includes social human interaction. Many researchers have
put a lot of effort in one of the existing leagues and would like to continue with it.
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3 The RoboCup X Tests

RoboCup X is a benchmark for RoboCup and non-RoboCup robots. If a robot
wins the RoboCup X-games this does not mean that it also wins in another com-
petition, but it does suggest that its application-related qualities are better than
of others. By actually using the benchmark tests of RoboCup X the RoboCup
community is able to set the standards for research groups and the industry.

The areas that are covered by RoboCup X should include, but are not limited
to: animal like/intelligent behavior (bio-inspired robotics), adaptivity, appear-
ance, applicability, autonomy, endurance, ergonomy, human-robot interaction,
modularity, navigation, out-door abilities, precision work, reliability, reusability,
safety, speed and transportation.

The criteria of the tests are the following:

– The scenarios/tests are easy to set up, so that researchers can test at home.
They are low cost and available world-wide.

– Tests should preferably not be boring to watch.
– Tests take a finite and not too long amount of time.
– The tests should have definite and easy rules, to avoid long-lasting rule-

specific discussions.
– The test should be self-explaining
– The tests should preferably point at applications which are possible with the

new abilities.
– The tests should have a strong relation to real-life problems and applications,

partly driven by industrial demands.

3.1 The RoboCup X-Games

We expect many of the tests in the RoboCup X-games to have a good show
element. Competing and socially interacting robots make a versatile show for
both scientists and the public watching. It also attracts the industry by focusing
on real-world applications for every day use. The stakes are a bit higher in the
RoboCup X contests because real world scenarios are less predictable. Some test
might even involve interaction with the public!

The size, weight and other dimensions of the robots are specified in the rules
of the other leagues. Any robot that is allowed in another league is allowed in the
RoboCup X-games, but also modification or rebuilding a robot within a certain
range of size should be possible.

The authors think that the technical committee of the RoboCup X-games
should allow all technologies, unless it requires a special external setup or is
harmful to other robots or humans. The RoboCup X-games should encourage
innovative ideas on autonomous systems, even if they are not allowed in the
other leagues. This rule should prevent external camera use, special navigational
markings, radio waves for local positioning etc. Though it should allow GPS,
sonar, laser range finders, vocal communication etc.
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3.2 Points

Autonomy: The robots have to work autonomously. The problem is to define
autonomously. The authors suggest that a restricted period of time (e.g. 10
minutes) is given, where human-intervention is allowed before the test (e.g. for
calibration and set-up) on the test-site. There should be no flexibility in these
time limits once they are defined. Exceeding this time-limit, or controlling the
robot during the test remotely by a human operator is considered a failure. If
one cannot comply with the specifications the team faces disqualification for the
specific test.

Difficulty multiplier: If less than 1
4 of the participating teams succeeds in a

test it gets a multiplier of 2. If more than 3
4 of the participants succeed then it

gets a multiplier of 1
2 . The last situation indicates that the test could be revised

for the next games, either by changing it or not having it.

General applicability: A test consists of 2 parts. First a test is done with
settings specified by the robots team to show that the system works. After a
successful demonstration of the capabilities the same test is done with general-
ized and therefore more difficult settings specified by the RoboCup X committee.
If the robot also succeeds here the amount of points is doubled.

Human intervention: During a test human intervention (like touching, re-
starting or helping a robot out of a stuck situation) is not allowed and results in
disqualification for the test, unless human interaction is an essential and wanted
feature of the test itself (like giving speech or gesture commands).

3.3 Specific Tests

The general idea: A list of possible tests with a short description is presented
here. The list is a proposal and debatable. Of course for all tests it is obligatory
that the robot remains (fully) operational during the entire test. A maximum of
3 robots per team is allowed to participate. Only one of these robots is allowed
to participate in a single test. Calibration periods are very restricted, just as
repair time. The idea is that the robot goes through as many tests as possible
in a very short period of time. In the first years a tame version of the rules and
the tests can be used.

The list presented here are proposals for tests. Further in this article a few
tests are highlighted to be used in the first edition of the RoboCup X-games
and described in more detail. On request and after consulting the RoboCup
community the committee of the RoboCup X-games league can add or change
a test.

Bar. Can the robot serve drinks in a bar?
Burglar. Does it recognize its owner and give an alarm when it detects an

unknown intruder?
Elderly. Can it aid elderly people, for example support a person while walking?
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Falling. Does the robot survive a 10 cm drop? And 25 cm? And 50 cm ? And
100 cm?

Guide robot for the blind. Lead a blind person from place A to B.
Light. The robot should, without manual recalibration, go to an object that

it has seen in a dark place, but which is now put outside or the other way
around.

Looks. Does it look nice to interact with or does it look very technical with
sharp edges and wires sticking out?

Open challenge. Demonstrate a new and challenging ability not yet covered
in another test.

Racing. Can the robot go on a (difficult) race track? The early version can
consist of a race track with an uneven floor. Touching the border reduces
the score. Putting more than one robot on the track gives a very nice racing
character to this test.

Rain. The robot should be capable of functioning in rainy environments. A
shower or watering can should suffice.

Robot agility. Similar to competitions with dogs, walk, talk or point a robot
through an obstacle parcours.

Stairs. Can it climb stairs autonomously? And a stairway?
Supermarket. Can it find a certain product in the supermarket (on a shelf)?
Suitcase. Carry a suitcase and avoid obstacles while following a human. Sound

an alarm if the suitcase gets stolen or lost.
Traffic. The robots drive in a miniaturized street where the robots have to follow

a certain path (e.g. marked by arrows on the ground) the path consists of one
mayor crossing and some streets on the side. The robots have to obey the traffic
rules, recognize signs, etc. The robot which does the most rounds in a certain
time, without bumping in other robots or going besides the track, wins.

3.4 Tests for the First Time

Out of the list presented in the previous paragraph we have chosen the following
for consideration, due to the ease of set-up and possible success of the robots.

Terminology for the remainder of the article: The terminology in the rest
of the article is as follows: ’Ranking’ means three points for the first place, two
for the second and one for the other succeeding robots. ’Boolean’ means that
every robot that succeeds gets one point, no success is no points.

Elderly. Can it aid elderly people, for example support a person while walking?
The elderly person must be able to steer the robot, while leaning on it, by
simple commands such as voice commands. The test is boolean.

Guide robot for the blind. Lead a blind person from place A to B in the
RoboCup area. The test is boolean.

Humans. Can the robot recognize different humans (bodies and/or faces) and
express this in some way, preferably with sound (speech). To pass the robot
has to recognize five different humans and has to be trained on the spot in
unknown light conditions. The test is boolean.
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Light. An object (unknown in advance) is shown inside the building on a ran-
dom spot. The robot is taken outside and may not be re-calibrated. The
object is put within within a 15 meter radius of the robot three times. If the
robot touches the object all three times then the robot passes the test. The
test is boolean.

Looks. The appearance of the robot is rated by a jury. Among the criteria can
be: smoothness of movements, integration of components (no wires), easi-
ness of charging, attractiveness of shape, safeness of shape, human-machine
interaction, type of applications,. . . The test is ranking based.

Open challenge. Demonstrate a new and challenging ability not yet covered
in another test. A jury decides on the ranking. It can act as a test generator
for the years to come.

Rain. The robot has to keep driving around (slowly) for one minute avoiding
black objects while cold water out of a shower or watering can is sprayed on
top of it. The test is boolean.

Race. A circular race track with white borders is used to race on. Several robots
race at the same time. Bumping can lead to disqualification. The race lasts
10 minutes and the robot that has traversed the biggest distance wins. The
test is ranking based.

Stairs. The robot has to climb stairs somewhere in the RoboCup building. The
test is boolean.

Suitcase. Carry a suitcase and avoid obstacles while following a human through
the RoboCup area. Sound an alarm if the suitcase gets stolen or lost. A bit
more difficult would be to take a walk from the inside to the outside of the
building and back. This is a boolean test.

3.5 The Final Scenario

At the end of the test round the teams are ranked according to their points they
have scored. The teams with the highest points go to the finale which consists
of a scenario with an open challenge. An example could be a living room with a
person watching television. Here the best robots have ten minutes (five for the
setting up, five for the application) to show some capabilities. The ranking of
this final show, combined with the ranking from the tests (and maybe even from
the audience!), determines the final ranking. The jury should not only consists of
roboticists, but also others such as journalists, famous persons from television,
government officials, people from the industry, . . .

The idea behind this is to promote the open challenge and stimulate the
creativity of researchers. The entire finale lasts about an hour and is a nice
show for spectators, journalists and participants. A professional host who can
entertain the audience could present the entire show, have some interviews, talk
to the jury etc. This should preferably be arranged professionally (maybe even
by a network station) so it can be broad casted as a nice robot show.

In a previous email discussion (initiated by one of the authors) on the mid-size
league list a few years ago, there were roughly two opinions on this issue. One
opinion was that we are doing science and should not bother about this, also
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because it might degrade the work. The other opinion was that such a show does
not diminish the importance of the scientific work, but focuses on the fun side
for the layman audience watching. The professional will recognize the scientific
qualities and/or can read about the work in articles. We think it is worth a try.

4 Discussion

We all know that the RoboCup has to go real world, in order to remain inter-
esting. Playing soccer and winning from humans will probably not bring us all
the problems we would like solve in order to have robots capable of functioning
autonomously in the real world, which consists of human societies and rough
nature.

RoboCup X provides a natural way of extending the current competitions.
The tests are not all or nothing but build up in complexity. Also a team does
not have to bring several robots to the competition so the overall costs for
participation can remain relatively low.

Besides the test cases, which are interesting by themselves, RoboCup X also
provides a show for the layman, who is not interested usually in the technical
details of the system. By covering a broad area (from science and technology
to entertainment and fun) we should be able to get more attention from the
media, which increases the chance of more funding by governments and increased
interest from the industry. Hopefully the new league can bring some of the
excitement that participants feel over to the layman.

In 2006 in Germany the tenth RoboCup world championships will be held. To
celebrate this, we should show that we, as a community, are dedicated to improve
the lives of human beings; that we work toward a bigger goal that transcends
economic pressure and short term visions. With RoboCup X we can show that
the community is working toward applicable robots for general use. Hopefully
the community can demonstrate, as a gift for the 10th anniversary of RoboCup
and to honor the people who have so dedicatedly devoted their careers to this
magnificent world-wide event, that we are truly caring for society at large.
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Abstract. This paper describes SimRobot, a robot simulator which is
able to simulate arbitrary user-defined robots in three-dimensional space.
It includes a physical model which is based on rigid body dynamics. To
allow an extensive flexibility in building accurate models, a variety of
different generic bodies, sensors and actuators has been implemented.
Furthermore, the simulator follows an user-oriented approach by includ-
ing several mechanisms for visualization, direct actuator manipulation,
and interaction with the simulated world. To demonstrate the general ap-
proach, this paper presents multiple examples of different robots which
have been simulated so far.

1 Introduction

When working with robots, the usage of a simulation is often of significant im-
portance. On the one hand, it enables the evaluation of different alternatives
during the design phase of robot systems and may therefore lead to better de-
cisions and cost savings. On the other hand, it supports the process of software
development by providing an replacement for robots that are currently not on-
hand (e. g. broken or used by another person) or not able to endure long running
experiments (e. g. learning tasks [1]). Furthermore, the execution of robot pro-
grams inside a simulator offers the possibility of directly debugging and testing
them. This is a great benefit when working with platforms that do not offer any
direct debugging facilities, e. g. the Sony AIBO robot.

In the past, several robot simulators have been developed with different main
focus on complexity, accuracy, and flexibility. There are also differences in the
possibility of creating and integrating own robot models and virtual environ-
ments. Some of the simulators are restricted to a two dimensional environment
or are only approximating dynamics and realistic interaction of the robots with
the environment. In the following, we give a short overview of current related
works on robot simulators with accurate dynamics simulation for three dimen-
sional environments and with relevance to the RoboCup domain. These will be
compared with SimRobot.
� The Deutsche Forschungsgemeinschaft supports this work through the priority pro-

gram “Cooperating teams of mobile robots in dynamic environments”.
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UCHILSIM [1] is a robot simulator developed by the University of Chile. It is
specially designed for the RoboCup Four-legged League. The simulator contains
dynamics simulation using the Open Dynamics Engine (ODE) [2], a graphics
engine, and has a window based graphical interface. The environment and the
robots are described in a VRML structure extended by nodes for simulator
elements and physical attributes. It has interfaces to their UChile1 software
package and their learning component. At the current stage, this simulator is
rather specific for one RoboCup league.

Another 3-D simulator used in the RoboCup domain is Übersim [3], which has
a focus on vision-centric robots in dynamic environments. It has a client/server
based architecture, where clients communicate with the server over TCP/IP. The
simulator also uses ODE for dynamics simulation. Own robots can be modeled
by programming their structure in C classes. In the current release [4], only two
sensors are predefined: a camera sensor and an inclinometer. At the moment
there seems to be no graphical user interface for interacting directly with the
robots or the environment during simulation time.

A more general 3-D multi-robot simulator with graphical interface and dy-
namics simulation is Gazebo [5], a part of the Player/Stage project [6]. This
simulator has a large variety of sensors and comes with models of existing robots
such as the Pioneer2DX or the SegwayRMP. The robots and sensors can be con-
trolled by the Player server or controllers can be written using a library provided
with the simulator. The simulated environment is described in XML files using
several predefined elements and robots. It also offers the possibility of creating
and integrating own robots as plug-ins but this has to be done by code-based
modeling in C.

Webots [7, 8] is a commercial robotic simulator developed by the Cyberbotics
Ltd. It has an ODE-based physics simulation and provides several robot models
such as Sony Aibo, Khepera, or Pioneer2. The robots and the environment are
described using the VRML standard for graphical models, extended by nodes
for the Webots elements, sensors, and physical attributes. Controllers can be
programmed in C++ or Java and connected to third party software through a
TCP/IP interface.

In comparison with these simulators, the following features of SimRobot may
be pointed out and will be described in this paper: The simulator is not limited to
any special class of mobile robots1. By using an XML-based modeling language,
users are enabled to specify robots and their environments completely without
any additional use of other programming languages. A large set of body elements,
actuators and generic sensors allows the free composition of arbitrary robot
models. An important element of simulations, which is ignored in many cases, is
the support of the work of the user. This is addressed by SimRobot by providing
several possibilities of visualization and interaction with the simulated world.

To simulate rigid body dynamics, SimRobot also uses ODE, since this engine
has a wide variety of features and has been used successfully in many other

1 Admittedly, SimRobot will not support the special domains of underwater robotics
and aircrafts.
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Fig. 1. The modules of SimRobot and their dependencies

projects. The visualization as well as the computation of imaging sensor data is
based on OpenGL, because this industry standard offers the best performance
on modern hardware on different platforms.

Previous works on this simulator project have been a kinematic robot simu-
lation [9] and a preliminary release (without dynamics) for the GermanTeam in
the Sony Four-legged Robot League [10].

This paper is organized as follows: Section 2 describes the general architecture
of SimRobot, Section 3 shows several special features of the user interface, the
Sections 4 and 5 describe the elements which SimRobot is able to simulate, some
applications of the simulation are shown in Section 6, the paper ends with the
conclusion in Section 7.

2 Architecture

2.1 Components of the Simulator

As shown in Fig. 1, SimRobot consists of several modules that are linked
to one single application. This approach, which is different from many other
client/server-based simulation concepts, has been chosen because it offers the
possibility of halting or stepwise executing the whole simulation without any
concurrencies. It allows also a more comprehensive debugging of the executed
robot software.

The main components of SimRobot are:

SimRobotCore. The simulation core, which may also be qualified as engine or
kernel, is the most important part of the application. It models the robots
and the environment, simulates sensor readings, and executes commands
given by the controller or the user. Even most parts of the visualization are
integrated into the simulation core.
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<Hinge name="subWheelAxis ">

<AnchorPoint x="0.022" y="0" z="0"/>

<Axis x="0" y="1" z="0"/>

<Elements >

<Cylinder radius="0.006" height="0.004">

<Rotation x="90" y="0" z="0"/>

<Appearance ref="VeryDarkGray "/>

<PhysicalAttributes >

<Mass value="0.02"/>

</PhysicalAttributes >

</Cylinder >

</Elements >

</Hinge>

Fig. 2. An excerpt from a scene description using the RoSiML language. A sub-wheel
of a Small Size robot (see Sect. 6) is modeled via a hinge joint and a cylinder.

The kernel is platform independent. It is connected to a user interface and
a controller via a well-defined interface. This enables an easy porting to
other platforms as well as the embedding into other applications. A previous
version had been used in the RobotControl software of the GermanTeam
[10]. At the moment, the current kernel becomes integrated in the Linux
framework of our Small Size team (see Sect. 6).

GUI. The user interface is responsible for the display of information (e. g. dif-
ferent views of the simulated scene) and for the interaction with the user. It
is described in more detail in Sect. 3.

Controller. The controller implements a sense-think-act cycle. In each simula-
tion step, it is called by the simulation, reads the available sensors, plans the
next action, and sets the actuators to the desired states. A controller which
is suitable for the modeled scene has to be provided by the user. Normally,
it contains the control software of the simulated robots, but it may also be
left empty.

Scene. The specification of the robots and the environment, in the context of
SimRobot named as scene, is modeled via an external XML file and loaded
at runtime. It is described in the following section.

2.2 Specification of Robots and Their Environment

The use of an external specification language allows the modeling of scenes with-
out any modifications or extensions of the source code of the simulator. Thus
the modeling process becomes simpler and people without programming skills
are also enabled to use the simulator.

Together with researchers from the Fraunhofer Institute for Autonomous In-
telligent Systems, the specification language RoSiML (Robot Simulation Markup
Language) [11] has been developed (see example in Fig. 2). It is a part of a
joint effort to establish common interfaces for robot simulations. The aim is to
exchange components between different simulators and to allow the migration
of robot models among simulators without any complicated adaptions.
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The language by itself has been specified in XML Schema. This is a popular
choice, since XML is supported by a variety of editors and there also exist many
ready-to-use parsers. The cascaded structure of XML documents is also quite
suitable to reflect the structure of scenes inside the simulator, as it uses the scene
graph approach from computer graphics to organize and process all elements.

3 User Interface

The user interface (Fig. 3) of SimRobot has been designed to allow as much
visualization and interaction as possible as well as to be flexible enough to handle

Fig. 3. The user interface of SimRobot while simulating the German Team 2004. The
internal frames show (from left to right, top to bottom): the object tree, a view of
the whole scenario, a simulated image of an AIBO camera including overlays from the
image processor of the simulated software, a user defined view of a robot’s world model,
a close view of a single robot, and the console.
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simulations of any different kind of environments. Therefore a tree of all objects
of the scene is the starting point for all user operations. Each node of that tree
may be selected to open a view for that kind of object. In case of actuators (e. g.
a hinge joint), a control for direct manipulation is opened. For sensors, several
different visualization modes are implemented. Through this concept, it is also
possible to open several views of arbitrary subsets of the scene graph (as shown
in Fig. 3). These views offer a zoom, rotation, panning and different grades
of detail as well as the possibility to switch between the appearance and the
physical model of single objects, as shown in Fig. 4. Furthermore, it is possible
to interactively drag and drop and rotate objects inside the scene or to apply a
momentum to an object (e. g. to let a ball roll). This is quite useful to arrange
different settings while testing e. g. a robot behavior.

To add own views to a scene (as e. g. the world state in Fig. 3), an interface
for user-defined views has been implemented which enables the definition of own
debug drawings from inside the controller.

Other elements of the user interface are an editor for the scene description
files and a console for text output from the controller.

4 Physics and Actuators

As aforementioned, ODE is used for simulating rigid body dynamics. Therefore,
the set of simulated objects results from the abilities of that engine. Nevertheless,
we had to implement several extensions to fulfill the requirements of our general
approach.

4.1 Rigid Bodies

For the design of robot shapes and the environment, several rigid bodies (mostly
adopted from ODE) may be used. The basic bodies are: Box, Cylinder, Capped-
Cylinder and Sphere. Each of them has divers attributes describing its appear-
ance (e. g. color) and physical behavior (e. g. mass or friction).

This set has been extended by the so-called ComplexShape. A body of that
class has a graphical representation based on a number of geometric primitives
and a physical representation based on a set of basic bodies which may approx-
imate the shape. This approach allows the use of sightly detailed elements with
an accurate dynamic and collision behavior. The parts of the AIBO model in
Fig. 4 have been described by ComplexShape objects.

4.2 Actuators

To achieve a high grade of flexibility in creating robots, SimRobot supports
various kinds of joints corresponding to the joints provided by ODE. There
are simple rotational joints with one axis or two perpendicular fixed axes, a
translational joint, a ball and socket joint and a simple wheel suspension like
joint with free rotation about one axis and rotation and compression along the
other axis. The joints can connect two movable rigid bodies or one body with
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a) b)

Fig. 4. A Sony AIBO model consisting of a set of ComplexShape objects. a) The
graphical representation with details such as toes, tricot elements and LEDs on the
head. b) The physical representation consisting of simple boxes, spheres, and capped
cylinders.

the static environment. The range of motion of a joint can be limited. Joints
can be unpowered or a motor can be attached to each axis. Due to the fact
that the motor provided by ODE has no specific controller, we implemented a P
and a PID controller to simulate servo motors. Additional controllers can easily
be integrated, if necessary. Besides the servo motor, a simple velocity controlled
motor is also provided. In ODE, joints are frictionless, i. e. a pendulum will never
stop swinging if no collision occurs. So we implemented a simple friction model
for damping motion in unpowered joints.

4.3 Automatic Generation of Object Compounds

In SimRobot it is possible to specify complex rigid bodies through using the pro-
vided simple elements without explicitly summarizing them with additional XML
tags in the scene description or performing additional calculations by the user.
The structure of the scene tree is used for this automatism. In the scene tree, all
elements of a subtree beneath a joint down to the leaf nodes or to other joints
are treated as one single physical body. All elements in this compound are stuck
together and behave as one single object. For correct dynamical behavior, the
masses, centers of masses and inertia tensors of all contained objects are com-
bined to a single rigid body. The geometrical representations of all combined
objects build the collision behavior of the compound object. In addition, single
objects or object groups can be excluded of the above described automatism of
combining and are treated as independently moving objects or compound objects.

5 Sensing

SimRobot realizes sensor simulation via a set of generic sensor classes, i. e. it
does not include specific sensors such as a special laser range finder or similar
devices. The available sensor classes are:
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a) b)

Fig. 5. The results from two different sensors: a) An image from a simulated AIBO
camera and b) a depth image inside a demo scene mainly consisting of boxes and
cylinders

Camera. The camera sensor generates a two-dimensional array of RGB pixels
which have a color depth of 24 bits (one example is shown in Fig. 5a). Aside
from the standard perspective projection, it is also possible to use a spherical
projection with an equal angular distance between all pixels. To speed up
the process of image generation significantly, SimRobot is able to support
hardware accelerated off-screen rendering. This is a feature which several
manufacturers implement on their graphics hardware nowadays.

Distance Sensor. This sensor is quite equal to the camera, but instead of
pixels, it returns distances gained from the depth buffer of rendered images.
Due to its generic approach, there exist several applications for this sensor:
the generation of depth images (Fig. 5b), simulating a laser range finder
(Fig. 6b), or being modeled as a single value PSD sensor in an AIBO robot.

Bumper. For detecting the collision of objects, e. g. to model a touch sensor,
the so-called Bumper has been implemented. Unlike all other sensors, it is
not a special object in the scene graph. Furthermore, each body or group of
bodies may be assigned to be collision sensitive. This allows the creation of
arbitrarily shaped touch sensors. The information about collisions is directly
gained from the dynamics engine. As an addition, it is also possible for the
user to interactively provoke the sensing of a collision. We have used this
feature e. g. for pressing the buttons of simulated AIBO robots.

Actuator State. There also exist interfaces for inquiring the current states
of actuators. This includes the angles of joints as well as the velocities of
motors.

6 Applications

As aforementioned, SimRobot has been used by the GermanTeam to simulate the
robots and the environment of the Sony Four-legged League. In previous years, a
kinematic version of SimRobot has been used, which needed several work arounds
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a) b)

Fig. 6. Applications of SimRobot: a) The physical representation of a Small Size plat-
form with an omnidirectional drive. The lines around the wheels denote the axes of
the sub-wheels. b) A simulated office environment with a navigating robot. The lines
starting at the robot denote the rays of its laser range finders.

to simulate correct body postures e. g. when executing kick motions. Due to the
absence of a collision handling, the ball had also to be moved manually. Together
with the physical simulation, a new model of the AIBO ERS-7 robot, which is
shown in Fig. 4, has been created. The appearance was kept, but all elements are
now additionally represented by rigid bodies, which are connected with adequate
joints to allow an accurate simulation of all 20 degrees of freedom. This model
enables a direct execution of the desired motions as well as an accurate handling
of collisions with other robots or the ball.

A completely different kind of robots is used in the RoboCup Small Size
League. To allow fast and flexible motions, wheel-based robots with omnidirec-
tional drives are used. These consist of three or four wheels which are arranged
in a triangle or a rectangle respectively. Each of these wheels is surrounded by
a set of small passive sub-wheels which enable the robot to move sidewards.
This approach has also found its way into the Middle Size League. To integrate
SimRobot into the environment of our Small Size team B-Smart [12], a platform
with such a drive has been modeled, as shown in Fig. 6a. The XML description
of a single sub-wheel has already been presented in Fig. 2. Though having a
completely different structure than the previously modeled walking robot, the
platform has been simulated successfully, showing the expected motion behavior
when driving around.

An application outside the RoboCup domain is the simulation of Rolland -
The Bremen Autonomous Wheelchair [13]. This robot has a differential drive
and is equipped with two laser range finders which are connected to a standard
notebook which executes the control software. Rolland performs navigation tasks
in office environments, as shown in Fig. 6b. Since this robot currently has a two
dimensional model of the world and is programmed to never collide with other
objects, the physical simulation is of minor usefulness for this platform. Never-
theless, it demonstrates the application of SimRobot in a large-scale environment
and the usage of distance sensors.
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7 Conclusion and Future Works

This paper presented SimRobot, a robot simulator which supports rigid body
dynamics and the simulation of a variety of sensors and actuators. Through its
generic concept and the use of a special modeling language, it is able to simulate
arbitrary user-defined robots without any modifications of the simulator itself.
This has been shown by means of several examples of completely different robot
platforms which have been simulated successfully. The flexible approach of the
user interface has been able to offer a variety of visualizations and options for
interaction for each simulated environment.

The German Team as well as the B-Smart team will use this simulator in
2005. It will also be made available to other RoboCup teams, as described in the
following section.

Among other things, future works will concentrate on the simulation interface
standardization efforts described in Sect. 2.2. These will include generic plug-
in interfaces for sensors and actuators as well as the definition of a common
controller interface.

Availability of SimRobot

The simulator presented in this paper will be released under an open source
license in the near future. The most current available version, which does not
include the dynamics engine but most other features, has been released as a
part of the German Team 2004 code release [14]. An up-to-date binary version
for Microsoft Windows which includes several examples is also available [15]. A
release of a Linux version is planned.
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13. Mandel, C., Hübner, K., Vierhuff, T.: A Demonstrator for Cognitive Aspects in
Service Robotics. In: XXVII Annual Meeting of the Cognitive Science Society
(submitted). (2005)

14. German Team: German Team web site. (2005) http://www.germanteam.org.
15. Röfer, T.: SimRobot Website (2005) http://www.tzi.de/simrobot.



Agent Community Extraction for 2D-RoboSoccer

Ravi Sankar Penta and Kamalakar Karlapalem

Center for Data Engineering,
International Institute of Information Technology, Hyderabad
ravi s@research.iiit.net, kamal@iiit.net

Abstract. Agents perform tasks to maximize their benefits. There are several in-
stances where the agent can not perform a task individually. In these situations,
agents need to cooperate and coordinate with other agents effectively and effi-
ciently to maximize their benefits in a limited time. In several domains, we can
analyze the behavior of successful agents and the way they interact with other
agents forming strong communities or coalitions. This knowledge can be used
by a new or unsuccessful agent to collaborate with other agents that gives max-
imum benefit under strict time constraints. This paper proposes a generic proce-
dure for extracting these hidden communities that can be used by the agents in a
productive manner. We tested the framework on robosoccer simulation environ-
ment and our experiments indeed show drastic increase in both agent and team
performance.

1 Introduction

A multi-agent system consists of a number of autonomous homogeneous or heteroge-
neous agents which interact with each other to achieve a common goal or to maximize
their own benefit. The agents in a multi-agent system perform activities. An activity can
be a simple task that can be done by a single agent or it can be a complex task involv-
ing two or more agents. A multi-agent system has the perspective at macroscopic level
and at microscopic level. At macroscopic level, issues such as starvation or overload-
ing agents with many tasks are addressed. Whereas at microscopic level, issues such as
agent’s local decision making and increasing the agent’s profit are discussed.

In this paper, we present, how to use the history of the system to extract hidden and
non-overlapping agent communities of various strengths based on both agent capabil-
ities and their interactions. The hidden agent communities can be used by a new or
less successful agent to participate in a specific community with agents having simi-
lar/complementary capabilities and behavior for improving its performance.

1.1 Related Work

To improve the performance of the agent and multi-agent system, considerable amount
of work has gone in forming appropriate coalitions [7, 1] based on the environment,
set of tasks to be achieved and agent capabilities with reasonable time consumption.
Modeling of the agent communities by grouping the agents with similar objectives is
discussed in [8, 2]. Extracting reputation of agents in the electronic communities using
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only local information without relying on feedback in [3]. Improving agent’s decision
making using coordination graphs via a context-specific decomposition of the problem
into smaller sub-problems is demonstrated in [5]. Using the history (logfile), behav-
ior patterns of an individual agent with the help of self-organizing maps (SOMs) is
addressed in [9]. We also used the history, to obtain behavior patterns for a group of
agents (team) by extracting communities using reputation of agents and interactions
among the agents for improving both the agent and the team performance.

1.2 Motivation

In many real world domains, there are several restrictions on the system like incomplete
information about environment and restrictions on the agents like limited thinking time,
resource constraints, etc. Agents need to be more reactive in these kind of situations.
For example, consider the role of a coach in robosoccer simulation environment. The
coach needs to form the best team and guide the players. Best team need not be the one
having players with maximum individual capabilities. The way the players cooperate in
achieving the goals, play a vital role in the formation of best team. These interactions
can only be studied by analyzing the previous matches of the players. This analysis also
helps in guiding the players in achieving their goals. Extracted knowledge can be used
by the agent in taking better possible actions within strict time constraints. For example,
in robosoccer, the thinking time for an agent is limited. Consider the case, where the
agent wants to pass the ball to one of its teammates and there is no time for choosing
the best teammate. If the agent has knowledge through the discovered agent community
about a particular teammate who is good at receiving the ball in that situation, then the
agent can safely pass to that teammate instead of passing to some random agent.

Our main contributions in this paper are as follows:

– Extraction of hidden agent communities for an activity,
– Ranking of the extracted communities,
– Extraction of grand communities (community consisting of agents which can per-

form many of the activities),
– Best fit community for any new agent,
– Selection of top ’k’ agents in a system for an activity or set of activities, and
– Identification of drag-agents in a community.

The paper is organized as follows. The problem and our assumptions are stated
in section 2. In subsections 2.1 to 2.6, we illustrate, how to achieve the above men-
tioned contributions. Robosoccer simulation environment, for validating our approach
is briefly described in section 3. The results obtained and their analysis are presented in
section 3.3. Finally, we conclude the paper in section 4.

2 Problem Statement

Let A = {A1, A2, ...An} be the set of agents and Act = {act1, act2, ...actm} be the
possible activities executed by them in the multi-agent system. Let S = {S1, S2, ...Sp}
be the sessions of the system. Sessions can be static or dynamic, complete or incom-
plete. A session can be of fixed or varied time intervals. In robosoccer, a session can be a
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match between the teams. Given the history, the problem is how to extract hidden agent
communities for helping a new or unsuccessful agent in improving its performance.

We assume that the agents goals remain constant across all sessions. We find com-
munities among the common set of agents across all sessions.

2.1 Extraction of Hidden Communities

Graphs are used to model the agent interactions and its capabilities. Since any activity
is a series of interactions in some specific order, an activity is modeled as a graph.
Let DG

Sj

acti
(A, E) be a directed graph (a forest of directed graphs) for an activity acti

during the session Sj . The nodes of the graph represents agents A and any directed
edge Ap→Aq in E represents an interaction between the agents Ap and Aq . We call
this directed graph as activity graph. Let epq ,spq,fpq be the total number of interactions,
successful interactions and failed interactions respectively among the agents Ap and Aq .
The weight of any edge Ap→Aq gives the strength of interaction between the agents
Ap and Aq , given by

wpq =
spq

epq
, 0 ≤ wpq ≤ 1

If all the interactions required to fulfill the activity among the agents are successful,
then the activity is considered as success at that instant during the session. For example,
agents Ap,Aq,Ar can complete activity Actk if they interact in the order given in the
Figure 1. Suppose, they got 2 chances to perform Actk during the session. Actk failed
in the first chance because of failed interaction between Aq and Ar. In the second
chance, they fulfilled Actk. The corresponding successful interactions and the weights
they obtained are shown in the Figure 1.

Act k

Wqr= 0.5

Spq= 2

Wpq= 1

= 1Sqr

Aq ArAp
S F

Aq ArAp
S S

F

S

Fig. 1. Success or Failure of Activity Actk

Generation of Final Activity graph. Final activity graph for an activity is generated
by merging all the activity graphs of successful sessions. A session is successful for
an activity, if the success rate of the interactions is above some specified threshold. In
robosoccer, a successful session can be registering a win in the match. A session Sj for
an activity acti is successful if it satisfies

∑
∀Ap→ Aq

spq

∑
∀Ap→ Aq

epq

> λi, Ap, Aq ∈ DG
Sj

acti
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where λi is the minimum confidence decided by the user for an activity acti. In ro-
bosoccer λi=0 implies, considering all the matches for analysis for an activity acti.
Taking λ value around 0.5 means that the user is interested in those matches which are
competitive.

Let S = {S1, S2...Sk} be the successful sessions for an activity acti and FDGacti

be its final activity graph. FDGacti is generated by merging all the successful activity
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graphs. Let w
Sj
pq be the weight of an edge Ap→Aq in the session Sj . Weight of any edge

Ap→Aq in FDGacti gives the strength of the interaction between the agents Ap and
Aq . It is given by

wpq =

k∑
j=1

wSj
pq

k∑
j=1,w

Sj
pq �=0

1

Consider a system consisting of 5 agents A1,A2,A3,A4,A5 and 2 successful sessions
S1 (Figure 2(A)), Sp (Figure 2(B)). Generated final activity graph FDGacti for an

activity acti using the activity graphs DGS1
acti

and DG
Sp

acti
is shown in the Figure 2(C).

Agent Community Extraction. Extracting communities helps in identifying similar or
complementary group of agents performing some activity at a particular success level.
Agent communities for an activity are extracted by breaking weak edges in the corre-
sponding final activity graph. Using fixed threshold for cutting an edge extracts only
strong communities disregarding weak communities. But Chameleon [4] clustering al-
gorithm can be used for extracting both strong and weak communities. Chameleon is a
dynamic hierarchical clustering algorithm that measures the similarity of two clusters
based on relative intra-closeness and inter-closeness between the clusters. The clusters
obtained by chameleon are our agent communities.

The communities obtained by applying chameleon on FDGacti is shown in the
Figure 2(D). Since we have only 5 agents in FDGacti , the value of k is set to 2 to
obtain 2 communities. The value of k can be varied to obtain very strong or weak
communities.

2.2 Ranking of Agent Communities

Generation of Agent Capabilities. The strength of the community depends on the
agent capabilities and their interactions with other agents. Any successful or failed in-
teraction Ap→Aq depends on both agents, Ap and Aq . Number of agents which Ap has
interacted with, is given by OutDegree(Ap). It denotes the total number of interactions
initiated by agent Ap and its success rate is given by

InitSuccess(Ap) =

∑
∀Ap→Aq

wpq

OutDegree(Ap)

Refer to the Figure 2(C), OutDegree(A1) in FDacti is 3
InitSuccess(A1) in FDacti is (0.3+0.25+0.7)/3 = 0.416

Interaction Ap→Aq denotes agent Ap’s trust on Aq . Trust is cumulative and the
number of agents who trust agent Aq is given by InDegree(Aq). Trust gained by any
agent Aq is given by

TrustGain(Aq) =
∑

∀Ap→Aq

wpq
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In robosoccer, suppose the active player Ap gains equal payoff by passing the ball to
either Aq or Ar. When Ap chooses player Aq it implies player Ap has more trust on Aq

compared to player Ar.
Refer to the Figure 2(C), InDegree(A5) in FDacti is 3

TrustGain(A5) in FDacti is (0.25+0.5+0.7) = 1.65
Importance of any agent in the system depends on the trust it got from others. Trust

contribution to an agent Aq by different agents need not be equal. Trust obtained by im-
portant or successful agents will count more compared to unsuccessful or failed agents.
This is similar to PageRank [6], where the rank of the page depends on its back-links.
The links which come from important pages conveys more importance to a page com-
pared to other pages.

The capability of an agent is calculated based on the capabilities of all the trusting
agents. The capability accumulated by the agent is equally shared among all the agents
with whom the agent can initiate an interaction. Let the parameter ’d’ be the damping
factor which can be set between 0 and 1. Then the capability of an agent Aq is given by

C(Aq) = (1− d) + d×
∑

∀Ap→Aq

C(Ap)
OutDegree(Ap)

(1)

Converged value of possible recursive equation (1) will give the capability of an
agent.

Refer to the Figure 2(C), let all the initial agent capabilities in FDacti be 1.0 and ’d’
is set to 0.85. The capabilities obtained from FDacti using equation (1) for the agents
A1, A2, A3, A4, A5 are 0.63, 1.65, 0.85, 0.57, 1.27 respectively as shown in the Figure
2(E).

Utility for any pair of Agents. Two factors namely individual capabilities and success
rate of interactions determine the strength of any pair of agents who can interact be-
tween themselves. The relative importance between these two is a subjective issue. The
utility or strength of any two agents Ap and Aq is given by

U tility(Ap → Aq) = p× (C(Ap) + C(Aq))
2

+ (1− p)× wpq

Where the first term of U tility function represents utility of agent capabilities and
second term represents utility of interactions among themselves. p is the controlling
parameter and it decides the relative importance among the agents capabilities and
their interactions. p is domain dependent and its value for a system is decided by the
user.

Utility of the Community. The strength of all pairs of agents who can interact denotes
the strength of the whole community. The utility of any community is given by

U tility(Comm) =

∑
∀Ap→Aq∈ Comm

U tility(Ap → Aq)

∑
∀Ap→Aq∈ Comm

1
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Ranking of the communities is done by sorting U tility(Comm) in descending or-
der. The procedure for extraction and ranking of agent communities for an activity Acti
is shown graphically in the Figure 2.

2.3 Extraction of Grand Communities

Agents in the grand community can do many activities in the system. This is similar to
all-rounders in a game. Grand communities are generated from grand activity graph us-
ing chameleon (discussed in section 2.1). Grand activity graph is generated by merging
all the final activity graphs. Since, some activities are important compared to others for
achieving the final goal, there is a need to differentiate these activities. Let αi be the
relative weight for an activity acti that is decided by the user depending on the relative
importance between the activities. A simpler method for assigning αi values is to sort
all the activities in the ascending order of preference and number these activities. αi

value for a particular activity can be its corresponding number.
Let GDG be the grand activity graph obtained by merging FDGacti ∀ i. Weight of

any edge in GDG is given by

wpq =

∑
∀i

αi × wacti
pq

NumActivities
.

2.4 Best Fit Community for Any New Agent

Any new agent desires to join the community that closely matches its own behavior
and capabilities. A community will be relatively small compared to the complete multi-
agent system. So an agent can study the general behavior of the other agents and the
interactions among them within the community. A new agent can’t predict the outcome
of interactions with the other agents. So we consider only the capability of the new
agent for finding its best fit community. Initial capability of a new agent is set to 0.5.
Over time, the capability of the new agent will change, reflecting its contribution to
various communities. We know the capabilities of all the agents within a community
(section 2.2). The best community for a new agent will be the community having least
variance with respect to the new agent capability. The best community Comm� for any
new agent Aq is given by

Comm� = argMinComm

[ ∑
∀Aj∈Comm

(C(Aj)− C(Aq))2

NumAgents in Comm

]

Suppose a new agent having capability 0.5 wants to join a best fit community from
the communities obtained in the Figure 2(F).

argmin{[ (0.13)2+(0.07)2

2 ], [ (1.05)2+(0.35)2+(0.77)2

3 ]}
= argmin{0.01, 0.60}

So Comm-2 is the best fit for this new agent.
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2.5 Selection of Top ’k’ Agents in a System

Selection of top ’k’ agents is a subjective issue. For example in robosoccer environ-
ment, the captain or the coach generally prefer 3 or 4 specialized defenders, 3 or 4
specialized attackers and 4 or 5 all-rounders (who defend and attack reasonably). It
makes the team well balanced and competitive. The specialized defenders are selected
from the final activity graph of Activitydefending, specialized attackers are selected
from Activityattacking and all-rounders are selected from grand activity graph which
involves most of the activities in the system. The agents relative capabilities and activ-
ity graphs for each activity and for all activities which are considered can be calculated
(sections 2.1, 2.2). Using this, we can select the agents accordingly.

2.6 Identification of Drag-Agents in a Community

Agents who get high amount of trust from others and have many unsuccessful interac-
tions initiated by them are called drag-agents. Drag-agents reduce the performance of
the community due to many unsuccessful interactions with other agents in the commu-
nity. Agents individual benefits will be decreased if they trust any of the drag-agents.
Drag-agents are the root cause for the failure of the activity at many instants. By iden-
tifying the drag agents, community performance can be increased either by giving least
preference to drag agents or by replacing the drag agents with appropriate agents.

Any agent having considerable amount of trust from other agents should perform at
least better than an average agent in the community. The amount of trust got by any
agent depends on the percentage of agents in the community who are trusting the agent.
Therefore, Drag(Ap) is defined as

Drag(Ap) =

[ N∑
i=1

InitSuccess(Ai)

N

]
× (1 +

InDegree(Ap)
N

)− InitSuccess(Ap)

InitSuccess(Ap) is the successful interactions initiated by Ap (defined in section 2.2).
Drag(Ap) signifies the weakness of the agent Ap within the community. All the agents
whose Drag > τ , are the drag-agents in the community. By sorting Drag values for
all the agents in decreasing order, the threshold τ can be decided by the user.

Consider Comm-2 in the Figure 2(F),
InitSuccess(A5)= 0.6, InitSuccess(A2)= 0.5
InitSuccess(A3)= 0.65
Average InitSuccess = (0.6 + 0.5 + 0.65)/3 = 0.58
Drag(A5)= 0.58 * (1 + 2/3) - 0.6 = 0.366
Drag(A2)= 0.58 * (1 + 2/3) - 0.5 = 0.466
Drag(A3)= 0.58 * (1 + 1/3) - 0.65 = 0.123
When τ=0.4, then the agent A2 is the drag agent.

3 Experiments

We tested our approach to extract hidden agent communities for 2D robosoccer
environment.
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3.1 RoboSoccer Simulation Environment

Soccer match is played between two teams on a simulation environment which is con-
trolled by a centralized server. 11 agents from each team connect to the server and
perceive sensory information like aural, visual and body state in each cycle. The match
duration is 10 minutes. Each minute is divided into 600 cycles. Each agent has to de-
cide the actions within a cycle (100ms). If it is valid, the server simulates the requested
action. The possible actions can be kick, dash, move, turn neck, turn body, say and
hear. The environment is unreliable (sensory information contains noise), dynamic and
incomplete (limited vision for each agent). Like real world situations, here the agents
are heterogeneous and have limited stamina. Heterogeneous in the sense that the agents
with more kick power lose stamina at higher rate and the agents who can perceive the
environment accurately can only view up-to limited distance. Each team tries to win the
match, for which agents needs to take an action that maximizes their winning chance.
To achieve this in an effective manner, agents need to cooperate.

3.2 Dataset Generation

The dataset is generated by playing 50 matches with the team Kshitij against other
teams in robosoccer simulation league. There are several activities possible in this sys-
tem like ball possession, dribbling, passing, defending, attacking etc. The team Kshitij
is used to extract communities for the desired activities to analyze its strengths and the
weakness based on the history of games played. The activities that are considered is
shown in the Table 1. These activities are considered since our main concentration is on
the ball control and scoring the goals. Snapshot of the dataset is shown in the Table 2.

Table 1. Activities

Act Num Act Name Parameters
Act1 Ball Possession λ = 0.5,

timeSlot = 30cycles

Act2 Straight Pass λ = 0.70
Act3 Leading Pass λ = 0.62

Table 2. Snapshot of the dataset

TimeCycle ActNum Agents OutCome(S|F)
4 Act3 A9, A11 S

18 Act1 A4, A8, A11 F
| | | |

5994 Act2 A9, A7 S

3.3 Results

The team formation of Kshitij is as follows. Agent A1 acts as goalie, agents
{A2,A3, A4,A5} are defenders, agents {A6,A7,A8} are mid-fielders and the agents
{A9,A10,A11} are attackers (can be seen either in the Figure 3 or 4). The agents have
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average quality visual sensors and can view the environment for a considerable distance.
Attackers have more kick power and defenders have more stamina.

We applied our approach on the history (Table 2) considering the activities in the
Table 1. For ranking the communities, damping factor ’d’ is taken as 0.85. For calculat-
ing the utility of any pair of agents, equal importance is given to the agent capabilities
and their interactions with other agents i.e p=0.5. The communities obtained are shown
in the Figure 3. Node values represents agent capabilities. Analysis of these communi-
ties for each activity is given below.

Ball Possession. Activity BallPossession is successful if the control of the ball is in
our team for a given time period timeSlot. Control of the ball can be achieved either
by holding the ball for a long time or passing the ball correctly to the teammate or
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dribbling in the safe direction. The two communities that are obtained for this activity
is shown in the Figure 3(A). One contains all the defenders and the other contains all
the mid-fielders. So most of the time, the ball is within the defenders or the mid-fielders.
But more successful passes between the defenders and the mid-fielders is desired who
can pass the ball to the attackers for scoring the goal. There is no coordination among
the agents A9,A10,A11. This may be due to strong opponent defense or weak passing
among these agents.

Straight Pass. If an agent passes the ball directly to some teammate who is able to
receive the ball successfully, then the activity StraightPass is successful. Communi-
ties formed for this activity is shown in the Figure 3(B). The success rate of A1→A2 or
A1→A5 signifies that most of the time, the goalie is passing to the appropriate agent.
Agent A6 is the drag agent, overloaded by the agents A7, A8, A9, A10, A11. Since ev-
ery agent has limited stamina, the agent can’t perform all the tasks like kicking, moving
etc. continuously for a longer period. Several times, Agents A9, A10, A11 are prefer-
ring backward passes. This may be due to unavailability of the agents A10, A11 in the
appropriate position for receiving the ball.

Leading Pass. Leading pass is passing the ball in front of the agent so that the agent
receives the ball before the opponents. Activity LeadingPass is successful if the de-
sired agent receives the ball successfully. In the team Kshitij, leading pass is used only
by the attackers and average success is achieved in scoring the goal (Figure 3(C)). This
may be due to the inaccurate information possessed by the attackers.

To overcome the problems faced in the above activities, the following modifications
are made in the team. Leading pass can be used by the defenders and the mid-fielders
whenever possible to avoid excess passes among themselves. Restricting back passes
for the attackers to avoid overloading of agent A6. Dynamic positioning of the agents
A10 and A11 whenever possible, to receive the ball from the agent A9. Quality of visual
sensors changed from average to high for the attackers, as quality is very important for
the attackers (near to the goal) compared to the vastness. These modifications improved
the team performance, mainly the average number of goals scored against other teams
improved by 25-30%.

The new communities obtained by the modified team is shown in the Figure 4. Con-
siderable number of passes between the defenders and the mid-fielders can be seen in
the Figure 4(E). No agent in the team is overloaded. The success rate of passes between
A9 and A10, A9 and A11 improved significantly (compare Fig. 3 with Fig. 4).

4 Conclusions

In this paper, we gave a generic procedure for extracting hidden agent communities,
ranking them, identifying drag agents within a community, finding best fit community
for a new agent and selecting top ’k’ agents in the system for an activity. To validate our
procedure, we tested for robosoccer simulation environment and got useful results for
improving the agent and system performance. Possible future work can be on testing
our procedure in different domains, on scalability issues and developing approaches for
the cases where the agents can enter or leave the communities (evolving communities).
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Abstract. In the RoboCupRescue simulation, the PoliceForce agents
have to decide which roads to clear to help other agents to navigate in the
city. In this article, we present how we have modelled their environment
as a POMDP and more importantly we present our new online POMDP
algorithm enabling them to make good decisions in real-time during the
simulation. Our algorithm is based on a look-ahead search to find the
best action to execute at each cycle. We thus avoid the overwhelming
complexity of computing a policy for each possible situation. To show the
efficiency of our algorithm, we present some results on standard POMDPs
and in the RoboCupRescue simulation environment.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a very gen-
eral model for sequential decision problems in a partially observable environ-
ment. A lot of problems can be modelled with POMDPs, but very few can
be solved because of their computational complexity (POMDPs are PSPACE-
complete [1]), which motivates the search for approximation methods. Recently,
many approximation algorithms have been developed [2, 3, 4, 5, 6] and they all
share in common the fact that they try to solve the problem offline. While these
algorithms can achieve very good performances, they are still not applicable on
large multiagent problems, like the RoboCupRescue simulation.

This paper presents a novel idea for POMDPs that, to our knowledge, have
never received a lot of attention. The idea is to use an online approach based on
a look-ahead search in the belief state space to find the best action to execute at
each cycle. By doing so, we avoid the overwhelming complexity of computing a
policy for every possible situation the agent could encounter. We present results
showing that it is possible to achieve relatively good performances by using a
very short amount of time online. To make our solution even better, we have
incorporated a factored representation in order to speed up the computation
time and reduce the amount of memory required.

In this article, we first describe the formalism of our RTBSS (Real-Time Belief
Space Search) algorithm, followed by some results on standard POMDPs, then
we present an adaptation of our method for the RoboCupRescue simulation
environment and some results showing its efficiency.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 196–207, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 POMDP

In this section we briefly describe POMDPs [7, 8] and then we introduce factored
POMDPs. Formally, a POMDP is a tuple described as 〈S ,A,T ,R, Ω,O〉 where:

– S is the set of all the environment states;
– A is the set of all possible actions;
– T (s , a, s ′) is the probability of ending in state s ′ if the agent performs action

a in state s ;
– R(s) is the reward associated with being in state s .
– Ω is the set of all possible observations;
– O(s ′, a, o) is the probability of observing o if action a is performed and the

resulting state is s ′.

Since the environment is partially observable, an agent cannot perfectly dis-
tinguish in which state it is. To manage this uncertainty, an agent can maintain
a belief state b which is defined as a probability distribution over S . b(s) means
the probability of being in state s according to belief state b.

The agent also needs to choose an action to do in function of its current
belief state. This action is determined by the policy π, which is a function that
maps a belief state to the action the agent should execute in this belief state.
To construct a policy, the agent has to evaluate the expected reward of a belief
state. To do so, the agent can use the following value function of a belief state
for an horizon of t :

Vt (b) = R(b) + γ max
a

∑
o∈Ω

P(o |b, a)Vt−1(τ(b, a, o)) (1)

R(b) =
∑
s∈S

b(s)R(s) (2)

R(b) is the expected reward for the belief state b and the second part of equa-
tion 1 is the discounted expected future rewards. P(o |b, a) is the probability of
observing o if action a is performed in belief state b:

P(o |b, a) =
∑
s′∈S

O(s ′, a, o)
∑
s∈S

T (s , a, s ′)b(s) (3)

Also, τ(b, a, o) is the belief state update function. It returns the resulting
belief state if action a is done in belief state b and observation o is perceived. If
b′ = τ(b, a, o), then:

b′(s ′) = ηO(s ′, a, o)
∑
s∈S

T (s , a, s ′)b(s) (4)

where η is a normalizing constant. Finally, the policy can be obtained according
to:

πt (b) = argmax
a

[
R(b) + γ

∑
o∈Ω

P(o |b, a)Vt−1(τ(b, a, o))

]
(5)
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Fig. 1. Belief states without dependance (left) and with dependance (right)

2.1 Factored POMDP

The traditional POMDP model is not suited to big environments because it
requires explicitly enumerating all the states. However, most environments can
be described by a set of different features which allows representing them much
more compactly. Let X = {X1,X2, . . . ,XM} be the set of M random variables
that fully describe a system state. We can then define a state by assigning a value
to each variable: s = {X1 = x1, . . . ,XM = xM} or more compactly s = {xi}Mi=1.

With such a factored representation it is then possible to compactly represent
the transition and observation functions as a dynamic Bayesian network [9].
Also, if the state variables can be partitioned into probabilistically indepen-
dent subsets, then the joint distribution representing the belief state can be
compactly represented by the product of the marginal distributions of each
subset [4]. Therefore, by maintaining the probabilities on variables instead of
states, it is much easier to update the belief state and use it for approximation
methods.

Figure 1 shows an example of two belief states. On the left, the variables are
all independent, thus there is one vector of probabilities for each variable. On the
right, the last two variables are dependent and thus there are only two vectors.
Moreover, even if all variables are dependent, it is still possible to factorize the
belief state with minimal degradation of the solution’s quality. Some methods
have been developed to automatically generate groups of variables that offer
an interesting compromise between compactness of the representation and the
performance of the agent [4, 10]. It is important to mention that the factorization
is not necessary for our method, but if it can be used, it can accelerate the
calculations, thus helping our algorithm to search deeper.

2.2 Formalization

More formally, to take advantage of the factored representation of the belief
state, we define a function ω : B → PS :

ω(b) = {{xi}Mi=1 | (∀ xi) Pb(Xi = xi) > 0} (6)

This function returns, according to a belief state, all the states the agent could
be in. We know that a state is impossible if one of the variables has a probability
of zero according to b. Moreover, if the variables are ordered approximately
according to their certainty (see Figure 1), this subset of states can be rapidly
constructed because each time we encounter a variable with a probability equal
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to zero, we can immediately exclude all the corresponding states. The following
equation can then be computed much more rapidly than equation 2:

R(b) =
∑

s∈ω(b)

R(s)b(s) (7)

In fact, the less uncertainty the agent has, the smaller the subset of possible
states is and the faster the computation of equation 7 is compared to equation 2.

Now that we consider only the states that an agent can be in, we would also
like to have a function that returns the states that are reachable from a certain
belief state. To do so, we define a new function α : A×B ×Ω → P S that takes
as parameters the current belief state b, the action a that was performed and
the observation perceived o and returns all the states that the agent can reach:

α(a, b, o) = {s ′ | (∀ s ∈ ω(b)) T (s , a, s ′) �= 0 ∧O(s ′, a, o) �= 0} (8)

The probability of making an observation (P(o |a, b)) can also be expressed
using α and ω:

P(o | a, b) =
∑

s′∈α(a,b,o)

O(s ′, a, o)
∑

s∈ω(b)

T (s , a, s ′)b(s). (9)

3 Online Decision Making

Instead of computing a policy offline, we adopted an online approach where
the agent rather performs a local search at each step in the environment, thus
avoiding a lot of computations. The advantage of such a method is that it can
be applied to problems with a huge state space.

3.1 Belief State Value Approximation

In section 2, we described how it was possible to exactly compute the value of a
belief state (equation 1). In this section, we instead explain how we estimate the
value of a belief state for our online approach by using a look-ahead search. The
main idea is to construct a tree where the nodes are belief states and where the
branches are a combination of actions and observations (see Figure 2). To do so,
we have defined a new function δ : B×N → R that looks like equation 1, but that
is based on a depth-first search instead of dynamic programming. The function
takes as parameters a belief state b and a remaining depth d and returns an
estimation of the value of b by performing a search of depth d . For the first call,
d is initialized at D , the maximum depth allowed for the search.

δ(b, d) =

{
U (b) , if d =0
R(b) + γmax

a

∑
o∈Ω

(P(o | b, a) × δ(τ(b, a, o), d − 1)) , if d >0 (10)

where R(b) is computed using equation 7 and P(o |b, a) using equation 9.
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Fig. 2. A search tree

When d = 0, we are at the bottom of the search tree. In this situation, we
need a way to estimate the value of the current belief state. To do so, we need
a utility function U (b), that gives an estimation of the real value of this belief
state (if the function U (b) was perfect, their would be no need for a search). If
it is not possible to find a better utility function, we can use U (b) = R(b).

When d > 0, the value of a belief state at a depth of D − d is simply the
immediate reward for being in this belief state added to the maximum discounted
reward of the subtrees underneath this belief state.

Finally, the agent’s policy which returns the action the agent should do in a
certain belief state is defined as:

π(b,D) = argmax
a

∑
o∈Ω

P(o | b, a)δ(τ(b, a, o),D − 1). (11)

3.2 RTBSS Algorithm

We now describe our RTBSS (Real-Time Belief Space Search) algorithm that is
used to construct the search tree and to find the best action. Since it is an online
algorithm, it must be applied each time the agent has to make a decision.

To speed up the search, our algorithm uses a “Branch and Bound” strategy
to cut some sub-trees. The algorithm first explores a path in the tree up to the
desired depth D and then computes the value for this path. This value then
becomes a lower bound on the maximal expected value.

Afterwards, for each node of the tree visited, the algorithm can evaluate with
an heuristic function if it is possible to improve the lower bound by pursuing
the search. This is represented by the Prune function at line 10. The heuristic
function returns an estimation of the best utility value that could be found if
the search was pursued. Thus, if according to the heuristic, it is impossible to
find a value that is better than the lower bound by continuing the search, the
algorithm backtracks and explores another action. If not, the search continues
because there is a non-zero probability that the best solution hides somewhere
in the sub-tree.

Moreover, the heuristic function used in the Prune function must be defined
for each problem. Also, to work well it has to always overestimate the true value.
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Algorithm 1. The RTBSS algorithm

1: Function RTBSS(b, d , rAcc)

Inputs: b: The current belief state.
d : The current depth.
rAcc: Accumulated rewards.

Statics: D : The maximal depth search.
bestValue: The best value found in the search.
action: The best action.

2: if d = 0 then
3: finalValue ← rAcc + γD × U (b)
4: if finalValue > bestValue then
5: bestValue ← finalValue
6: end if
7: return finalValue
8: end if
9: rAcc ← rAcc + γD−d × R(b)

10: if Prune(rAcc, d) then
11: return −∞
12: end if
13: actionList ← Sort(b, A)
14: max ← −∞
15: for all a ∈ actionList do
16: expReward ← 0
17: for all o ∈ Ω do
18: b′ ← τ(b, a, o)
19: expReward ← expReward + γD−d × P(o |a, b)× RTBSS(b′, d − 1, rAcc)
20: end for
21: if (d = D ∧ expReward > max) then
22: max ← expReward
23: action ← a
24: end if
25: end for
26: return max

If it does not, it would have the effect of pruning some parts of the tree that might
hide the best solution. On the other hand, if the heuristic always overestimates,
we are guaranteed that all the pruned sub-trees do not contain the best solution.

To link the algorithm with the equations presented, notice that the line 19 of
Algorithm 1 corresponds to the last part of equation 10, where δ is replaced by
RTBSS. Also, the function τ(b, a, o) at line 18 returns the new belief state if o
is perceived after the agent has done action a in belief state b. Note that the
actions are sorted at line 13. The purpose of this is to try the actions that are
the most promising first because it generates more pruning early in the search.

With RTBSS the agent finds at each turn the action that has the maximal
expected value up to a certain horizon of D . As a matter of fact, the performance
of the algorithm strongly depends on the depth of the search. The complexity
of our algorithm is in the worst case of: O((|A| × |Ω|)D ). This is if no pruning
is possible, thus with a good heuristic, it is possible to do much better. As we
can see, the complexity of our algorithm depends on the number of actions and
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Table 1. Comparison of our approach

Problem Reward Time (s)
Tag (870s,5a,30o)
QMDP -16.75 11.8
RTBSS -10.56 0.231

PBVI [3] -9.18 180880
BBSLS [2] � -8.3 �100000
BPI [4] -6.65 250
HSVI [5] -6.37 10113
Perséus [6] -6.17 1670

RockSample[4,4] (257s,9a,2o)
RTBSS 16.2 0.11

PBVI [5]2 17.1 ∼ 2000
HSVI [5] 18.0 577

RockSample[5,5] (801s,10a,2o)
RTBSS 18.7 0.11

HSVI [5] 19.0 10208
RockSample[5,7] (3201s,12a,2o)
RTBSS 22.6 0.11

HSVI [5] 23.1 10263
RockSample[7,8] (12545s,13a,2o)
RTBSS 20.1 0.21

HSVI [5] 15.1 10266

observations, but not on the number of states. Therefore, even if the environment
has a huge state space, our algorithm would still be applicable, if the number of
actions and observations are kept small.

4 Experiments on Standard POMDPs

This section presents the results obtained in two problems: Tag [3] and RockSam-
ple [5]. If we compare RTBSS with different existing approaches (see Table 1),
we see that our algorithm can be executed much faster than all the other ap-
proaches. Our algorithm does not require any time offline and takes only a few
tenths of a second at each turn. On small problems the performance is not as
good as the best algorithms but the difference is generally not too important.

Moreover, the most interesting results are obtained when the problem becomes
bigger. If we look at the RockSample problems, RTBSS is really close on the
first three smaller problems, but it is much better on the biggest instance of the
problem. RTBSS is better because HSVI has not had time to converge. This
shows the advantage of our approach on large environments.

1 It corresponds to the average time taken by the algorithm at each time it is called
in a simulation.

2 PBVI was presented in [3], but the result on RockSample was published in [5].
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Another huge advantage of our algorithm is that if the environment changes,
we do not need to recompute a policy. Let’s suppose that we have the RockSam-
ple problem but at each new simulation, the initial position of the rocks changes.
With offline algorithms, it would require recomputing a new policy for the new
configuration while our algorithm could be applied right away.

5 Experiments on RoboCupRescue

The RoboCupRescue simulation environment consists of a simulation of an
earthquake happening in a city [11]. The goal of the agents (representing fire-
fighters, policemen and ambulance teams) is to minimize the damages caused by
a big earthquake, such as civilians buried, buildings on fire and roads blocked.

For this article, we consider only the policeman agents. Their task is to clear
the most important roads as fast as possible, which is crucial to allow the other
rescuing agents to perform their tasks. However, it is not easy to determine
how the policemen should move in the city because they do not have a lot of
information. They have to decide which road to prioritize and they have to
coordinate themselves so that they do not try to clear the same road.

In this section, we present how we applied our approach in the RoboCupRes-
cue simulation. In fact, we are interested in only a subproblem which can be
formulated as: Having a partial knowledge of the roads that are blocked or not,
the buildings in fire and the position of other agents, which sequence of actions
should a policeman agent perform?

5.1 RoboCupRescue Viewed as a POMDP

We present how we modelled the problem of the RoboCupRescue as a POMDP,
from the point of view of a policeman agent. The different actions an agent can do
are: North, South, East, West and Clear. A state of the system can be described
by approximately 1500 random variables, depending on the simulation.

– Roads : There are approximately 800 roads in a simulation and each road can
either be blocked or cleared.

– Buildings: There are approximately 700 buildings in a simulation. We con-
sider that a building can be on fire or not.

– Agents position: An agent can be on any of the 800 roads and there’s usually
30-40 agents.

If we estimate the number of states, we obtain 2800 × 2700 × 80030 states.
However, a strong majority of them are not possible and will not ever be reached.
The state space of RoboCupRescue is too important to even consider applying
offline algorithms. We must therefore adopt an online method that allows finding
a good solution very quickly.

5.2 Application of RTBSS on RoboCupRescue

This section presents how we have applied RTBSS to this complex environment.
In RoboCupRescue, the online search in the belief state space represents a search
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in the possible paths that an agent can take. In the tree, the probability to go
from one belief state to another depends on the probability that the road used
is blocked. One specificity of this problem is that we have to return a path to
the simulator, thus the RTBSS algorithm has been modified to return the best
branch of the tree instead of only the first action.

Furthermore, the key aspect of our approach is that we consider many vari-
ables of the environment to be static during the search in order to minimize the
number of states considered. In the RoboCupRescue, all variables are considered
static except the position of the agent and the variables about the roads. For
the other variables, like the position of the other agents and the position of the
fires, the agent considers that they keep the last value observed. Consequently,
all those fixed variables are represented in the belief state by a vector containing
only zeros except for the last value observed which has a probability of one.
Therefore, the function ω (equation 6) only returns a small subset of states.

More precisely, the beliefs are only maintained for the road variables. Those
variables are the most important for the agent decisions. In other words, the
agent focuses on the more important variables, maintaining beliefs as precisely
as possible, and it abstracts the other variables by considering that they are
fixed and it relies only on its observations to maintain them.

We update the value of the fixed variables only when the agent perceives a
new value. In our model, we consider the observations to be both the direct
agent’s observations and the information received by messages. We are in a
cooperative multiagent system, therefore all agents have complete confidence in
the information received from the other agents.

In complex dynamic multiagent environments, it is often better to rely on
observations than to try to predict everything. There are just too many things
moving in the simulation. Therefore, the agent should focus on the more impor-
tant parts of the environment. To efficiently take all the unpredicted parts of
the environment into consideration, the agent can shorten its loop of observa-
tion and action to keep its belief state up-to-date. This can be done because our
RTBSS algorithm can find an action very quickly. Consequently, the agent makes
frequent observations, thus it does not need a model for the less important parts
of the world, because they do not have time to move a lot between observations.

Moreover, we have defined a dynamic reward function that gives a reward for
clearing a road based on the positions of the fires and the other agents. This
enables the agent to efficiently compute its estimated rewards based on its belief
state without having to explicitly store all rewards for all possible states.

A policeman agent needs to assign a reward to each road in the city, which
are represented as nodes in a graph (see Figure 3). The reward values change
in time based on the positions of the agents and the fires, therefore the agent
needs to recalculate them at each turn. To calculate the reward values, the agent
propagates rewards over the graph, starting from the rewarding roads, which are
the positions of the agents and the fires. For example, if a firefighter agent is on
road r1 then this road would receive a reward of 5, the roads adjacent to r1 in
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Fig. 3. Reward function’s graph

the graph would receive a reward of 4, and so on. Also, we add rewards for all
roads in a certain perimeter around a fire.

What is interesting with this reward function is that it can be used to coor-
dinate the policeman agents. The coordination is necessary, because we do not
want all agents to go to the same road. To do so, the agent propagates negative
rewards around the other policeman agents, thus they all repulse each other.
With this simple modification of the reward function, we were able to disperse
efficiently, thus dynamically coordinate up to fifteen agents acting in a really
dynamic environment.

Figure 3 shows an example of a reward graph. The nodes represent the roads
and the reward source is identified in each node. The big number over a node is
the total reward, which is the sum of all rewards identified in the node. As we
can see, roads around the firefighter agent receive positive rewards, while roads
around the policeman agent receive negative rewards. Therefore, the agent would
want to go to roads near the fire and not necessarily go to help the firefighter
because there is already a policeman agent near it. Consequently, agents are
coordinating themselves simply by propagating negative rewards.

5.3 Results and Discussion

In such a huge problem as RoboCupRescue, it was impossible to compare our
approach with other POMDP algorithms. Therefore, we compared our algorithm
RTBSS with an heuristic method for the policeman agents. We have compared it
with our last approach for the policemen in the RoboCupRescue simulation. In
this approach agents were clearing roads according to some priorities. Each agent
received a sector for which it was responsible at the beginning of the simulation.
Afterwards, agents were clearing roads in this order: roads asked by the other
agents, roads around refuges and fires and finally, all the roads in their sector.

The results that we have obtained on 7 different maps are presented in
Figure 4. The approach presented in this paper improved the average score by 11
points. This difference is very important because in competitions, a few tenths
of a point can make a big difference. On the graph, we show a 95% confidence
interval that suggest that our algorithm allows more stable performances.
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Fig. 5. Agents blocked
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Fig. 6. Roads blocked

Figure 5 shows a comparison of the number of agents that are blocked at each
cycle. The results show that our method allows prioritizing the most important
roads since on average, there are one or two fewer blocked agents. Furthermore,
Figure 6 shows the number of roads that are blocked at each cycle in the simula-
tion. We see that RTBSS allows the policeman agents to clear the roads faster.

Briefly, with RTBSS, agents clear the most important roads faster than with
the heuristic approach. Another result showing the efficiency of our approach is
that it helped us to finish second at the 2004 international competition.

6 Related Work

The first works that come to mind are those approximation methods that aim
to solve larger problems. Particularly, we compared our approach with 5 other
algorithms [2, 3, 4, 5, 6] used to find an approximate solution. These approaches
are very interesting because they achieve good solution quality. In addition,
some of these algorithms can bound their distance from the optimal solution.
However, they can only be applied to relatively small environments because they
all proceed offline and require a lot of computation time on big problems.

For POMDPs, very few researchers have explored the possibilities of online
algorithms. [12] used a real-time dynamic programming approach to learn a belief
state estimation by successive trials in the environment. The main differences
are that they do not search in the belief state tree and they need offline time to
calculate their starting heuristic based on the QMDP approach.

7 Conclusion and Future Work

This paper presents RTBSS, an online POMDP algorithm useful for large, dy-
namic and uncertain environments. The main advantage of such a method is
that it can be applied to problems with huge state spaces where other algorithms
would take way too much time to find a solution. To reinforced our claims, we
showed results on two problems considered to be large in the POMDP literature.
Those results show that RTBSS becomes better as the environment becomes big-
ger, compared to state of the art POMDP approximation algorithms.

We have also applied our algorithm in a complex multiagent environment,
the RoboCupRescue simulation. We showed how we have slightly modified our
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basic RTBSS algorithm to take the specificity of multiagent systems more into
consideration, and we presented results showing its efficiency.

In our future work, we would like to improve our online algorithm by reusing
the information computed previously in the simulation. We also want to combine
offline and online strategies, because it might be possible to precompute some
information offline that could be useful online. In short, RTBSS represents a
good step towards making POMDP applicable in real life applications.
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Abstract. This paper deals with a cooperative control method for a multi-agent 
system in dynamic environment. This method enables a robot to perform flexi-
ble cooperation based on the global evaluation of the achievement of objectives. 
Each robot communicates qualitative evaluation on the achievement level of 
each objective. Each robot calculates the global evaluation on the achievement 
of the team objective from the individual evaluation. The evaluation on the ob-
jective achievement is abstracted in order to reduce the influence of variation of 
the evaluation value and the communication load. As an example, the method is 
applied to the EIGEN team robots for the Middle Size League of RoboCup, 
since it is necessary for the soccer robots to cooperate each other in dynamic 
environment. Its effectiveness was demonstrated through the RoboCup 2004 
competition.  

1   Introduction  

It is important for a multi-agent system to act in a cooperative manner. The coopera-
tion in a multi-agent system is able to improve the efficiency in achieving a task and 
in executing some tasks that are difficult to be accomplished by one agent. Therefore, 
many researchers have studied about cooperative action of multi-agent systems [1] 
and [2]. Nowadays, it has been expected to realize robots that are symbiotic with hu-
man in open environment. These robots are required to act cooperatively with human, 
other robots and artifacts in complicated environment. In the dynamic environment, 
there are many unexpected happenings. In order to make robots act appropriately by 
considering various situations, many rules become necessary for the cooperative con-
trol. Further, if the configuration changes because of some unexpected events, robots 
can not adapt to the situation. Therefore, in [3] authors have studied a cooperative ac-
tion control method based on the evaluation of the objective achievement of a robot 
system. To realize such action, it is necessary to develop a more flexible cooperative 
control method.  

RoboCup Middle Size League is a soccer game executed by autonomous mobile 
robots. Robots are forbidden to use a global sensor. Since there are many robots in a 
field, it is difficult to construct a global model and the wireless LAN used in commu-
nication is not stable. In the RoboCup Middle Size League, a cooperation capability is 
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required to flexibly adapt a robot team to work in a dynamic environment, which is a 
good test bed for a multi-agent system. Cooperative behavior is one of the important 
research topics in the RoboCup Middle Size League and many researchers have stud-
ied about it. There are representative examples of Dynamic Task Assignment [4-6], 
Dynamic Role Assignment [7-11] and so on. Dynamic Role Assignment is realized 
for the efficient cooperation among the robots. It scope is to assign a Role to avoid 
potential conflicts among robots.   

In particular, for example, the method described in [9] needs accurate data about 
the agent position, the number of the robots for each role is fixed and the roles are 
exchange among robots. Instead, in our method, the number of the robot for each role 
is not fixed strictly, and the role is decided according to the objective achievement of 
the whole system. With this method, the organization of the team is changed dynami-
cally according to the situation.  

In our approach, a flexible selection of the objectives is realized by using the 
method of the qualitative information on robot own achievement level of the objec-
tive. The evaluation of achievement level of the objective among robots team is cal-
culated based on the sum of the respective self-evaluations of each robot. This method 
enables robots to change appropriately the multi-agent system behavior keeping the 
high autonomy of each agent. Each robot is able to assume the same role before 
achieving the desired state to accomplish the global objective. Only one finally selects 
the offensive role, while supporting and defensive roles can be assumed by more than 
one robot. Robots are also able to cooperate without sharing accurate position data 
and the same action modules introduce in session 3.1. The abstraction introduce in 
session 2.1 of the evaluation on the objective achievement is effective to reduce the 
influence of variation of evaluation value and the communication load.  

In this paper, the method which has first been proposed in [3] is further developed 
to apply it to a robots system with heterogeneous robots, in order to cope with the in-
crease of robot number. In this case, the robots with omni directional drive are used as 
a field player and the robots with differential drive are used as a goalkeeper and as a 
defender to better exploit the different characteristics of robots hardware. The useful-
ness of the cooperative control method is investigated in the RoboCup Middle Size 
League and the effectiveness is examined thorough RoboCup 2004.   

2   Cooperative Control Method   

2.1   Concept  

Our research aims at establishing a cooperative control for mobile robots in dynamic 
environments where autonomous robots need many rules to achieve a task because of  
a lot of different situations to be considerate. Further, robots often fail to achieve a 
task because of unexpected happenings. In order to solve this problem, this study 
takes into account the achievement level of the objective. The objective is defined 
according to the essential requirements for achieving a task. In this study, the coop-
erative behavior among agents is realized by performing an evaluation of the degree 
of achieving an objective and by sharing this evaluation result among all the agents. 
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According to this method, each agent possesses the information on the objective of 
the multi-agent system, that is, the global objective. They can estimate the current 
state from the environmental information. With this information, each agent calcu-
lates two kinds of evaluation information. The first is its own degree of achieving an 
objective, which is called Self-evaluation, and the second the contribution degree of 
an agent to the achievement of the global objective, which is called Agent Satisfac-
tion. In this study, the function for calculating Self-evaluation is empirically defined. 
Each evaluation value takes a simple integer. Each agent knows the desired state for 
achieving the objective which is called System Objective. This value takes also an in-
teger. These evaluation values can be considered as qualitative data abstraction of the 
degree of achieving an objective.   

The quantitative information like sensory data and the physical quantities have 
been directly used in many studies when an agent needs the information about other 
agents in order to cooperate each other. However, some studies show that a method 
using qualitative information might be more useful than the method using quantitative 
information in open environment which varies from moment to moment. The abstrac-
tion reduces the influence of variation of the evaluation value. Further, the coopera-
tion among heterogeneous agents is achieved through the individual evaluation  
functions if they are abstracted in the same scale.  

To calculate the Agent Satisfaction, each agent compares the value of its Self-
evaluation with the one of other robots, and selects those values which are higher 
value than its own value in order to sum up all of them. With this operation, each 
agent has a different value of Agent Satisfaction according to its state. In the case that 
an agent satisfies the global objective, the other agent is inhibited to achieve the ob-
jective according to the high value of Agent Satisfaction.  

In some situation, a priority is given among agents. In order to realize the effective 
cooperation, the priority agent should be selected according to the agent role or hard-
ware characteristics. Special consideration is paid to the evaluation of the priority 
agent. Since this kind of agent could have been weighted by either a high or a low 
evaluation, then it can greatly influence the evaluation of the whole system. The pri-
ority agent induces an action according to the own evaluation. The evaluation of the 
priority agent is always considered by the other agents when they calculate the Agent 
Satisfaction.  

The outline of the proposed method is as follows.   

STEP1: Each agent evaluates its state with regards to all its respective objectives, and 
this evaluated information is shared among all agents.   
STEP2: Each agent calculates the System Satisfaction based on the sum of the evalua-
tion done by agents which have an evaluation higher than its own and of the evalua-
tion done by the priority agents.   
STEP3: The agent selects the action according to the Agent Satisfaction and the Sys-
tem Objective.   

The concept and the flow of this method are shown in Fig.1. 
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Fig. 1. The concept and the flow of the proposed method  

2.2   Formulation  

According to the above-mentioned concept, the formulas for the proposed method are 
defined.  

These variables are defined as follows:  
 

• System Objective i Desired state of the Objective (i). Each agent has the  
    same value. 

• Agent Satisfaction i Satisfaction and evaluation index of the Objective (i)  
           through the position of Agent own. Each agent has a  
    different value. 

• Agent k
 priority   Priority agent. 

• Evaluate i (Agent 
j) Value of Self-evaluation about Objective (i) from Agent j. 

• E i (Agent j)  Value of the evaluation about the Objective (i) from  
    Agent j considered by Agent own 

• m    Number of the priority agent 
• n    Number of the non-priority agent 
 
Agents always take into account the evaluation of the priority agent. The evaluation 
of Objective (i) is the sum of these evaluations. The formulation of the evaluation of 
Objective (i) is given by the following equation:  

 
1 1

m n
k
priorityi i i j

k j
AgentSatisfaction Evaluate Agent E Agent

 

 
(1) 
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where  

( )

0 ( )

i j i j i own
i j

i j i own

Evaluate Agent Evaluate Agent Evaluate Agent
Agent

Evaluate Agent Evaluate Agent

i i iSystemObjective AgentSatisfaction

E

v  (2) 

When the vi is negative or equal to 0, the agent recognizes that the Objective (i) has 
been achieved and inhibits the action for achieving Objective (i). When the vi is 
positive, the agent recognizes that the Objective (i) has not been achieved and selects 
some suitable actions for achieving Objective (i). As a result, the agents behave 
cooperatively.  

The above-mentioned method is for a single objective problem. This method can 
be applied to a multi-objective system by evaluating the multiple objectives of the 
system. In this paper, the objects have priority depending on the hardware. The objec-
tive which has highest priority is checked first. The details of the method applied to 
the real robots are described below.  

3   Applications to the RoboCup Middle Size League  

3.1   Overview  

The cooperation method described in chapter 2 has been applied to RoboCup Middle 
Size robots. In 2004, the number of robots was increased and the team was built with 
robots which have different kinds of hardware as shown in Fig. 2.  

 

            (a)Field player robot with  
                   omni-  directional drive  

 

(b)Goalkeeper and Defender  
      robot with omni-directional drive  

 
Fig. 2. EIGEN team’s robot 
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Fig. 3. The flow of the action control  

In order to take into account the characteristic of the drives, the robots with omni-
directional drives are used as field players and the robots with differential drives are 
used as a goalkeeper and as a defender.   

The flow of the action selection induced by the cooperation method is shown in 
Fig 3. An “objective selector”, an “action selector” and their “action modules” are 
imple-mented in each robot. The objective selector selects the objective according to 
the cooperation method which is described in chapter 2. The action selector selects an 
ac-tion module according to the selected objective and the information on the 
environ-ment. An action module is designed in the form of an action element for 
achieving a midterm objective, such as “Go to ball”, “Defense” and so on. The agent 
achieves the midterm objectives by selecting the action modules continuously. The 
agent recog-nizes the ball and the goals, and calculates its own position and 
orientation from the information about the landmarks.   

The robots communicate each other and share the information on the ball, their po-
sition and the evaluation of the objective achievement via the Wireless LAN. The 
protocol of the communication is UDP. Therefore, the information is not always re-
ceived. If the evaluation information of other agents is not acquired for a long time 
because of the troubles on the Wireless LAN, the agents select the objective with the 
higher priority which is decided according to their characteristic.   

The evaluation function of the cooperation method is described below in detail.  

3.2   Objective and Self-evaluation  

Three kinds of the objectives for soccer playing robots are defined; “Offense”, 
“Defense” and “Support”. To keep a ball is one of basic actions of the soccer playing 
robots. However, it is not necessary for all robots to approach a ball. It is required for 
one member of the team to keep a ball. At the same time, defensive and support 
actions of the other robots are also important. Therefore, three kinds of objectives are 
defined in our method. The field player can select all of these objectives. The 
goalkeeper and the defender can select the “Defense” and “Support”. The basic action 
for each objective is shown in Fig 4.  
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The basic action of the offense is carrying a ball to the goal. In order to achieve 
this, the robot has a high evaluation value when the robot is near to the ball and robot, 
ball and goal belong to a same line. The evaluation of support objective is calculated 
according to the distance between the actual robot position and the position needed to 
support other robots. The evaluation of defense objective is calculated according to 
the position of the robot. The goalkeeper and the defender have a high defense 
evaluation value when the robot is staying between the ball and the goal. The field 
player has a high defense evaluation value when the robot is near the position to a 
defensive position.   

 

Fig. 4. The concept figures of the main action for each objective and evaluation value 

3.3   Calculation of the Agent Satisfaction 

The goalkeeper and the defender are defined as priority agents. The calculating 
method of Agent Satisfaction is described in this session.  

The goalkeeper has higher priority than the defender. So, the Agent Satisfaction of 
the goalkeeper is formulated as follows: 

DF
i iAgentSatisfaction E Agent

 
(3) 

where 

0

DF DF
i i i ownDF

i DF
i i own

Evaluation Agent Evaluation Agent Evaluation Agent
E Agent

Evaluation Agent Evaluation Agent
 

According to this formula, the goalkeeper takes into account the evaluation of the 
defender to determine the objectives if the defender has higher value on the 
evaluation. The Agent Satisfaction of the defender is formulated as follows: 

1j

4

i i jAgentSatisfaction E Agent
 

(4) 
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where 

0

i j i j i own

i j

i j i own

Evaluation Agent Evaluation Agent Evaluation Agent
E Agent

Evaluation Agent Evaluation Agent
 

According to this formula, the defender takes into account the evaluation of the 
other agents according if it is higher than the defender’s evaluation. The Agent 
Satisfaction of the defender is formulated as follows: 

 
2 3

/

1 1

GK DF
i i k i j

k j
AgentSatisfaction Evaluation Agent E Agent

 
(5) 

where 

0

i j i j i own

i j

i j i own

Evaluation Agent Evaluation Agent Evaluation Agent
E Agent

Evaluation Agent Evaluation Agent
 

The field players are not priority agents, so that the formulas for calculating the 
Agent Satisfaction are almost same as the basic formula shown in chapter 2. These 
relation ship is shown in Fig.5. 

The cooperation method among robots with these evaluation functions are 
examined in chapter 4. 

:The evaluation is compared

GoalKeeper
(Priority)

Defender
(Priority)

FieldPlayer

GoalKeeper
(Priority)

Defender
(Priority)

FieldPlayer

:Always affected 

 

Fig. 5. The relationships among the agents 

4   Experiments  

4.1   Experimental Situation  

The proposed method has been applied to the real robots for RoboCup Middle Size 
League in RoboCup 2004. In that competition, EIGEN team had 5 robots; 3 field 
players, 1 defender and 1 goalkeeper. The field players have an omni-directional 
drive. The defender and the goalkeeper have a differential drive. These robots have an 
omni-directional camera and encoders as the sensor. They have a Celeron 2 GHz 
CPU, an image processing board and a kicking device with a solenoid. They have 
wireless LAN for communicating each other.  
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4.2   The Results of the Game with the Cooperation Method Between the 
Goalkeeper and the Defender  

The scene from the finals in RoboCup 2004 is shown in Fig 6. In these figures, the FP 
means the field player, the GK means the goalkeeper and the DF means the defender. 
The arrows mean the direction toward the robots move.  

At first, the goalkeeper and the defender saved the goal shown in (a). Next, the de-
fender was moving to go away from the goalkeeper in (b), (c). After that, the defender 
stayed at the support position as shown in (d). Defender’s actions prevented oppo-
nents to disturb goalkeeper’s protection action. In this case, the goalkeeper estimated 
that it could protect the goal. So, the defender’s evaluation about goalkeeper’s defen-
sive capability was high. Therefore, the defender went away from the ball and moved 
to the support position. According to these results, the effectiveness of the cooperative 
method applied to the goalkeeper and the defender has been proved.  

DF GKDF GK

(a) (b)

DF GK
DF

GK

(c)  (d)
 

Fig. 6. The scene of the cooperation between the goalkeeper and the defender 

4.3   The Result of the Cooperation Among Robots  

A scene from the semi-finals is show in Fig.7. In these figures, the counter attack was 
shown. First, the goalkeeper and the defender protected the goal and the field player 
was moving to go away form the ball as shown in (a). In this figure, the field player 
tried to prevent the other robots from disturbing the protecting action of both goal-
keeper and defender. In this case, the goalkeeper and the defender estimated that they 
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can protect the goal, therefore the approaching action of the field player was 
inhibited. In the next figure (b), the goalkeeper protected the goal. Then, the 
goalkeeper cleared the ball for the field players as shown in Fig. (c). At this time, the 
field player waited at the support position according to the selected objective. After 
that, the field player kept the ball and kicked it forward as shown in Figs. (d) and (e).   

The cooperative actions illustrated in the sections 4.2 and 4.3 took place during the 
competition. As a result of using this approach, the EIGEN team won the first prize in  
RoboCup 2004 MSL competition. The effectiveness of our cooperation method was 
proved through this performance.  

 

DF
GK

FP1 DFGK

FP1

(a) (b)

DF

GK

FP1

FP2DF
GK

FP1
Kick!

FP2

(c)    (d)

DF
GK

FP1

FP2
FP3

Kick!

(e)  

Fig. 7. The cooperation among robots  
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5   Conclusions  

In our research, a cooperative control method using the evaluation information on ob-
jective achievement was applied to the real robots of RoboCup Middle Size League. 
According to our approach, a qualitative information is used and the achieving degree 
of the system objective is calculated from the information communicated from each 
agent. The effectiveness of the proposed method was demonstrated in the RoboCup 
2004 competition.   
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Abstract. In this paper we are proposing an approach for flexible po-
sitioning of players in Soccer Simulation in a Multi-Agent environment.
We introduce Dynamic Positioning based on Voronoi Cells (DPVC) as
a new method for players’ positioning which uses Voronoi Diagram for
distributing agents in the field. This method also uses Attraction Vectors
that indicate agents’ tendency to specific objects in the field with regard
to the game situation and players’ roles. Finally DPVC is compared with
SBSP as the conventional method of positioning.

1 Introduction

In Multi-Agent Systems collaboration between individual agents has a critical
role, since each agent decides and acts independently in order to achieve the com-
mon goal. In RoboCup Soccer Simulation each agent receives information from
environment and builds a world model. Using this world model, agents are able
to recognize their position in the field toward other agents. Each agent should
cooperate with its team by selecting an appropriate action. Thus there should
be a strategy which leads agents to take the best action. The most important
aspects of Multi-Agent soccer strategy are as follow:

– The strategy must specify the formation of the team and the position of the
agents inside this formation.

– The strategy must define different roles inside a formation and assign these
roles to various player positions.

– For each role, the strategy must specify the behavior which is associated
with the player’s current role.

– The strategy must incorporate information about how an agent should adapt
its behavior to the current situation.

– The strategy must indicate how each player should manage its battery during
the game [1].

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 219–229, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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To achieve these goals, we must distinct different players’ states. There is always
one player who is associated with ball and obeys a different decision method
based on the strategy; other agents should move toward their best position in
the field. So positioning is vital and should be carefully implemented in the
strategy. The most popular method for dynamic positioning in RoboCup Soccer
Simulation is SBSP (Situation Based Strategic Positioning)[2] which is presented
by FC Portugal team. This method defines specific target positions for agents
who do not possess the ball; these target positions are calculated with regard to
the current formation of the team and roles of agents in this formation.

Although SBSP is a very powerful method for positioning it has some re-
strictions, one of them is the obligation to define Home Positions. In this paper
we present a simple and flexible positioning method which we call Dynamic
Positioning based on Voronoi Cells (DPVC). DPVC uses Voronoi Diagram to
calculate target positions of agents.

Section 2 describes basics of positioning also shows restrictions of SBSP. In
Sec. 3 Voronoi Diagram is introduced and a new algorithm for computing Voronoi
Cells is presented. In Sec. 4 we show how to use a simple version of DPVC for
positioning. In Sec. 5 we apply attraction vectors and study the behavior of
DPVC. Section 6 includes some experimental results and comparisons between
SBSP and DPVC.

2 Basics of Positioning

As mentioned before, in SBSP players calculate their target position by getting
the game situation, formation of team, players’ roles and their current position
as input.

Situation of the game indicates rate of offence or defense considering ball
position, position of teammates and opponents. Formation is a set of information
each player needs to do positioning. It can be defined as an arrangement of
players in the field which assigns a role to each agent. Role of an agent specifies
characteristics of that agent regarding to the team formation and current position
of the agent. Generally formations are used to keep players distributed in the
field, to do so SBSP defines a home position for each role in the field. An agent
determines its target position by computing a weighted sum of its home position
and current position of the ball as an attraction point [1]. It is important to note
that each role has specific attraction to ball. Also each player has a boundary
area that can not exceed outside it.

For the player who is associated with the ball, no home position is defined
and its movement is not bounded in a closed area. If such a player looses the
ball, it has to move into its teammates’ regions to return to its own region. This
extra movement is a waste of battery.

A solution for this problem is to switch positions within a formation. However,
switching positions can also cause increased player movement if a player has to
move across the field to occupy its new position [5].
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In most conventional positioning methods there is no significant change in
players relative positions; because in each formation number of players getting
the same role is fixed. This number changes by switching to another formation.
Considering this fact, number of players in roles is predictable for the opponent
team to adapt its strategy accordingly if it is provided with a coach.

The above problems can be solved by omitting home positions and formations
as it is done in DPVC. DPVC computes attractions, roles, and target positions
without using formation. It causes an increase in the importance of attractions
for controlling agents to implement strategy.

In DPVC each agent has specific attractions to special objects like ball, op-
ponent goal and etc. These attractions are presented by force vectors, applied to
the agents. In our implementation of DPVC, vector sum of different attraction
vectors determines an agent’s movement; this vector is a function of different
parameters in the field including ball position, opponent and teammate goal po-
sitions in the field. This means that attraction vectors show tendency of players
to specific objects in the field. Attraction vectors are not the same for different
roles; they are also influenced by game situation.

By removing formations, each agent’s movements wouldn’t be restricted in
a bounded region and agents may gather in specific locations. This is due to
the public attractions of some objects in the field. For example by applying
ball attraction, players may aggregate around the ball. Avoiding this problem,
players must repulse each other. To distribute players, we introduce a method
which is based on Voronoi Diagram.

3 Voronoi Diagram

As mentioned before the method introduced in this paper for distributing agents
is based on Voronoi Diagram. It helps us to divide the field into 10 cells (a cell
for each player of the team except goalie). Since goalie has a different behavior, it
obeys a different positioning method. By computing center of each cell and tend-
ing agents toward the center of their cells, an acceptable method for distributing
agents in the field will be achieved. We now define Voronoi Diagram formally
and then present an adaptive algorithm to soccer situation for computing each
agent’s Voronoi Cell.

3.1 Basics of Voronoi Diagram

If P = {p1, p2, . . . , pn} be a set of n distinct objects (sites) in the plane; Voronoi
Diagram of P will be the subdivision of the plane into n cells, one for each site
in P , with the property that a point q lies in the cell corresponding to a site pi

iff dist(q, pi) < dist(q, pj) for each pj when j �= i [3].
Voronoi Diagram is usually used in situations where a plane should be parti-

tioned into cells of influence, as it will be discussed in the field of soccer simula-
tion. It can be shown that the Voronoi Diagram is a set of subdivisions whose
edges are straight line segments. It means that the Voronoi Diagram is a set of
convex polygons.
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We can use Voronoi Diagram to have a dynamic positioning. Voronoi Cell of
an agent is defined as the partition that contains the agent. In the first step we
need an algorithm for computing each agent’s Voronoi Cell.

3.2 Computing Voronoi Diagram

The most popular algorithm for computing Voronoi Diagram is introduced by
Steve Fortune [3]. Although Fortune Algorithm computes Voronoi Diagram of n
object in O(n log n) [3] and this makes it an ideal algorithm for most applications
but it has some complexities due to use of data structures like priority queues
and binary trees. On the other hand in a Multi-Agent System for each agent we
need only its own Voronoi Cell whereas Fortune algorithm makes all the cells.
Because of these problems in DPVC instead of Fortune Algorithm a new method
is used which is more compatible with a Multi-Agent System. Time complexity
of this method is O(n2). Although this is worse than Fortune Algorithm, we
compute Voronoi Cells for only 10 agents so optimal time of Fortune Algorithm
is not an important positive point.

We developed an algorithm (CalculateVC) that computes Voronoi Cell of
agents separately every sense. Thus instead of calculating Voronoi Diagram for
all agents, each player calculates its related cell.
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Fig. 1. Steps for computing the Voronoi Cell of agent 3

To compute the cell of agent i (1 ≤ i ≤ 10), at the beginning of the algorithm
we consider the entire field as cell of this agent (Fig. 1) then in a greedy method
this initial Cell will be abounded 9 times to get the desired result in a way that
the perpendicular bisectors of agent i and other 9 agents are constructed. Each
of these lines intersects the cell of agent i at most in two points, resulting in two
polygons that are both convex. From these polygons the one that contains agent
i will be considered as the cell of agent i. Figure 1 shows the consecutive steps
of this algorithm.
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Alg.1. Computing Voronoi Cell of agent i

Algorithm CalculateVC (agent i):

// Input: an agent indexed i
// Output: a polygon (cell) as the Voronoi Cell of input agent
// Consider the entire field as the initial Voronoi Cell of i
celli ← all the field
Point Pi ← position of i
for all agents j �= i do

Point Pj ← position of agent j
Line L ← perpendicular bisector of Pi and Pj

Intersect L with celli
if L intersects celli in 0 or 1 points then

Continue
end if
// L cuts celli into two polygons (left and right)
Polygon cell0 ← right polygon
Polygon cell1 ← left polygon
if cell0 contains Pi then

celli ← cell0
else

celli ← cell1
end if

end for

CalculateVC makes 9 intersection lines. Calculating intersection points of a
line and a convex polygon with k edges needs O(k) time using Sutherland-
Hodgeman Algorithm[4]. Since there are 9 intersection lines, k is always less
than 9. As a result, time complexity of CalculateVC is O(9 ∗ 9).

4 Dynamic Positioning Based on Voronoi Cells (DPVC)

In DPVC for each agent we use its Voronoi Cell to present a vector to tend that
agent in a direction for repulsing its teammates, this vector is called Voronoi
Vector. Voronoi Vector of each agent will be combined by all attraction vectors
of that agent and the result is the force vector that should be applied to the
agent in each sense. It means that Voronoi Vectors’ duty is to distribute agents
in the field. We now explain how to use Voronoi Cells to achieve a method for
distributing agents. In the first step for agent i (1 ≤ i ≤ 10) the Voronoi Cell is
computed (see Alg.1). This cell is a convex polygon with ki edges. In the second
step center of this cell is computed using algorithms based on computational
geometry. We can define the center of a simple polygon as the center of mass
of a two dimensional object having a shape like that polygon , assuming that
the density is the same in all parts of the object. The vector from an agent’s
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position toward the center of its Voronoi Cell is defined as the Voronoi Vector
of that agent.

According to the definition of Voronoi Cell we can approximate compression
(density) of other agents around an agent by the space of that agent’s Voronoi
Cell. If this area is increased, the compression of the other agents near that cell
(agent) will be decreased. The relative positioning (direction and distance) of
an agent toward the center of its cell shows the state of that agent in regards
to the other agents’ compression zone. If an agent is near to the center of its
cell, its distance from other agents is near optimal. For example in Fig. 2 (a)
cell of agent 1 is smaller than other cells, this means that the compression is
high around this cell. We can also see that the center of cell 1 is near to agent
1 so this agent is in the same distance from other agents (on the average) and
its relocation (in this sense) does not help to remove compression. Notice that
cell 5 has a wider area and as a consequence the compression is low around it.
We can also see that the agent 5 is far from center of its cell and it is near to
the compression zone so by moving agent 5 to the center of cell 5, compression
will be decreased. It is possible to verify this point for other agents. As it is
shown in Fig. 2 (b) and Fig. 2 (c) by moving the agents towards the center of
their cells, areas of the wider cells (like cell 5) decreases and areas of smaller
cells(like cell 1) increases. It is wise to consider the equality of Voronoi Cell
areas as a factor (or definition) for distribution, so in a sequence of senses the
agents get more distributed and this process continues until all the agents reach
a balance state. This means that the agents’ positions and the center of their
cells will be in the same point. In other word the Voronoi Vector will be zero
vector. To show that the agents reach a balance state after some senses, it is
necessary to define center of a polygon in such a way that by moving an agent
toward the center of its cell, summation of its distances from the other agents
increases. Defining center of mass as the center of a polygon (as it is suggested in
DPVC) satisfies this condition. With this definition, to show that agents reach
equivalency we use these notations: dij = distance between agent i and agent j,
P i

s =
∑10

j=1 dij for agent i in sense s, sumDs =
∑10

k=1 pk
s in sense s, Considering

the definition for center of a polygon it is obvious that sumD has an ascendant
proceed. This means that: sensea < senseb → sumDsensea < sumDsenseb

. In
other word when agents move toward the center of their cells summation of
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Fig. 2. Agent’s movement toward their cell’s center divides the field into equal areas
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Fig. 3. Agents’ movement using DPVC without attraction in rcssserver3D

distances between all players (sumD) rises. Also the field of match (generally
the rectangle on which we make Voronoi Diagram) is bounded , so this ascendant
proceeding should be stopped because sumD can not be more than a limit and
after t senses it will stop. In this sense agents get equivalency. This means that
if we force agents toward the center of their cells (by applying Voronoi Vectors)
they move in a path that results in an equivalence state.

The final shape of Voronoi Diagram after getting equivalency depends on the
initial formation of agents in the field, it means that different initial formations
result in different final shapes and there is no unique final shape. Figure 3 shows
agents movement using DPVC without attraction in RoboCup Soccer Simulation
Server 3D (rcssserver3D).

Observation shows that if Voronoi Diagram in final equivalence state has some
sort of symmetry toward X axis and Y axis the result will be a stable equivalence.
This means that if we apply a little change in the position of an agent (after
reaching the equivalency), in the next sense Voronoi Diagram will be formed
in a way to rectify this change. Thus the agent moves toward its last position
to get the equivalence again. Notice that it differs from defining a static point
like home position for agents, because if the agent’s displacement increases more
than a certain limit, DPVC probably tends agents to a new equilibrium state.
On the other hand in real conditions where attractions are applied, the system
is so dynamic that agents never get an equilibrium state, they are just forced in
an equivalency path that is updated in every sense.

If in the final equilibrium state the Voronoi Diagram becomes asymmetric,
the result will be an unstable equivalency, in other word a little change in the
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position of an agent makes the other agents move continuously until they get a
new stable or unstable equilibrium. In this new equivalency, shape of Voronoi
Cells differs from last equilibrium state.

In our earlier discussion of distributing players, Voronoi Cells are constructed
from only teammates (except goalie) as Voronoi constructing points (sites); but
considering game situation and role of players, it is a good idea to distribute some
of agents in open spaces between opponents to make passes more successful. If
we add opponents’ positions to the set of points (sites) that construct Voronoi
Cells, the field will be partitioned into 21 cells i.e. a cell for each player in the field
except goalie of our team. By applying this method on the agents specified by
situation and role, their Voronoi Vectors will be constructed in a way that make
them to move toward opponent team’s openings. In other word these agents have
a kind of repulsion to both opponents and teammates.

5 DPVC with Attraction

When we apply both attraction vector and Voronoi Vector, the agent has accept-
able behavior. In this condition the agents repulse each other (due to Voronoi
Vectors) and also attract certain objects like ball and opponent or teammate
goal with respect to the match situation (due to attraction vectors).

Attraction vectors prevent agents from getting equivalency, so some of them
are always moving but as it was indicated before a force (Voronoi Vector) is
applied to agents in a path to achieve equivalency and it distributes agents in
the field. For example when an agent recede center of its cell (because of its
attraction vectors), the Voronoi Vectors of other agents move them in a way to
fill that agent’s opening.

Voronoi Vectors should be applied in an optimal direction. It is not desirable
that direction of Voronoi Vectors change in two sequential senses; because this
probably makes agents to do unnecessary extra movements and this is a waste of
battery. This undesirable condition appears when the Voronoi Vector is applied
to agent in direction of getting an unstable equilibrium. However the probability
that this undesirable condition occurs is very low because agents should be in
very rare and scarce positions to be forced toward an unstable equivalency. On
the other hand matches are so dynamic and in each sense attraction vectors
change, so in real conditions agents’ movement is practically optimal. This fact
is adapted with physics too. the probability that a moving sphere stops on the
top of a hill (unstable equivalency) is so lower than stopping in the bottom of
hill (stable equivalency), because the equilibrium zone is so limited on the top.

Considering DPVC we have an efficient method that can distribute agents in
the field and also has some tools for implementation of a strategy. As explained
in Sec. 2 attraction vectors determine agents’ behavior. So it is important to
assign appropriate attraction vectors for each agent with respect to its role and
game situation. We must define attraction functions to set attraction vectors in
a way to coordinate the players. These functions get game situation and player’s
role as input. So in different situations, attraction vectors change; for example
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in offensive situation there is more attraction towards opponent’s goal. As a
conclusion team strategy can be applied by attraction functions.

Also in DPVC number of players in each role is not fixed and changes ac-
cording to the game situation. As a result agents’ behavior is more flexible and
it reduces the team’s predictability, and this is a positive point for DPVC in
comparison to SBSP.

As mentioned in Sec. 2 in conventional methods of positioning when formation
changes, agents have to move across the field to get their new positions. But in
DPVC, this extra movement is omitted due to the fact that destination of agents
is updated in each sense, also every sense Voronoi Cells of each agent is updated
and its shape changes continuously. These changes are concrete i.e. there is no
sudden change in the shape of Voronoi Cell of an agent in two consecutive senses.
As a result Voronoi Cells’ center of masses and consequently Voronoi Vectors
(destination of agents) change continuously.

Considering these facts it is obvious that DPVC method has properties of a
strategic positioning as are indicated in Sec. 1.

6 Experimental Results

Performance of a team not only depends on its positioning method but also
depends on other decision modules and efficiency in implementation of agents
skills. Accordingly it is difficult to define an appropriate criterion to evaluate the
positioning method. In order to survey the applied positioning, we compared two
similar teams using different positioning methods in rcssserver3D. One of these
teams uses SBSP as positioning method and the other uses DPVC. Since there

Fig. 4. The figure shows statistical distribution for average number of passable players
of the team against Aria, using DPVC and SBSP methods for positioning. N is number
of the team opportunities to pass the ball. Numbers in x-axis show number of passable
players while numbers in y-axis are times that these numbers occur. As it is shown
while using DPVC in average there are five passable players whereas by using SBSP
there are only 3.6 passable players.
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Table 1. Results when two similar teams using different positioning methods (DPVC
and SBSP) play against Aria team

DPVC SBSP
Average number of passable players 4.09 3.36

Ball in control of the team 58.31% 56.92%
Ball in own half 18.80% 22.15%

Ball in own penalty area 1.47% 1.26%
Ball in opponent penalty area 23.02% 19.98%

is usually little density of players near corners of the field, we improved DPVC
by restricting the initial Voronoi Cells of agents to a hexagonal surrounded by
the entire field rectangle.

To compare these two positioning methods we prepared two experiments. In
these experiments both teams play against Aria team the champion of RoboCup
2004 3D competitions. In the first experiment the number of passable players
around the ball when the ball is in possession of the testing team is measured.
Passable player is a player who has the opportunity to get the ball if it is passed.
So being a passable player is a matter of player’s distance from the ball. In our
experiment a player is defined to be passable if its distance from ball is less
than 20 meters. Fig. 4 is a statistical diagram of passable players of the team.
In Fig. 4 (a) DPVC is used as the positioning method, whereas in Fig. 4 (b) the
positioning is based on SBSP.

In the second experiment both the team using DPVC and the team using
SBSP are ran against Aria 10 times. Table .1 reports results of these two series
of tests. Records of this table show parameters defined to compare the influence
of each method of positioning on success of the team.

7 Conclusion

Although we have set the parameters of attraction functions experimentally, but
the experimental results show that DPVC behavior is acceptable as a method
of positioning. We hope to improve DPVC by applying a learning method like
Reinforcement Learning. Mathematical analysis of Voronoi Diagram when agents
(sites) are moving can be an open field of study.

We are also working on implementing attractions (e.g. attraction to goals)
indirectly with restricting initial Voronoi Cells of agents moving their vertical
bounds toward opponent goal or teammate goal.

In this paper we used a geometrical model (Voronoi Diagram) for distributing
agents; there are other models that can be used. For example we are surveying
some physical models in which agents can be assumed electrical charges in a 2D
space. In this way attractions can be assigned by defining positive or negative
charges for different objects; in this way potential field on the ground direct
agents (electrons) towards less potential points and cause agents’ movement in
the correct direction.
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Abstract. Gaze direction determination of opponents and teammates is a very 
important ability for any soccer player, human or robot. However, this ability is 
still not developed in any of the RoboCup soccer leagues. We aim at reverting 
this situation by proposing a gaze direction determination system for robot 
soccer; the system is designed primarily for the four-legged league, but it could 
be extended to other leagues. This system is based on a robot-head pose 
detection system, consisting on two main processing stages: (i) computation of 
scale-invariant local descriptors of the observed scene, and (ii) matching of 
these descriptors against descriptors of robot-head prototypes already stored in 
a model database. After the robot-head pose is detected, the robot gaze direction 
is determined using a head model of the observed robot, and the current 3D 
position of the observing robot camera. Experimental results of the proposed 
approach are presented. 

1   Introduction 

Among many other capabilities, good soccer players should have the ability for 
anticipating the actions of opponents, and sometimes of teammates, by just 
observing the other players attitude and pose. As in other similar situations, the 
human most employed mechanism for solving this task is gaze direction 
determination, or the determination of the place where the opponent or teammate 
player under analysis is looking. For instance, by using this mechanism an attacker 
player can know if an opponent is observing him, and then planning his next actions 
for avoiding that the opponent attack him or obstruct his trajectory. In another 
typical situation a soccer player can know where the ball is, by looking at the same 
position where an opponent is looking (in case the opponent knows the ball 
position). In a third situation a soccer player can send the ball, i.e. perform a pass, 
to a position where a teammate is looking at. Furthermore, when kicking the ball, 
first-class soccer players can mislead opponents by looking at a different place than 
the place where they are sending the ball. Some examples of these typical situations 
are shown in figure 1.  

                                                           
∗ This research was funded by Millenium Nucleus Center for Web Research, Grant P04-067-F, Chile. 
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On hand of the described situations, it can be affirmed that gaze direction 
determination of opponents and teammates is a very important ability for any soccer 
player, robot or human. However, this ability is still not developed in any of the 
RoboCup soccer leagues. We aim at reverting this situation by proposing a gaze 
direction determination system for robot soccer. This system is designed primarily for 
the four-legged league, but it could be extended to other leagues. Moreover, the same 
gaze determination methodology can be used for enhancing cooperative and competitive 
skills in situations where the robots interacting abilities are important. 

In the here-proposed approach, gaze direction determination is based on a 
robot-head pose detection system. This detection system employs two main 
processing stages. In the first stage, scale-invariant local descriptors of the observed 
scene are computed. Then, in the second stage these descriptors are matched against 
descriptors of robot-head prototypes already stored in a model database. After the 
robot-head pose is recognized, the robot gaze direction is determined using a head 
model of the observed robot, and the current 3D position of the observing robot 
camera. In the here-employed robots (Sony AIBO) the relation between head and 
camera pose is fixed, therefore additional camera pose determination is not 
required. 

The local descriptors computation and matching are based on [1], but many 
important parts of the method have been improved for fitting it to the robot-head 
detection problem and for achieving high detection accuracy. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Some examples of real soccer situations where the gaze direction determination plays an 
important role. (a) and (b) An attacker player knows if an opponent is observing him and at 
which distance. (c) A defender knows where the ball is, by looking at the same place where the 
attacker is looking. (d) Soccer players can mislead opponents by looking at a different place 
than the place where they are sending the ball. 
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2   Related Work 

Human gaze direction (i.e. line of gaze) determination has been the subject of a great 
number of studies (for example [3][4][8][9]), with applications in very different fields 
such as medical research for oculography determination, car drivers behavior 
characterization, human-robot and human-computer interaction, including computer 
interfaces for handicapped people. However, to our knowledge there are no studies on 
determining the gaze direction in robots. We believe this is a problem that needs to be 
solved for enhancing and enriching cooperative and competitive tasks in which the 
robots interacting capabilities are important (i.e. robot soccer). Already developed 
methodologies employed for human gaze direction determination are not applicable 
for robots. They are based on anthropometric models of the human head and eyes, or 
they employ face or iris detection algorithms, or even special lighting (infrared 
lights). Therefore, new methodologies need to be employed for the robot case. Some 
alternatives could be the construction of explicit 3D robot-head models, the 
development of robot-face detection algorithms or the use of scale-invariant local 
descriptors for performing the detection. Taking into account the impressive 
development of object recognition algorithms based on scale-invariant descriptors in 
the last years ([1][6][7]), and the fact that head and face variability in robots is much 
smaller than in humans, we believe that for the moment, they are the best 
methodology for solving this problem. Most successful proposed systems employ 
either the Harris detector [5] or SIFT (Scale Invariant Feature Transform) features [1] 
as building blocks. In this work we employ SIFT features because of their higher 
robustness and stability. However, due to the physical characteristics of some robots 
models as the AIBO ERS7 (rounded head shape and head surface producing a high 
amount of highlights), it is very difficult to obtain reliable SIFTs on them. For this 
reason, we improve the traditional SIFTs computation and matching algorithms.  

3   Proposed Robot Gaze Direction Determination System 

3.1   Scale-Invariant Local Descriptors Computation 

Detection of scale-space extrema. A difference-of-Gaussian (DoG) function is 
employed for identifying potential interest points that are invariant to scale and 
orientation. These keypoints are searched over all scales and image locations using a 
scale-space transformation. It can be proved that by using the DoG over the scale-
space, image locations that are invariant to scales can be found, and that these features 
are more stable than other computed using the gradient, Hessian or Harris corner 
function [1]. The scale-space of an image is defined as a function, L(x,y,σ) , which 
corresponds to the convolution of the image with a Gaussian of scale σ. The DoG 
function between two nearby scales separated by a constant multiplicative factor k can 
be computed as: 

),,(),,(),,( σσσ yxLkyxLyxD −=  
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The local extrema (maxima and minima) of L(x,y,σ)  are detected by comparing each 
sample with its 26 neighbors in the scale-space (8 in the same scale, 9 in the scale 
above and 9 in the scale below). 

Accurate keypoint localization. First, local extrema to sub-pixel / sub-scale accuracy 
are found by fitting a 3D quadratic to the scale-space local sample point. The 
quadratic function is computed using a second order Taylor expansion having the 
origin at the sample point [2]: 
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where x is the offset from the sample point. Then, by taking the derivate with respect 
to x and setting it to zero, the location of the extrema of this function is given by: 

ˆ x = −H−1∇D(0)                           (2) 

In [1][2] the Hessian and gradient are approximated by using differences of 
neighbor samples points. The problem with this coarse approximation is that just 3 
samples are available in each dimension for computing the Hessian and gradient using 
pixel differences, which produces a non-accurate result. We improve this computation 
by using a real 3D quadratic approximation of the scale-space, instead of discrete 
pixel differences. Our 3D quadratic approximation function is given by: 
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Using the 27 samples contained in the 3x3x3 cube under analysis, the unknowns 
(ai) can be found. Using vector notation, this linear system will be given by: 
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where Di corresponds to the sample point value (intensity) i. We can write this linear 
system as Ba = d. The least-squares solution for the parameters a is given by: 

a = BTB( )−1
BTd  

It should be stressed that the matrix BTB( )−1
BT  needs to be computed once for 

the whole image, and that it can be eventually pre-computed. Now, the accurate 
location of the extrema can be computed using (2), with the following Hessian and 
gradient expression: 
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Second, local extrema with a contrast lower (noise) than a given threshold Thcontr, 
are discarded ( ˜ D (ˆ x ) < Thcontr

). Third, extrema corresponding to edges are discarded 

using curvature analysis. A peak that corresponds to an edge will have a large 
principal curvature across the edge but a small one in the perpendicular direction. The 
curvature can be computed from the 2x2 submatrix Hxy that considers only the x and y 
components of the Hessian. Taking into account that we are interested on the ratio 
between the eigenvalues, we will discard extrema in which the ratio of principal 
curves is above a threshold r, or equivalently local extrema that fulfill the following 
condition (see [5] for a deeper explanation): 

Tr(Hxy )2

Det(Hxy )
> (r +1)2

r
 

In [1] Hxy is computed be taking differences of neighbor sample points. As already 
mentioned, this approximation produces a non-accurate result. We improved this 
situation by computing Hxy from (3). 

Orientation assignment. By assigning a coherent orientation to each keypoint, the 
keypoint descriptor can be represented relative to this orientation and hence achieve 
invariance against rotations. The scale of the keypoint is employed for selecting the 
smoothed image L(x,y) with the closest scale, and then the gradient magnitude and 
orientation are computed as: 

m(x,y) = (L(x +1,y) − L(x −1, y))2 + (L(x,y +1) − L(x,y −1))2  

))),1(),1(/())1,()1,(((tan),( 1 yxLyxLyxLyxLyx −−+−−+= −θ  

As in [1], an orientation histogram is computed from the gradient orientations at 
sample points around the keypoint (b1 bins are employed). A circular Gaussian 
window whose size depends of the scale of the keypoints is employed for weighting 
the samples. Samples are also weighted by its gradient magnitude. Then, peaks in the 
orientation histogram are detected: the highest peak and peaks with amplitudes within 
80% of the highest peak. Orientations corresponding to each detected peak are 
employed for creating a keypoint with this orientation. Hence, multiple keypoints 
with the same location and scale but different orientation can be created (empirically, 
about 85% of keypoints have just one orientation). 

Keypoint descriptor computation. For each obtained keypoint, a descriptor or 
feature vector that considers the gradient values around the keypoint is computed. The 
obtained descriptors are invariant against some levels of change in 3D viewpoint and 
illumination. The keypoints and their associated descriptors are knows as SIFT (Scale 
Invariant Feature Transform) features or just SIFTs. 

First, in the keypoint scale the gradient magnitude and orientation are computed 
around the keypoint position (usually a neighborhood of 8x8 or 16x16 pixels is 
considered). Then, a Gaussian window weights the gradient magnitudes, and the 
coordinates of the descriptor and the gradient orientations are rotated relative to the 
keypoint orientation. Second, the obtained gradient values are accumulated in 
orientation histograms summarizing the contents of 4x4 subregions (b2 bins are 
employed). Thus, a descriptor vector is built, where each vector component is given 
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by an orientation histogram. Depending on the neighborhood size, 2x2 or 4x4 vectors 
are obtained. Third, illumination effects are reduced by normalizing the descriptor’s 
vector to unit length. Abrupt brightness changes are controlled by limiting the 
intensity value of each component of the normalized vector. Finally, descriptors 
vectors are re-normalized to unit length. 

3.2   Matching of Local Descriptors and Robot-Head Prototypes Descriptors 

Basically, the robot-head pose is determined by matching the image descriptors with 
descriptors corresponding to robot-head prototype images already stored in a 
database. The employed prototypes correspond to different views of a robot head, in 
our case the head of an AIBO ERS7 robot. Due to we are interested in recognized the 
robot identity (number), prototypes for each of the four players are stored in the 
database. In figure 2 are displayed the 16 prototype heads corresponding to one of the 
robots. The pictures were taken every 22.5°. The whole matching process here-
proposed considers nine processing stages. In the first stage, the image keypoint 
descriptors are individually matched against prototype descriptors. In the second stage 
this matching information is employed for obtaining a coarse prediction of the object 
(robot-head) pose. In the third stage possible affine transformations between a 
prototype and the located object are determined. In the later six stages these affine 
transformations are verified, and some of them discarded or merged. Finally, if the 
object is present in the image just one affine transformation should remain. This 
transformation determines the object pose. It is worth to mention than in the original 
work of Lowe [1], only the first four stages here-described were considered. We 
included five additional verification stages that improve the detection of robot heads. 
This is very important because due to the physical characteristics of the AIBO ERS7 
heads (rounded head shape, head surface producing a high amount of highlights, etc.), 
it is very difficult to obtain reliable SIFTs on them.  

Individual Keypoint Descriptors Matching. The best candidate match for each 
image keypoint is found by computing its Euclidian distance with all keypoints stored 
in the database. It should be remembered that each prototype includes several 
keypoint descriptors. Considering that not all keypoints are always detected (changes 
in illumination, pose, noise, etc.) and that some keypoints arise from the image 
background and from other objects, false matches should be eliminated. A first 
alternative is to impose a minimal value to a match to be considered correct. This 
approach has proved to be not robust enough. A second alternative consists on 
comparing the distance to the closest neighbor to that of the second-closest neighbor. 
If this ratio is greater than a given threshold, it means than this image keypoint 
descriptor is not discriminative enough, and therefore discarded. In [1] the closest 
neighbor and second-closest neighbor should come from a different object model 
(prototype). In the current case this is not a good idea, since we have multiple views 
of the same object (the robot head). Therefore, we impose the conditions than the 
second-closest neighbor should come from the same prototype than the closest 
neighbor. The image under analysis and the prototype images generate a lot of 
keypoints, hence having an efficient algorithm for computing the keypoint descriptors 
distance is a key issue. This nearest neighbor indexing is implemented using the Best-
Bin-First algorithm [10], which employs a k-d tree data structure. 
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Fig. 2. AIBO ERS7 robot-head prototypes with their SIFTs. Pictures taken every 22.5°. 

Object Pose Prediction. In the pose space a Hough transform is employed for 
obtaining a coarse prediction of the object (robot-head) pose, by using each matched 
keypoint for voting for all object pose that are consistent with the keypoint. A 
candidate object pose is obtained if at least 3 entries are found in a Hough bin. 
Usually, several possible object pose are found. The prediction is coarse because the 
similarity function implied by the four parameters (2D location, orientation and scale) 
is only an approximation of the 6 degree-of-freedom of a 3D object. Moreover, the 
similarity function cannot account for non-rigid deformations. 
 

Finding Affine Transformations. In this stage already obtained object pose are 
subject to geometric verification. A least-squares procedure is employed for finding 
an affine transformation that correctly account for each obtained pose. An affine 
transformation of a prototype keypoint (x,y) to an image keypoint (u,v) is given by: 
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where the mi represent the rotation, scale and stretch parameters, and tx and ty the 
translation parameters. The parameters can be found if three or more matched 
keypoints are available. Using vector notation, this linear system will be given by: 
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We can write this linear system as Cp = u . Finally, the least-squares solution for 
the parameters p is given by: 

p = CTC( )−1
CTu. 

 

Affine Transformations Verification using a Probabilistic Model. The obtained 
model hypothesis, i.e. affine transformations, is subject to verification using a 
probabilistic model (see detailed description in [11]). 

 

Affine Transformations Verification based on Geometrical Distortion. A certain 
affine transformation shouldn’t deform very much an object when mapping it. Given 
that we have just a hypothesis of the object pose, it is not easy to determine the object 
distortion. However, we do have the mapping function, i.e. the affine transformation. 
Therefore, we can verify if the mapping function produce distortion or not using a 
known, regular and simple object, such as a square. The affine transformation of a 
square should produce a rotated parallelogram. If the affine transformation does not 
produce a large distortion, the conditions that the transformed object should fulfill are 
(see notation in fig. 3): 

max
d(AB) /d(A'B')
d(BC) /d(B'C')
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''BA  is a vector from A’ to B’, ( )''''det CBBA  computes the parallelogram area. 

Affine Transformations Verification based on Spatial Correlation. Affine 
transformations producing low lineal correlation, rs , between the spatial coordinates 
of the matched SIFTs in the image and in the prototype are discarded: 

rs = min max(rxx,rxy),max(ryx,ryy)( )< thrs 

rxx and ryy correspond to the correlation in the x and y directions of the N matched 
SIFTs, while rxy=ryx corresponds to the cross correlation between both directions. rxx 
and rxy are calculated as (ryy and ryx are computed in a similar way): 
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Fig. 3. Affine mapping of a square 
 

Affine Transformations Verification based on Graphical Correlation. Affine 
transformations producing low graphical correlation, rg , between the robot-head 

prototype image and the candidate robot-head subimage can be discarded: 

( ) ( )( )

( ) ( )( )
rgU

u

U

u

V

v
TRTR

V

v

U

u

V

v
TRTR

g th

IvuyvuxIIvuI

IvuyvuxIIvuI
r <

−−

−−
=

= = ==

= =

0 0 0

2

0

2

0 0

'),(),,('),(

'),(),,('),(
 

The affine transformation is given by {x=xTR(u,v), y=yTR(u,v)}. I(u,v) and I’(x,y) 
correspond to the head prototype image and the candidate robot-head subimage, 

respectively. I  and I' are the corresponding pixel mean values.  
 

Affine Transformations Verification based on the Object Rotation. In some real-
world situations, real objects can have restrictions in the rotation (respect to the body 
plane) they can suffer. For example the probability that a real soccer robot is rotated 
in 180° (inverted) is very low. For a certain affine transformation, the rotation of a 
detected object (candidate robot-head) with respect to a certain prototype can be 
determined using the SIFTs keypoint orientation information. Thus, the object 
rotation, rot, is computed as the mean value of the differences between the orientation 
of each matched SIFTs keypoint in the prototype and the corresponding matched 
SIFTs keypoint in the image. Transformations producing large rot values can be 
discarded ( rot > throt

). 
 

Affine Transformations Merging based on Geometrical Overlapping. Sometimes 
more than one correct affine transformation corresponding to the same object can be 
obtained. There are many reasons for that, small changes in the object view respect to 
the prototypes views, transformations obtained when matching parts of the object as 
well as the whole object, etc. When these multiple, overlapping transformations are 
detected, they should be merged. As in the case when we verify the geometrical 
distortion produce by a transformation, we perform a test consisting in the mapping of a 
square by the two candidate affine transformations to be joined. The criterion for joining 
them is the overlap, over, of the two obtained parallelograms (see notation in fig. 3): 

over =1− dist(A'1 A'2 ) + dist(B'1 B'2 ) + dist(C'1 C'2 ) + dist(D'1 D'2 )
perimeter(A'1 B'1 C'1 D'1 ) + perimeter(A'2 B'2 C'2 D'2 )

> thover
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ĵ

0
k̂

3
î
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ĵ

4
k̂

5
î=
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Fig. 4. Defined reference systems (RFs) (see explanation in main text). (a) RFs ”0” and “3”. (b) 
RFs “3” and “4”, rotation angles μ  and ν . (c) RFs “4” and “5”, and affine rotation angle φ . 

(d) Observed robot in RF “5”, line of gaze in green. 

It should be also verified if the difference between the rotations produced for each 
transform is not very large. Therefore, two transforms will be joined if: 

rot1 − rot2 < thdiff _ rot
. 

3.3   Gaze Determination 

The line of gaze of the observed robot, in global coordinates, can be computed using 
the following information: (i) observing robot pose in global coordinates, (ii) 
prototype view angle, and (iii) distance and rotation angle of the observed robot. The 
observing robot pose can be estimated using the self-localization system (any mobile 
robot control software has a similar system). The prototype view angle is fixed and 
known, it was defined when the model database was built. Finally, the distance and 
rotation angle of the observed robot can be determined from the affine transformation. 

For performing the computations we define the following coordinate systems: 

}ˆˆˆ{ 000 kji   , the global reference system (RF), }ˆˆˆ{ 333 kji   , a RF fixed to the observing 

robot’s camera (between system “0” and “3” there are 3 coordinate transformations), 
and }ˆˆˆ{ 555 kji   , a RF located at the observed robot’s head (between system “3” and “5” 

there are 2 coordinate transformations). The considered angles and distances are 
defined in table1. 

In the RF 5, two points will define the line of gaze: the camera’s position of the 
observed robot, and the intersection of the gaze straight line (of parameter λ) with the 
floor. This straight line will be given in system “5” coordinates by: 

x5(λ) = −λcosδP cosεP ; y5(λ) = −λ cosδP sinεP ; z5(λ) = λ sinδP
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Table 1. Angles and distances definitions 

 Definition Source 

α  Rotation angle of robot’s body with respect to axis 
0̂i  with rotation axis 

0k̂  Self-localization  

β  Elevation angle of robot’s body with respect to plane { 0̂i  0ĵ } Accelerometer  

γ  Tilt 1 angle (body–neck angle) Robot joints 
δ  Tilt 2 angle (neck–head angle) Robot joints 
ε Head’s pan angle (neck–head angle) Robot joints 

Pδ  Prototype head tilt angle in the matched image Prototype angle 

Pε  Prototype head pan angle in the matched image Prototype angle 

l1 Neck’s longitude (distance between the two rotation centers of the neck) Robot geometry 

l2
 Head’s longitude (distance between neck-head rotation center and the camera) Robot geometry 

P  3D position of the observing robot body–neck rotation center measured from 
the global reference system 

Self-localization 

C 3D position of the observing robot’s camera measured from the global 
reference system. This point corresponds to the origin of reference system 3. 

Self-localization  

R 3D position of the observed robot head measured from the observing robot 
camera. Measured in reference system 3. 

To be computed 

μ  Horizontal angle of the straight line that joints the two robot-heads, measured 
from the “3” reference system (see figure 4 (b)). 

To be computed 

ν  Vertical angle of the straight line that joints the two robot-heads, measured 
from the “3” reference system (see figure 4 (b)). 

To be computed 

φ  Affine transformation associated rotation. Computed using the mean of the 
SIFT angle differences in all the keypoints matches used to compute the 
transformation (named previously rot). 

Robot head-pose 
determination 
system 

These equations can be translated to global coordinates (x0, y0, z0) using coordinate 
transformations. The intersection with the body will correspond, in global coordinates, 
to: 0)(0 =λz . Then, going from RF “5” to RF “0” is given by:  

x0 y0 z0 1( )T = M10M21M32M43M54 x5 y5 z5 1( )T  

with: 
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A robot-head in the image is characterized by an affine transformation that maps 
the prototype image onto a certain portion of this image. The real distance between 
the two robot heads is calculated as follows: the prototype head’s image has four 
vertex: A, B, C, D and was taken with a distance ρ  (when the picture was originally 

taken). The affine transformation maps this image into a rhomboid with vertex A’, B’, 
C’ and D’. As the visual area decreases in a quadratic way with the distance, if the 
camera has no distortion, the Rx3 coordinate of the observed robot’s head in the 

}ˆˆˆ{ 333 kji    axis system can be calculated as: 

Rx3 = ρ prototype image area

mapped area
= ρ d(AB) × d(BC)

det(A'B' B'C')
 

Where ρ  is the distance between the camera and the prototype head (at the 

acquisition time). If the horizontal angle of view of the camera is Wu and the vertical 
one is Wv, the camera resolution is Mu (horizontal) x Mv (vertical), and the head 
image’s center is in the image position (u,v), then Ry3

and Rz3
 can be calculated as: 

Mv

vMv
Wv

Mu

uMu
Wu

−= −= 2/
,

2/ νμ ; ( )μ1
33

−= tgRxRy  , ( )ν1
33

−= tgRxRz . 

4   Experimental Methodology and Results 

The critical part of the here-proposed gaze determination system is the detection of 
the robot-heads. Therefore in this article results of this sub system are reported. In a 
future work we are going to report experimental results of the whole system.  

The robot-head detection system was implemented in the AIBO ERS-7. The 
subsampled scale-space is built from the original AIBO images (208x160 pixels). 
Using these small images speeds up the calculations, but the use of a small initial 
Gaussian (σ=0.7) for building the scale-space makes the computation of interest 
points very noisy. This is the reason why the here-proposed parabolic interpolation 
and additional verification stages must be used. The SIFT points and descriptors 
calculation takes between 1.05 seconds and 1.25 seconds, depending on the number of 
objects under observation. The matching voting and transformation calculation takes 
around 30 milliseconds for each prototype head analyzed.  

Robot-head detection experiments using real-world images were performed. In all of 
these experiments the 16 prototypes of robot player 1 were employed (see figure 2). 
These prototypes (around 100x100 pixels) are stored in the flash memory as BMP 
files. A database consisting on 39 test images taken on a four-legged soccer field was 
built. In these images robot “1” appears 25 times, and other robots appear 9 times. 10 
images contained no robot. Currently this database is been expanded to be made 
public, together with the robot prototypes database. In table 2 are summarized the 
obtained results. If we consider full detections, in which both, the robot-head pose as 
well as the robot identity is detected, a detection rate of 68% is obtained. When we 
considered partial detections, i.e. only the robot identity is determined, a detection 
rate of 12% is obtained. The combined detection rate is 80%. At the same the number 
of false positives is very low, just 6 in 39 images. These figures are very good, 
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because when processing video sequences, the opponent or teammates robots are seen 
in several consecutive frames. Therefore, a detection rate of 80% in single images 
should be high enough for detecting the robot-head in few frames. 

Although more intensive experiments should be performed for characterizing our 
system, we believe that these preliminary experiments show the high potential of the 
proposed methodology, as a way of achieving player recognition and gaze estimation. 
The SIFT descriptors are not based in color information; therefore they are 
complementary to existing vision systems employed in the RoboCup leagues. A 
mixed SIFT and color-based vision system could be employed in the four-legged 
league if the SIFT computation time could shortened. 

Table 2. Robot-head detection of robot #1 (only robot #1 prototype were employed) 

Full detections (head + identifier number) 17/25 68% 
Partial detections (only the identifier number) 3/25 12% 
Full + partial detections 20/25 80% 
Number of false detections in 39 images 6 
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Abstract. The existing reinforcement learning approaches have been
suffering from the policy alternation of others in multiagent dynamic
environments. A typical example is a case of RoboCup competitions
since other agent behaviors may cause sudden changes in state transition
probabilities of which constancy is needed for the learning to converge.
The keys for simultaneous learning to acquire competitive behaviors in
such an environment are
– a modular learning system for adaptation to the policy alternation

of others, and
– an introduction of macro actions for simultaneous learning to reduce

the search space.
This paper presents a method of modular learning in a multiagent en-
vironment, by which the learning agents can simultaneously learn their
behaviors and adapt themselves to the situations as consequences of the
others’ behaviors.

1 Introduction

There have been an increasing number of approaches to robot behavior acquisi-
tion based on reinforcement learning methods [1, 4]. The conventional approaches
need an assumption that the state transition is caused by an action of a learning
agent so that the learning agent can regard the state transition probabilities as
constant during its learning. Therefore, it seems difficult to directly apply the
reinforcement learning method to a multiagent system because a policy alter-
ation of other agents may occur, which dynamically changes the state transition
probabilities from the viewpoint of the learning agent. RoboCup provides such a
typical situation, that is, a highly dynamic, hostile environment, in which agents
must obtain purposive behaviors.

There are a number of studies on reinforcement learning systems in a multia-
gent environment. Kuhlmann and Stone [8] have applied a reinforcement learning

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 243–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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system with function approximater to the keep-away problem in the situation
of RoboCup simulation league. In their work, only the passer learns his pol-
icy to keep the ball away from the opponents. The other agents, receivers and
opponents, follow fixed policies given by the designer beforehand.

Asada et al. [2] proposed a method that sets a global learning schedule in which
only one agent is specified as a learner and the rest of agents have fixed policies.
Therefore, the method cannot handle the alternation of the opponent’s policies.
Ikenoue et al. [3] showed simultaneous cooperative behavior acquisition by fixing
learners’ policies for a certain period during the learning. These studies suggest
that it is enable to acquire a reasonable behavior in a multi-agent environment
if the learner can see the environment including the other agents almost fixed
because the others keep their policies for a certain time. In the case of cooperative
behavior acquisition, both agents do not have any reason to change their policies
while they successfully acquire positive rewards with the result of the cooperative
behavior for each other. The agents tend to update their policies gradually so
that the state transition probabilities seem almost fixed from the view point of
the other learning agents.

In case of competitive behavior acquisition in a multiagent environment, how-
ever, it is unlikely that the agent tends to select the action that causes positive
rewards for the opponents and a negative reward for itself. The punished agent
tends to change drastically its policy so that it can acquire a positive reward by
which it gives a negative reward to the opponents. This policy alternation causes
dynamic changes in the state transition probabilities from the viewpoint of the
learning agent therefore it seems difficult to directly apply the reinforcement
learning method to a multiagent system.

A modular learning approach would provide one solution to this problem.
If we can assign multiple learning modules to different situations, respectively,
in each of which the state transition probabilities can be regarded as constant,
then the system could show a reasonable performance. Jacobs and Jordan [7]
proposed the mixture of experts, in which a set of the expert modules learn and
the gating system weights the output of the each expert module for the final
system output. This idea is very general and has a wide range of applications
(ex. [11, 9, 14, 13, 5]).

We adopt the basic idea of the mixture of experts into architecture of behav-
ior acquisition in the multi-agent environment. Takahashi et al. [12] have shown
preliminary experimental results of behavior acquisition in the multi-agent envi-
ronment, however, the learning modules were assigned by the human designer. In
this paper, first, we show how it is difficult to directly introduce a multi-module
learning system for even single agent learning in a multi-agent environment be-
cause of its complexity and introduce a simple learning scheduling which makes
it relatively easy to assign modules automatically. Second, we introduce macro
actions to realize simultaneous learning in multiagent environment by which the
each agent does not need to fix its policy according to some learning schedule.
Elfwing et al. [6] introduced macro actions to acquire a cooperative behavior with
two real rodent robots. The exploration space with macro actions becomes much
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smaller than the one with primitive actions, then, the macro action increases the
possibility to meet cooperative experiences and leads the two agents to find a
reasonable solution in realistic learning time. We show the introduction of macro
actions enable the agents to learn competitive behaviors simultaneously. We have
applied the proposed multi-module learning system to soccer robots which par-
ticipate in RoboCup competition and show experimental results on computer
simulation and real robot implementation.

2 Tasks and Assumption

Fig.1 shows a situation which the learning agents are supposed to encounter.
The game is like a three on one; there are one opponent and other three players.
The player nearest to a ball becomes to a passer and passes the ball to one of
the teammates (receivers) while the opponent tries to intercept it.

Passer

Intercepter

Receiver 1

Receiver 2

Fig. 1. Task : 3 on 1 Fig. 2. A real robot

Fig. 3. Viewer of simulator
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Fig. 2 shows a mobile robot we have designed and built. Fig. 3 shows the
viewer of our simulator for our robots and the environment. The robot has an
omni-directional camera system. A simple color image processing is applied to
detect the ball, the interceptor, and the receivers on the image in real-time (every
33ms). The left of Fig. 3 shows a situation in which the agent can encounter and
the right images show the simulated ones of the normal and omni vision systems.
The mobile platform is an omni-directional vehicle (any translation and rotation
on the plane).

3 Multi-module Learning System

3.1 Basic Idea

The basic idea is that the learning agent could assign one behavior learning
module to one situation which reflects other agent’s behavior and the learning
module would acquire a purposive behavior under the situation if the agent
can distinguish a number of situations in each of which the state transition
probabilities are almost constant. We introduce a modular learning approach to
realize this idea (Fig. 4). A module consists of a learning component that models
the world and an action planner. The whole system follows these procedures:

– select a model which represents the best estimation among the modules,
– update the model, and
– calculate action values to accomplish a given task based on dynamic pro-

gramming.

As an experimental task, we suppose ball passing with possibility of being inter-
cepted by the opponent (Figs. 1 and 3). The problem for the passer (interceptor)
here is to select one model which can most accurately describe the interceptor’s
(passer’s) behavior from the viewpoint of the agent and to take an action based
on the policy which is planned with the estimated model.

3.2 Architecture

Fig. 5 shows a basic architecture of the proposed system, that is, a multi-module
reinforcement learning system. Each module has a forward model (predictor)
which represents the state transition model, and a behavior learner (action plan-
ner) which estimates the state-action value function based on the forward model

Fig. 4. Adaptive behavior selection based on Multi-module learning system
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Predictor

Planner

Gate

Environments s a

s

Fig. 5. A multi-module learning system

in a reinforcement learning manner. This idea of combination of a forward model
and a reinforcement learning system is similar to the H-DYNA architecture [10]
or MOSAIC [5]. The system selects one module which has the best estimation of
a state transition sequence by activating a gate signal corresponding to a module
while deactivating the gate signals of other modules, and the selected module
sends action commands based on its policy.

Predictor. Each learning module has its own state transition model. This model
estimates the state transition probability P̂a

ss′ for the triplet of state s, action a,
and next state s′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (1)

Each module has a reward model R̂a
ss′ , too:

R̂a
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2)

We simply store all experiences (sequences of state-action-next state and reward)
to estimate these models.

Planner. Now we have the estimated state transition probabilities P̂a
ss′ and

the expected rewards R̂a
ss′ , then, an approximated state-action value function

Q(s, a) for a state action pair s and a is given by

Q(s, a) =
∑
s′
P̂a

ss′

[
R̂a

ss′ + γ max
a′

Q(s′, a′)
]

, (3)

where γ is a discount rate.

Module Selection for Action Selection. The reliability of the module be-
comes larger if the module does better state transition prediction during a cer-
tain period, else it becomes smaller. We assume that the module which does the
best state transition prediction has the best policy against the current situation
because the planner of the module is based on the model which describes the
situation best. In the proposed architecture, the reliability is used for gating the
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action outputs from modules. We calculate an execution-time reliability execgi

of the module i as follows:

execgi =
0∏

t=−T+1

eλpt
i

where pi is an occurrence probability of the state transition from the previous
(t − 1) state to the current (t) one according to the model i, and λ is a scaling
factor. The T indicate a period (step) to evaluate the reliability of the module
and we set T as 5 in the following experiments. The agent continues to use the
module for a certain period, for example 5 step or 1 second, after it changes the
module in order to avoid oscillation of the policies.

Module Selection for Updating Models. We use an update-time reliability
updategi of the module for updating modules. The calculation of this reliability
contains the future state transition probabilities:

updategi =
t+T∏

t=t−T

eλpt
i .

4 Behaviors Acquisition Under Scheduling

As we mentioned in 1, first, we show how it is difficult to directly introduce the
proposed multi-module learning system in the multi-agent system. We introduce
a simple learning scheduling in order to make it relatively easy to assign modules
automatically.

4.1 Configuration

The state space is constructed in terms of the centroid of the ball on the image,
the angle between the ball and the interceptor, and the angles between the ball
and the receivers (see Figs. 10 (a) and (b)). We quantized the ball position
space 11 by 11 as shown in Fig. 10 (a) and the each angle into 8. As a result, the
number of states becomes 112×8×8×8 = 61952. The action space is constructed
in terms of desired three velocity values (xd, yd, wd) to be sent to the motor
controller (Fig. 7). Each value is quantized into three, then the number of action
is 33 = 27. The robot has a pinball like kick device, and it automatically kicks
the ball whenever the ball comes to the region to be kicked. It tries to estimate
the mapping from sensory information to appropriate motor commands by the
proposed method.

The initial positions of the ball, the passer, the interceptor, and receivers are
shown in Fig. 1. The opponent has two kinds of behaviors; it defends the left side,
or right side. The passer agent has to estimate which direction the interceptor
will defend and go to the position in order to kick the ball to the direction
the interceptor does not defend. From a viewpoint of the multi-module learning
system, the passer will estimate which situation of the module is going on, select
the most appropriate module to behave. The passer acquires a positive reward
when it approach to the ball and kicks it to one of the receivers.
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ball ball

opponent

teammate1

teammate2

(a) state variables (position) (b) state variables (angle)

Fig. 6. State variables

xd

yd

wd

Fig. 7. Action variables

4.2 Learning Scheduling

We prepare a learning schedule composed of three stages to show its validity. The
opponent fixes its defending policy as right side block at the first stage. After
250 trials, the opponent changes the policy to block the left side at the second
stage and continues this for another 250 trials. Then, the opponent changes the
defending policy randomly after one trial.

4.3 Simulation Result

We have applied the method to a learning agent and compared it with only one
learning module. We have also compared the performances between the methods
with and without the learning scheduling. Fig. 8 shows the success rates of those
during the learning. The success indicates that the learning agent successfully
kick the ball without interception by the opponent. The success rate indicates
the number of successes in the last 50 trials. The “mono. module” in the figure
indicates “monolithic module” system and it tries to acquire a behavior for
both policies of the opponent. The multi-module system with scheduling shows
a better performance than the one-module system. The monolithic module with
scheduling means that we applied learning scheduling mentioned in 4.2 even
though the system has only one learning module. The performance of this system
is similar with multi-module system until the end of first stage (250 trials),
however, it goes down at the second stage because the obtained policy is biased
against the experiences at the fist stage and cannot follow the policy change
of the opponent. Since the opponent takes one of the policies at random at
the third stage, the learning agent obtains about 50% of success rate. “without
scheduling” means that we do not applied learning scheduling and the opponent
changes its policy at random from the start. Somehow the performance of the
monolithic module system without learning scheduling is getting worse after the
200 trials. The multi-module system without learning schedule shows the worst
performance in our experiments. This result indicates that it is very difficult to
recognize the situation at the early stage of the learning because the modules
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Fig. 8. Success rate during the learning

has too few experiences to evaluate their fitness, then the system tends to select
the module without any consistency. As a result, the system cannot acquire any
valid policies at all.

5 Simultaneous Learning with Macro Actions

We introduce macro actions to realize simultaneous learning in multiagent en-
vironment by which the each agent does not need to fix its policy according to
some learning schedule. In this experiment, the passer and the interceptor learn
their behaviors simultaneously. The passer learns behaviors for different situa-
tions which are caused by the alternation of the interceptor’s policies, that is,
blocking left side or right one. The interceptor also learns behaviors for different
situations which are caused by the alternation of the passer’s policies, that is,
passing a ball to left receiver or right one.

5.1 Macro Actions and State Spaces

Fig. 9 shows the macro actions of the passer and the interceptor. The macro
actions for the interceptor are blocking the pass way to the left receiver and
right one. On the other hand, the macro action for the passer are turning left,
turning right around the ball, and approaching to the ball to kick it. A ball
gazing control is embedded to the both learners. The number of the actions
reduced from 27 (see 4.1) primitives to 2 or 3 macro actions. The state space
for the passer is constructed in terms of the y position of the ball on the normal
image, and the angle between the ball and the centers of interceptor, the ones
between the balls and the two receivers on the image of omni-directional vision.
The number of the states reduced from 61952 (see 4.1 ) to 3773 because the
set of macro actions enable us to select smaller number of state variables and
coarser quantization. The state space for the interceptor is constructed in terms
of the y position of the passer on the image of normal vision system, and the
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Fig. 10. State variables

angle between the ball and the passer and the ones between the ball and the
two receivers on the image of omni-directional vision. The number of the states
is 2695.

5.2 Experimental Results

We have checked how the simultaneous learning of the passer and interceptor
works on our computer simulation. Both agents start to learn their behaviors
from scratch and have 1500 trials without any scheduling. Fig. 11 show the
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success rates during the simultaneous learning of the passer and the interceptor.
This figure shows that the interceptor has higher success rate at the beginning of
learning, the passer is getting to acquire the appropriate behaviors corresponding
to the interceptor’s behaviors, and the both agents have almost equal success
rate at the end of learning stage. The sum of the both success rates is not 1
because the both player sometimes failed to pass or intercept simultaneously.

In order to check if the both learners acquire appropriate behaviors against
the opponent’s behaviors, we fixed one agent’s policy and check that the other
can select an appropriate behavior and its success rate. Table 1 shows these
results. The both players have two modules and assign them to appropriate
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Table 1. Success rates for passer and receiver in different cases

passer interceptor passer’s success rate[%] interceptor’s success rate [%] draw rate[%]
LM0,LM1 LM0 59.0 23.0 18.0
LM0,LM1 LM1 52.7 34.3 13.0
LM0 LM0,LM1 25.6 55.0 19.4
LM1 LM0,LM1 26.0 59.3 14.7
LM0,LM1 LM,LM1 37.6 37.3 25.1

situations by themselves. LM and the digit number right after the LM indicate
Learning Module and index number of the module, respectively. For example,
the passer uses both LM0 and LM1 and the interceptor use only LM0, then
the passer’s success rate, interceptor’s success rate, and draw rate are 59.0 %,
23.0%, and 18.0%, respectively. Apparently, the player switching multi-modules
achieves higher success rate than the opponent using only one module. These
results show that the multi-module learning system works well for both.

We have applied the same architecture to the real robots. Fig. 12 shows the
one example behaviors by real robots. First, the interceptor tried to block the
left side, then the passer approached the ball with intention to pass it to the
right receiver. The interceptor found that it tried to block the wrong side and
change to block the other side (right side), but, it is too late to intercept the
ball and the passer successfully pass the ball to the right receiver.

Fig. 12. A sequence of a behavior of passing a ball to the right receiver while the
interceptor blocks the left side
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6 Conclusion

In this paper, we proposed a method by which multiple modules are assigned to
different situations which are caused by the alternation of the other agent policy
and learn purposive behaviors for the specified situations as consequences of the
other agent’s behaviors.

We introduced macro actions to realize simultaneous learning of competitive
behaviors in a multi-agent system. We have shown results of a soccer situa-
tion and the importance of the learning scheduling in case of none-simultaneous
learning without macro actions and the validity of the macro actions in case of
simultaneous learning in the multi-agent system.
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Abstract. Human rescue workers are a scarce resource at disaster sites.
But it is still a long way to go before fully autonomous rescue robots will
be fieldable. The usefulness of rescue robots will hence strongly depend
on the availability of user interfaces that enable a single first responder
to operate a whole set of robots. For this challenge, it is important to
preprocess and streamline the immense data flow from the robots and to
assist the operator as much as possible in the processes of controlling the
robots. This paper introduces an adaptive graphical interface supporting
adjustable autonomy of rescue robots. The design is based on insights
from the literature in this field where intensive surveys of the actual
needs in this domain were compiled.

1 Introduction

Rescue robots have a large application potential as demonstrated for the first
time on a larger scale in the efforts at the World Trade Center after the 9/11
event [Sny01]. For an overview of potential tasks of rescue robots and the related
research in general see for example [RMH01]. One of the main challenges in
using robots in search and rescue missions is to find a good trade-off between
completely remotely operated devices and full autonomy. The complexity of
search and rescue operations makes it difficult if not impossible to use fully
autonomous devices. On the other hand, the amount of data and the drawbacks
of limited communication possibilities make it undesirable if not unfeasible to
put the full control of the robot into the hands of a human operator.

The goal of the IUB rescue robots team is to develop fieldable systems within
the next years. Since the beginning of its research activities in this field in 2001,
the team has participated in several RoboCup competitions to test its approaches
[Bir05, BCK04, BKR+02]. In addition to work on mapping [CB05] and adhoc-
networking [RB05], the development of the robots themselves based on the so-
called CubeSystem [Bir04] is an area of research in the team [BKP03, BK03].

As mentioned, one of the the main challenges for using rescue robots is to
find a good tradeoff between completely remotely operated devices and full au-
tonomy [BK03]. Ideally, a single rescue worker supervises a multitude of semi-
autonomous robots that provide only the most crucial data to an operators

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 255–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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station. Here, we present an approach to this challenge in form of an adaptive
graphical human machine interface (HMI) supporting adjustable autonomy.

Adjustable Autonomy (AA) in general addresses the issue that, while au-
tonomous agents get more and more powerful, it is still impossible for a real
application to exclude the human operator from the loop of operations and re-
tain the same effectiveness. Using Adjustable Autonomy, an agent can behave
autonomously and dynamically change its level of independence, intelligence and
controlfreely placeable. The concept of Adjustable Autonomy is very broad and
does not only encompass robotics. It has been applied to many fields, such as
office automation [SPT03], desktop software [Mim98], military [FCGB00], and
space exploration [SBA+03].

A way to achieve Adjustable Autonomy is to support multiple levels of au-
tonomy of the agent, e.g. fully autonomous, guided by the operator, and fully
controlled by the operator [BDM02, GJCP01]. It is also conceivable to support
a continuous range of autonomy levels, e.g. by employing a continuous measure
of neglect and problem priorities [OG03].

For example, an ideal situation in Adjustable Autonomy would be the follow-
ing: A rescuer at a disaster site employs the help of a team of robots to survey
a part of a collapsed building. To be more effective, the rescuer commands the
robots to spread out and to explore, detecting and locating victims, but also
fire, etc. While the robots search the building, they may run into problems, like
getting stuck on stairs, not knowing how to avoid an obstacle best, etc. All those
problems are forwarded to the rescuer. That is the only time when the rescuer
really has to take care of individual robots. Once a robot has found an interesting
set of features indicating an object or event, the notice is also sent to the rescuer
and marked in a collaborative map. All sensor data of the respective robot is
made available to the rescuer to verify the findings of the robot. Once victims
are found and a safe path to them has been identified, rescue crews are deployed
to extract the victims from the building.

Fig. 1. The IUB rescue robots at RoboCup
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Previous approaches to a Graphical User Interface (GUI) for Adjustable Au-
tonomy encompass a wide variety of settings and intentions. Most interesting for
our interests is the investigation of designs by Goodrich and Olsen [GJCP01],
Fong et al [FCTB01, FTB01, FCGB00, FTB02, FT01], Backes et al [BNP+]
and Bruemmer et al [BDM02]. In addition, evaluations in terms of usability
are highly important as for example done by Olsen and Goodrich [OG03] and
Scholtz et al [SYDY04].

The approaches taken in the aforementioned papers roughly fall into two
classes. In the first one, a focus is made on direct control and portability of hard-
ware. In the second, task planning and data visualization is emphasized. A gen-
eral trend in this line of research is visible: Most rely on one main mode of direct
visualization of the robot’s state, either through a map generated by the robot or
a direct video stream. This coarse form of data visualization is especially useful
for gaining a quick understanding of the robot’s situation, referred to as Con-
text Acquisition [OG03]. In addition, the presented interfaces offer multiple ways
of commanding the robot: through haptic and gesture manipulation [FCGB00],
direct vector input and choosing a location on a map [FCTB01], and pure high-
level task planning [BNP+]. This process is referred to as Expression [OG03].

In an attempt to combine the best of both, i.e., direct interaction with the
robot and data visualization, we attempt to merge both paradigms: to employ
intuitive data visualization and direct intuitive control methods in order to opti-
mize Context Acquisition and Expression time, exactly those deemed most costly
by Olsen and Goodrich [OG03].

2 The Design Goals and Core Components

The main application target for the system are real-time, multi-robot tasks.
While the developed interface framework will allow for various uses, main design
arguments will be geared to the application in real-time environments. This
includes a bigger data visualization area and rather small control areas, since
most control is done via peripheral input devices.

Murphy and Rogers [MR96] pointed out inefficiencies in traditional teleoper-
ation interfaces that are supposed to be corrected with this new interface frame-
work. Those deficiencies include constant high-bandwidth demands, cognitive
fatigue due to too many tasks done at once, and poor displays. It is mentioned
that conservative teleoperation interfaces are inefficient because the operator
usually only handles one robot and that reduces work efficiency by a factor of
five to eight. Further important design guidelines were derived from the work of
Olsen and Goodrich [OG03] and of Scholtz et al [SYDY04], which is based on
an evaluation of existing human-robot interfaces.

Olsen and Goodrich hypothesize that the process of human-robot interac-
tion can be broken down into four parts: Subtask Selection (picking a robot to
service from a list), Context Acquisition (perceiving the robot’s current state
and problem), Planning (thinking of a way to solve the robot’s problem), and
Expression (stating the plan in robot oriented commands). Scholtz et al
state from observations made during the World Championship Competition in
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RoboCup Robot Rescue 2004 in Padova, Italy, that successful interfaces should
include a representation for the global environment, display of the robot’s cur-
rent state, integrated display of sensor data, ability for self-diagnosis of the robot,
and contex-sensitive information display.

Based on these guidelines, we developed an interface that is divided into
three blocks, the Canvas, the Sidebar, and the Visibility Controller. Each core
component is described in detail in the following.

2.1 The Canvas

The Canvas is a drawing space for 3D representations of the world, using
OpenGL. Here, usually a map would be drawn and populated with robots. Due
to the extreme flexibility of the design, almost any kind of visualization is pos-
sible here. Even 2D displays, like status bars for all connected robots or video
displays are possible.

In the context of the above mentioned criteria, the Canvas represents a com-
mon ground for sensor data visualization. Therefore, a facility has been estab-
lished to support easy fusing of sensor data by the interface itself. For example,
both the map and the display of the robot and its state can be separate modules
both drawing themselves to this canvas. As a result, the data is merged auto-
matically, making it easier for the user to perceive the robot’s current situation.

In addition, a camera implemented by the Canvas can be moved around in
an intuitive fashion (very much like a First Person game interface) to allow
viewing the depicted 3D environment from all angles. In addition, the camera
can be ”snapped” to the current robot’s position and orientation (pose) such
that it follows the movements of the robot. This gives rise to a separate viewing
method, known from racing games which should especially come in handy when
purely teleoperating the robot.

The Canvas enhances Context Acquisition as well as Subtask Selection, as all
robots are shown and their state can be evaluated at the same time. In Scholtz’s
terms, the Canvas addresses the first three points.

2.2 The Sidebar

The Sidebar constitutes a place to display control elements. As space is limited
on the screen, this part is kept to a minimum of size. This is because in general,
control is exerted via peripheral input devices, such as mouse, joystick or joypad,
and steering wheels. Only displaying their state is useful for even more direct
user feedback, as mentioned above.

The Sidebar also allows for the grouping of control elements. This gives a
clearer structure to the controlling side of the interface and thus decreases the
cognitive load necessary for the Expression process, as mentioned above.

In addition, the Sidebar has a built-in collapse and expand function. Each
group can be collapsed (hidden) or expanded (shown) by the request of the user.
This way, the user can choose which kind of control is supposed to be used. This
feature covers Scholtz’s last point.
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2.3 The Visibility Controller

The last and least visible part is the Visibility Controller. Almost completely
hidden to the user, other than a simple drop-down list to choose a visibility set-
ting, the Visibility Controller takes care of scaling, hiding and positioning single
elements that are displayed. It can handle both control and display elements.

The Visibility Controller is designed to store a vector of importances of
interface parts. When a certain mode of operation is assumed (compare
[GJCP01, BDM02]), the Visibility Manager will set the importances of all el-
ements. The elements then know how to adjust their own behavior, form, and
shape to reflect that importance value.

This concept of a Visibility Controller clearly addresses Scholtz’s last point
and Olsen and Goodrich’s concepts of Context Acquisition and Expression, since
it requires less time to choose an appropriate control from an already smaller list.

2.4 The Dynamics Aspects

As briefly described in the previous section, the interface presented also con-
sists of a so called Visibility Controller. This module manages importances of
single elements shown on the screen. According to these importances, the single
modules representing drawable items perform different actions.

For example, a control element can decide to hide itself and to stop producing
output if its importance falls beneath a certain threshold level, while a display
element might implement a form of scaling (e.g. for video displays) or fading (e.g.
for less importance of the map). Also rearrangement is possible, for example in
the case of video displays. As the importance of a video display increases, it can
change the arrangement of multiple video streams it is displaying, e.g. shifting
from a stack structure to a grid in order to distribute the available space in a
better way.

As Goodrich and Olsen [GJCP01] and Fong et al [FCTB01] point out in their
treatises, choosing different modes of autonomy is a highly desirable feature.
Especially, not only does the robot behavior change, but the interface should
reflect this change as well. This gives further motivation for the Visibility Con-
troller as it further addresses the problem of Context Acquisition, i.e., the mode
of operation can be inferred through the arrangement of the display [OG03] and
specifying context-sensitive information [SYDY04].

While it is reasonable to assume that such importances are changed dynam-
ically and automatically by choosing a mode of operation, this fact is quite
limiting for the user. During the Planning phase, optimal use has to be made
of the displayed information in order to create a plan how to circumvent the
robot’s current problem. This might require reading displays with a lower im-
portance. Hence, it is important to leave a chance of changing importances of
single displays and controls to the user both during missions planning as well as
on the fly.

For the interface and design presented, it does not make a difference how the
changing of importances is implemented. However, the tools used to implement
the whole interface already provide adequate ways of doing so. For example, the
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OpenGL standard [SB] defines four component colors, including an Alpha com-
ponent, which would make it easy to ”fade” a display on the Canvas according
to some function of the importance. Also, OpenGL defines scaling functions in
all three directions. The Qt Toolkit [Tro], used to develop the standard GUI
components of the interface, already allows for dynamic hiding and resizing of
components.

3 The Framework Structure and Its Implementation

3.1 Qt Toolkit

The Qt Toolkit by Trolltech [Tro] is a very easy-to-use, cross-platform GUI
toolkit with some more support for cross-platform development, like threading,
file handling and the like. Qt employs their own model of event-driven program-
ming, namely “signals” and “slots”. Those are dynamically callable interfaces to
events such as “clicked” for buttons and “activated” for combo boxes.

Qt abstracts windowing operations very nicely and it is as easy to construct
an application out of ready made components as to implement a very special-
purpose “widget”, i.e. a custom-made component of the GUI. Also, Qt offers
a straight-forward interface to mouse events and even to OpenGL, so the Qt
Toolkit was the first choice as the underlying windowing library for this project.

3.2 FAST Robots

As the interface has to rely on an infrastructure to be able to communicate with
controlled robots, the HMI is based on the FAST Robots framework (Framework
Architecture for Self-Controlled and Teleoperated Robots) [KCP+03]. This mid-
dleware used for high-level sensor abstraction and communications employs a
strong generalization for sending any type of serializable data over a network.
Initially, the framework was designed for remote data collection for virtual ex-
periments, but progressed to being a very extensible architecture for rapid pro-
totyping in robotics.

In Figure 2 on the left, the basic structure of the architecture can be seen.
Communications flow starts at the level of the sensor as it is queried in regular
time intervals by the owning “experiment”. The experiment reads the data and
sends it on via its network link. On the other side of the network link, the
corresponding “monitor” reads the information, and due to a stored ID number,
forwards the data to the right “display”. In the case of control data flow, the
situation is reversed: The “control” is given data by the user and, due to the
asynchronous nature of Graphical User Interfaces, queries the monitor to forward
its data via its network link. The corresponding experiment receives the data
and, employing a similar distribution scheme like the monitor did for sensor
data, forwards the control data to the right “actuator”.

The right side of figure 2 shows a depiction of the relationship between a
sensor and a display implementation. Such a pairing shares another class: A
NetworkData subclass implementing the specific way data from this sensor is
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Fig. 2. The structure of FAST Robots (left) and the Sensor/Display/NetworkData
triple (right)

serialized and deserialized to a form suitable for transportation over the network.
It is conceivable to implement different NetworkData subclasses for a single type
of sensor/display pair as different compression algorithms might be used, e.g.
JPG, PNG or even Wavelet compression for pictures.

While the design of FAST Robots is very general and platform-independent,
the current implementation heavily uses the Qt Toolkit mentioned above for
various subtasks, such as threading, concurrency, data serialization and the GUI
of the ”Command”. Lately, efforts have been made to port FAST Robots to
other architectures and libraries.

3.3 Interface Framework

The interface presented focuses on the Controller side of the schematic shown in
Figure 2 and will thus be called ”FAST Commander”. In simple words, a new
front end for FAST Robots applications was to be developed. Hence, the new
interface should be as flexible and as extensible as possible in order to be as
versatile as FAST Robots.

The UML diagram shown in Figure 3 shows the structure of the design. There
are four main components:

– The RobotList, which manages all Robots connected and ensures forwarding
of data. Also, the current robot is chosen here and data coming from the
current robot is forwarded through a special channel. If a certain type of
data from a robot is important it is also forwarded while the robot is not the
current robot. In addition, specific types of data can be muted, i.e. they do
not get forwarded at all. Most importantly, the Robot maps robot-specific
sensor IDs to application wide keys, e.g. from ’1’ to ”video0” meaning that
sensor 1 on this robot is the first video sensor.

– The GLViewCanvas, which presents all GLCanvasItems to the user. Those
items are the main means of displaying sensor and other (e.g. mapping)
data. The GLViewCanvas implements general necessities, such as a freely
movable camera to change perspective of the display and processing mouse
events, which are forwarded to the associated GLCanvasItems. In addition,
the canvas also implements a sort of z-index for each GLCanvasItem, which



262 A. Birk and M. Pfingsthorn

Fig. 3. The UML diagram of the framework provided

is used to sort the associated items. While mouse events are forwarded in
reverse z-order (top-most item first), the drawing is done in z-order (bottom-
most item first). Since sorting is only done during insertion, there is no
additional cost and a more natural feel is achieved for the mouse interaction.

– The ControlBox (previously called Sidebar), which holds QWidgets (the
most general GUI component class from the Qt Toolkit), is a container for
control components. Control components are grouped and may be hidden
(collapsed) or shown (expanded) as a group.

– The VisibilityManager, which implements dynamic aspects of the interface,
as described in section 2.4. Implementation wise, the Visibility Manager
does not only know what to do with VisibilityItem subclasses (i.e. how to
set their importance) but also what to do with QWidgets (e.g. hide them if
the importance drops beneath a certain threshold) and group names from
the ControlBox (same as for QWidgets).

All these components are always present in any instantiation of the FAST
Commander interface. Any additional components, e.g. a map canvas item, a
joystick control, a connection to a specific robot and its mappings, are added at
mission specification. This ensures high customizability and task independence.

3.4 The Basic Displays

Figure 4 shows a screenshot of the core displays:

– A Map Display, which draws a 3D map according to the robot’s sensor input.
Cells believed to be empty are drawn flat and in Green color, whereas cells
believed to be occupied are drawn in red with a height proportional to the
strength of the belief. Importance is implemented as a proportional fading.

– A Robot Display, which draws the current state and pose of a single robot
in a sensible position relative to the map. The robot may assume a 3D pose
and the display can also indicate if the robot is active. Additionally, two
gauges exist that can indicate an overall health status.
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Fig. 4. Core displays shown in the GLViewCanvas (left) and controls grouped on an
example sidebar (right)

– A Video Display, which draws video streams as a stack of video pictures
starting from the lower left corner. Their size can vary dynamically and
scaling is applied for both resizing of the GLViewCanvas and reflecting the
importance level.

3.5 Core Controls

The first control is the Joystick control. Apart from standard controls such as a
component allowing to choose a robot for activation, changing the visibility ar-
rangement, and controlling the GLViewCanvas, specific controls are implemented
that allow further access to the display’s features, e.g., controlling the map. The
following controls are present in the interface (see Figure 4 for a picture of an
example sidebar):

– The VisibilityControl, which lets the user choose one of some preset arrange-
ment of importances geared toward a specific mode of operation. In this
example case, choices included “map-based driving” and “direct driving”.

– The RobotListControl, which offers a choice of all connected robots to change
focus to. Once a different robot is selected, all control messages are sent to
that robot.

– The JoystickControl, which gives direct feedback of the read joystick position
and button states. The red line on the bullseye on the right indicates the
current displacement of the joystick. The red bar on the left is divided into
segments representing all buttons on the joystick. When a button is pressed,
the corresponding segment turns green.

Fig. 5. An example of the Visibility Manager, where attention is directed by scaling a
video stream up
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Fig. 6. An example of the GLViewCanvas and the RobotList, where it is possible to
either have a free moving camera (left) to get an overview or to snap the camera view
to a robot (right)

Fig. 7. A test run with Papa Goose ( Top: The control interface, Bottom: The robot
in the lab )

– The CanvasControl, which gives the single option of snapping the camera of
the canvas to the poses of the current robot. This option gives rise to the
earlier mentioned “race car”-like driving experience.

4 Conclusion

An adaptive human machine interface (HMI) for rescue robots was presented.
The HMI supports adjustable autonomy by automatically changing its display
and control functions based on relevance measures, the current situation the
robots encounter, and user preferences. The according parameters and rules can
be specified during mission planning before the actual run as well as on the
fly. The design follows general guidelines from the literature, based on intensive
surveys of existing similar systems as well as evaluations of approaches in the
particular domain of rescue robots.
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Abstract. Exploration is a core challenge for RoboCup Rescue. So-
called communicative exploration is a novel strategy for multi-robot
exploration that unlike other approaches takes the limits of wireless
communication systems into account. Here, previous results that where
achieved for a team of robots linked to a basestation are significantly
extended to also cover robot packs, i.e., multi-robot teams that are not
permanently tied to an operator’s station. Unlike teams that are con-
strained by the immobility of a basestation, packs can explore arbitrarily
large regions. Results from experiments with packs of 4, 5 and 6 robots
are presented. The new strategy constantly maintains the communica-
tion between the robots while exploring, whereas the commonly used
frontier-based exploration strategy, which is used in the experiments as
comparison to our approach, leads to a rapid loss of communication.

1 Introduction

Exploration is a core issue for many robotics applications [Zel92, MWBDW02] in-
cluding especially RoboCup Rescue. Obviously, the usage of multi-robot systems
is a very interesting option for exploration as it can lead to a significant speed-up
and increased robustness, which both are very important for rescue missions. A
popular basis for multi-robot exploration is the frontier-based Exploration algo-
rithm introduced by Yamauchi [Yam97], which was extended by himself [Yam98]
as well as by Burgard et.al.[BFM+00] to deal with multiple robots. These ex-
tensions suffer the drawback that perfect communication between the robots is
assumed. When it comes to real multi-robot systems, communication is based
on wireless networks typically based on the IEEE 802.11 family of standards,
which is also known as WLAN technology [OP99]. WLAN links suffer from var-
ious limitations [PPK+03]. Especially, they have a limited range posing a severe
limit on the usefulness of the aforementioned exploration algorithms. In [RB05]
we presented a new exploration strategy that takes the range limits into account
and that is therefore more suited for real application scenarios. This previous
work was limited to robots tied to a basestation, i.e., there was a hard limit to
the maximum area that could be explored. Here, we extend the previous work
to robot packs, i.e., the constraint of a basestation is dropped. This is especially
of interested when working with autonomous robots, which is one of the next
big challenges within RoboCup Rescue.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 267–278, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Communicative exploration builds in general on the Frontier-Based Explo-
ration algorithm [Yam97], where a frontier is defined as regions on the boundary
between open space and unexplored space. A robot moves to the nearest fron-
tier, which is the nearest unknown area. By moving to the frontier, the robot
explores new parts of the environment. This new explored region is added to the
map that is created during the exploration. In the multi-robot approach different
robots are moving stochastically over to the frontier [Yam98], respectively in a
coordinate manner such that multiple robots will not move to the same position
[BFM+00]. When we assume a realistic communication model for a multi-robot
system, there is a limit to the communication range of each robot. This is not
taken into account in previous approaches where nothing prevents the robots
from moving further and further away from each other.

We extend the frontier-based exploration such that exploration takes place
while the robots maintain a distributed network structure which keeps them
in contact with each other through ad-hoc networking [Per00], assuming some
underlying dynamic routing [JMH04, RT99, JW96]. This communicative explo-
ration algorithm is based on a utility function, which weights the benefits of
exploring unknown territory versus the goal of keeping communication intact.

The rest of this paper is structured as follows. Our line of research is motivated
in more detail in section 2. The concrete communicative exploration algorithm is
introduced in section 3. The experiments and results are presented in section 4.
Section 5 concludes the paper.

2 Exploration by Robots Packs

The approach presented in this paper is based upon the frontier-based explo-
ration, which is described in [Yam97, Yam98]. As mentioned in the introduction,
the basic idea of this algorithm is simply to move to the boundary between ex-
plored and open space. As illustrated1 in figure 1, robots tend to drift apart and
communication is lost.

At the International University Bremen (IUB), a team is working since 2001 in
the domain of rescue robots [BKP03, BCK04, BKR+02](Figure2). Rescue robots
shall assist first responders in urban disasters scenarios ranging from earthquakes
to gas or bomb explosions [RMH01, Sny01]. A typical mission tasks is the detec-
tion and localization of victims. Exploration combined with the constraints of
real-world communication systems is an obvious topic of interest in this appli-
cation scenario. We were hence interested in overcoming the limitations of the
frontier-based approach.

We describe in [RB05] a first step where the issue of keeping in constant
contact with a base-station while exploring is addressed (figure 3). The trans-
mission of data to an operators station is crucial in rescue missions as it can

1 Cells with explored space are colored dark green, unexplored ones are bright gray,
the frontier cells are yellow, obstacles are dark gray. Robots are red spots, their
communication ranges red circles. Active links are indicated by red lines.
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Fig. 1. The frontier-based exploration algorithm does not put any constraints on the
spread of the robot pack. The robots soon drift far apart and communication is easily
lost. In the above screenshot from a typical simulated run, only robots 4 and 5 are in
each others cell and hence capable of communicating with each other.

Fig. 2. Two of the IUB rescue robots at the RoboCup Rescue competition
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Fig. 3. A screen-shot from a typical simulated run of the basic communicative ex-
ploration algorithm where the robots constantly keep in contact with an immobile
base-station. For this purpose, an utility function penalizes the motion that lead to a
loss of a link in the ad-hoc network formed by the robots. Though being important for
some application scenarios, this approach limits the maximum operation area of the
robots.

not be assumed that the robots return to the spot where they are deployed, in
contrary, their total loss during a mission is a likely risk. Therefore, they have
to deliver all crucial information, like victims and hazards found or map-data,
ideally on-line to an operators station, which is at a secured position. For this
purpose, the robots either have to be in direct contact with the base-station or
to use other robots as relays.

In this paper, an extension of our previous results to robot packs is presented.
This means that the constraint of keeping contact with an immobile base-station
is dropped. Instead, the communicative exploration algorithm keeps the network
structure in a robot pack intact, which can move freely to do the exploration.
This allows to apply the results to arbitrary robot teams. Note that the algo-
rithm can be highly beneficial independent of exploration tasks. Though there is
some work dealing with cooperative robots without communication [Ark92], typ-
ical architectures for coordinating multi-robot systems like ALLIENCE [Par02]
require proper communication structures.



Communicative Exploration with Robot Packs 271

3 The Communicative Exploration Algorithm

The following section describes the communicative exploration algorithm in de-
tail. Note that to make a guaranteed ”optimal” exploration, i.e., to cover the
largest possible area without communication loss, a proper motion-planning for
the aggregate of all n robots would have to be done in every step, which is for
complexity reasons infeasible. The basic idea is therefore to use an utility func-
tion that penalizes moves that lead to a loss of communication links. The utility
is then used to select a best possible candidate from a random population.

At time t, every robot i has a position Pi(t) = (xi, yi), which represents the
position in the world W . W is represented by a grid, where every cell can contain
four different values, namely unknown, frontier, visited, obstacle.

Configuration of n robots at time t is defined as:

cfg(t) = {P1(t), P2(t), · · · , Pn(t)}

For moving to a new configuration at time t + 1, a configuration change cfg c
is calculated. A configuration change is defined as follows:

cfg c(t) = {m1(t), m2(t), · · · , mn(t)}

with mi(t) being the movement of robot i at time t. For every robot, the following
movements are defined:

mi(t) ∈ M = {N, NE, E, SE, S, SW, W, NW, R}

with R representing no movement and the other values a movement in one to
the surrounding grid cells, if possible.

With this definition for a configuration change, there are in total 9n config-
uration changes possible for n robots. Unfortunately, all possible configurations
are not always possible. For example, it could happen that in a specific configu-
ration a robot moves into an obstacle or that multiple robots in a configuration
move to the same position, which will result in a collision and maybe damage of
the robots. Furthermore, the exponential number of possible new configurations
makes it impossible to calculate all of them. Hence, the decision has been made
to generate a limited amount of random calculated configurations per time-step.
Instead of considering all the 9n possible configurations, k configurations are
calculated with k � 9n.

For every new calculated configuration, a utility value is calculated. This
utility value represents the usefulness of the new calculated configuration. For
the calculation of the utility of a configuration, the different possible locations
where the robots can move to are taken into consideration. Every robot in the
configuration adds a certain value to the total configuration, depending on its
position in the calculated configuration. The following possibilities for a new
position can occur:
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– Impossible position: This position can happen in two different situations:
• Two or more robots want to move to the same position.
• A robot wants to move to a position that is occupied by an obstacle.

Configurations with these position should be avoided, therefor a negative
value is assigned to these positions.

– Loss of communication: As mentioned before, the idea behind the ap-
proach is to maintain communication between all robots during the explo-
ration process. The maintenance of communication can be direct or indirect.
To check if communication is maintained in a configuration, the whole con-
figuration at this point and not only a specific robot. As soon as one robot
in the configuration is out of communication range, the configuration should
be avoided. In this case a negative value is assigned to the total utility value
of this configuration.

– Frontier cell: A frontier cell represents the boundary between explored and
unexplored areas of the world. So for exploring new areas, the robots should
move to frontier cells. Configurations where robots move to frontier cells are
the ones that are favored above all, therefor a positive value is assigned to
every robot that moves to a frontier cell.

– Other: The last possibility where a robot can move to is a cell that has
already been explored. This could also mean that a robot maintains its po-
sition in the configuration. Although this position is not optimal, it is not a
position that has to be avoided. This position will not add anything to the
utility of a configuration, there a “neutral” value is assigned to this position.

The utility value of a single robot position is calculated with the following
values:

U(Pi(t + 1)) =

⎧⎨
⎩
−100 if impossible position
1 if frontier cell
0 otherwise

With these values the total utility value of a configuration change can be calcu-
lated with the following formula:

U(cfg ci) = δ +
n∑

i=1

U(Pi(t + 1))

with δ being the assigned value for the maintenance or loss of communication.
In the experiments performed the value for losing communication is set to −10.

The decision if communication is maintained in a configuration can be done
in a rather simple manner. Every robot has a neighbor list. This list contains
robots that are directly connected, which means that two robots i and j, i �= j,
are within each others communication range. In the approach presented here,
it is assumed that if two robots are within communication range of each other,
there is a communication link between these two robots.

So every robot within communication range is stored in the neighbor list.
These neighbor lists can be seen as adjacent list, which can be used to represent
a graph. In this graph the robots are the vertices and if two robots are within
each others communication range (and thus in each others neighbor list) an
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edge consists between these two vertices. Now that a graph is available, the
communication maintainability can be calculated. To check if two robots are
connected with each other (direct or indirect) there should be a path on the
graph between these two robots.

To check if all the robots are connected with each other, it is enough to check
if every robot is connected to one specific robot. For this, one robot i is taken
as temporary base-station and for every robot j, i �= j is checked if a connection
exist with i. If every robot j is connected with robot i, it also means that every
robot in the graph is connected with the other robots. Checking if a path exist
between two robots can be done by using well-known graphs algorithms, like
DFS or BFS.

As mentioned, there are 9n different configurations for n robots. The expo-
nential number of possible new configurations makes it impossible to check all
of them. Hence, we generate a limited number of random new configurations per
time-step and choose the one with the best utility. So, instead of considering all
the 9n new configuration, only k configurations are considered, with k << 9n.
In the experiments presented here k is set to 50, leading to an extremely fast
evaluation of the possible configurations.

4 Experiments and Results

For the experiments performed, we define a world with some obstacles placed in
it, as can be seen in figure 4. The world is represented as a classic evidence grid
[ME85], whereby every grid cell can have one of four different values (unknown,
frontier, visited, obstacle). At the begin of the experiments, all the cells are initial-
ized to unknown. Only the cells that contain obstacles are initialized different.

The robots that are used in the experiments are homogeneous. They have
the possibility to explore a certain region. At a certain position, the current
position will be marked as visited and the surrounding cells will be marked as
frontier. Every robot has the ability to communicate. If two robots are within
a certain range of each other, a communication link is created between them.
In the experiments, it is assumed that a communication link is always created
when two robots are within communication range. Furthermore, every robot has
the ability to move around in the environment. The robots are moving from one
grid cell to the other, thereby having the possibility to move vertical, horizontal,
diagonal or to remain at their current position.

The frontier-based exploration is used for comparison to the communicative
exploration. For testing how well the different exploration approaches perform,
the following measurements are taken. For both approaches it is calculated how
many grid cells are explored during a run. Each run consists out of 2500 time
steps, whereby a time step is defined as every robot making one movement.
A movement can in this case also imply that a robot remains at its current
position. Furthermore, for the frontier-based approach, the communication level
is calculated. The communication level indicates how many robots are connected
to each other. If there is a connection level of 100% all the robots are connected
with each other.
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Fig. 4. A pack of 5 robots exploring while maintaining communication with each
other

Experiments with different amounts of robots are performed. One experiment
uses 4 robots, the second 5 robots and the last experiment 6 robots. Every
experiment is performed 10 consecutive times.

The results in terms of exploration speed are shown in figure 5. It can clearly
be seen that frontier-based exploration is performing better than communicative
exploration in this respect. This can be explained in an easy way. The advantage
of the first approach is that the robots do not have a “limitation” on their move-
ment, as do the robots in the communication-based approach have. Therefore
they can spread out very fast.

Although communicative exploration moves on slower, its most important
task is accomplished. During the whole process of exploration, communication
between all the robots is maintained, i.e., the communication level is constantly
100%. This can not be said from the other exploration approach. As can be
seen in figure 6, full communication is only established in the beginning of the
exploration process, but deteriorates after a few time steps amazingly rapid and
never reaches a level of full communication again. The reason for this is exactly
the same as the reason why this approach is exploring faster. As the movements
of the robots are not bounded by the communication threshold, robots travel
rapidly out of each other communication range and are not able to restore the
communication link between each other again.
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Fig. 5. The amount of grid cells explored with frontier-based and communicative ex-
ploration for packs of 4, 5 and 6 robots. The graphs are based on averages of 10 runs.
The frontier-based exploration (upper, dashed line) outperforms communicative explo-
ration (lower, solid line). But the communicative exploration maintains communication
links between all robots.
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Fig. 6. The percentage of communication between the robots during frontier-based
exploration for packs of 4, 5 and 6 robots. 100% communication means that every
robot is in contact with each other. Again, an average of 10 runs is used. Note that
the communication between the robots is lost very fast. Communicative exploration
maintains in contrast a constant level of 100%.
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5 Conclusions

An extension of the frontier-based approach for exploration [Yam97, Yam98]
was presented. In the original algorithm, all robots operate at the borderline
to the unexplored space. They hence move further and further away from each
other. This leads to communication loss when a realistic network model based
on cells with limited ranges is applied. The novel approach of communicative
exploration manages to maintain sufficient links between the robots such that a
proper network structure is kept. This is achieved by a simple utility function
that penalizes the threat of communication losses. In previous work of ours, the
approach was limited to robot teams that are constraint by a basestation. Here,
we extend the approach to freely moving robot packs. Experiments are presented
with packs of 4, 5 and 6 robots where frontier-based exploration leads to a rapid
loss of communication. Communicative exploration manages to constantly keep
the communication between the robots in the pack intact while exploring. This
feature is bought at the expense of somewhat slower progress in the exploration
process.
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Abstract. In this article, I propose a mathematical framework of con-
sistency management that guarantees validity among data that are used
in integrated simulation systems. When we apply integrated simulations
to real-time prediction/evaluation of complex social phenomena like dis-
aster and rescue, checking and keeping consistency of data is an impor-
tant issue to validate simulation results, because multiple and delayed
information are reported to the database continuously in real-time ap-
plications. The proposed formalization gives fundamental background of
consistency and validity of database and simulation. I also investigate
about cost of the management in two major implementation styles.

1 Introduction

In an integrated social simulation like RoboCupRescue Simulation, data manage-
ment is one of important issues, because various heterogeneous sub-simulators
interact with each other. In a Japanese national special project for earthquake
disaster mitigation in urban areas (DDT project), we are developing an
integrated disaster-and-rescue simulation system [1, 2], in which a number of
simulators for various phenomena, for example, damages of ground and road,
TSUNAMI, fire-ignition, liquefaction, and so on, are used to provide initial data
for the multi-agent rescue simulation. In the case where we apply such an inte-
grated simulation to real-time prediction/evaluation of real phenomena, we must
pay attention to management of consistency of dataset used in sub-simulators
in order to guarantee the validity of total simulations.

The consistency of data-set can be broken by the following features of the
application:

– Several data can be reported for a single phenomena. Some of the data may
include noise or may be wrong.

– Some data reach to rescue headquarters with large delay. Such data may
conflict with assumed setting of simulations that run before the arrival of
the data.

In such case, each session of the simulation is grounded to the different dataset.
This means that we need to handle carefully the simulation result.
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Even in the case where we use simulations off-line, we face similar situation
when we run many sessions using various initial datasets. In an integrated simu-
lation, some sub-simulations use results of other simulations. Therefore, we need
to bring together results of sub-simulations for another sub-simulation carefully
not to use inconsistent datasets.

In this article, I will give a formalization of version control of datasets to keep
consistency among datasets. In the rest of this paper, requirements for the version
control are figured out by listing several use-cases of integrated simulations in
section 2. Section 3 shows definitions and theories about version of datasets
and its control. Costs of several operation of version control are investigated in
section 4, and discussed from various point of view in section 5.

2 Requirements

In order to figure out the concept and requirement of version control, I will
point out some use-cases of datasets in a database that is used with a integrated
simulation.

2.1 Use-Case 1: Noise in Sensing

In real-time applications, data are not always true. In general, different sensors
report different data for the same phenomenon. Sometimes, the difference among
these data is significantly large, so that we can not handle these data as a
distribution of the same phenomenon. In such a case, we must consider some data
are true and others are false. Generally, it is difficult to distinguish true/false of
each data.

For example, 5 and 7 were reported alternately as a value of a seismic intensity
of a certain aftershock at a certain point in Chuetsu Earthquake in Nov. 2004.
In such case, results of simulations based on intensity 5 and 7 are quite different.
Generally, we must choose one of 5 or 7 as a true value of the intensity because
it is generally meaningless to use an average of 5 and 7.

Choice of values causes another issue on the integrated simulation. Suppose
that there are phenomena X, Y, Z, W . In an integrated simulation, Y and Z can
be estimated from X value by simulations independently, and W can be calcu-
lated from Y and Z. Suppose X is sensed by two sensors a and b, which report
different values xa and xb, respectively. Here, a simulation calculates Y using xa

and outputs ya as its value. In the same time, another simulation calculates Z
as zb based on xb. In this case, we should avoid calculating value W by ya and
zb, because these values are grounded on different values of phenomenon X . For
example, we should not integrate results of two simulations, estimated damage
of road based on intensity 5 and estimated number of victims under intensity 7.

2.2 Use-Case 2: Delay of Report

Because sensors are located far from the database, the sensed values are reported
with delay. Especially in applications to disaster and rescue, the delay may be
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very large. Actually, damages of Yamakoshi village in Niigata were reported to
head quarters of rescue two days after Chuetsu Earthquake.

In such cases, not all data are available for a certain simulation, so that
we must estimate lacked data by interpolating or other methods to run the
simulation. When the estimated data turns out to be different from the real
data that are reported with delay, we must ignore results of the simulation and
re-calculate using the new real data.

2.3 Use-Case 3: Complex Dependency

In an integrated simulation, we may have deep dependencies among sub-
simulations. For example, in DDT project[1, 2], the simulation system consists
of more than 10 sub-simulations, which are connected with each other via a
database.

In such case, relation of dependency described in section 2.1 becomes more
complex. In addition, large-scaled simulations like social ones handle huge
dataset. Therefore, checking mechanism of consistency should be scalable and
light-weight.

2.4 Summary of Requirements

Based on the above discussions about the use-cases, we can summarize that
management systems of dataset should have:

– a facility to realize a kind of version control to manage choices of dataset,
– a way to check consistency among simulations and dataset,
– a facility to extract dataset that is consistent with an existing dataset, and
– a mechanism to keep consistency of existing dataset when a delayed sensor

data is inserted into the database.

3 Formalization

In this section, I give a formalization of version control of dataset, and derive the-
orems about consistency, both of which enable to handle requirements examined
in the previous section.

3.1 Database and Snapshot

We suppose that a database is a collection of data, each of which indicates a
sensed or simulated value about a thing at a certain time. We also suppose that
the database is dynamic. In other words, sensors and simulators put new data
into the database continuously 1.

Formally, these words are defined as follows:

1 We assume that data in a database are never updated or deleted. When various
values for a certain event are reported, then all values are stored independently in
the database.
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Thing: A thing θ is an identifier of an object, feature, or phenomena. For ex-
ample, “building X”, “speed of car Y ” and “seismic intensity at a point Z”
are things. A thing can consist of other things according to a structure of a
corresponding object or phenomena.

Event: An event e is a snapshot of a thing θ at a time t. An event e can be
notated as a tuple 〈θ, t〉. For example, “damage of human X at time t” “speed
of car Y at time t”, and “the degree of blockade of road Z at time t” are events.

Data: A data dθ,t,s is a value of event 〈θ, t〉 acquired by a sensor or simulation s.
Because a sensed or simulated value is affected by several conditions and noises,
multiple data for a certain event can exist. When the data comes from a sensor, s
indicates an identifier of the sensor. When the data is estimated by a simulation,
s is a version defined in the next section.

When we indicate a time to store the data into a database, we use the following
notation:

dθ,t,s;τ ,

where τ indicates the time when the data is stored into a database.

Database: A database DB = {dθ,t,s;τ} is defined as a set of whole data stored
in the database.

DB(0,T ) = {dθ,t,s;τ ∈ DB|τ < T } indicates a snapshot of the database at a
certain time T . In other words, DB(0,T ) is a set of data that are stored into DB
before T .

3.2 Version

We say a session of a simulation to indicate a run of the simulation using certain
initial data and settings. Generally, a session is performed as follows:

1. Collect a set of data Dground about some events Eground = {ei|i} from DB
at the begin time of the simulation (Tbegin).

2. Estimate a set of data Dtarget about other events Etarget = {ei|i}.
3. Store Dtarget into DB at the end time of the simulation (Tend).

We call these set of data of input or output of a session of a simulation as a
version. In other words, a session receives a version from a database as a ground
of simulation and inserts another version of data into the database as a result of
the simulation.

When we conduct an integrated simulation that consists of several sessions of
sub-simulations, we need to pay attention to guaranteeing that each session is
grounded on a right dataset. For example, a sub-simulation may depends on a
collection of results of other sub-simulations as shown in section 2. In this case,
we need to avoid that some results are grounded on inconsistent data.

In order to make it easy to check such consistency among dataset, we define
consistency among versions as follows:
Version: A version v is defined as a tuple as follows:

〈E, T , D, G〉 ,
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where E = {ei|i} is a set of events, D is a dataset under the version, T is a
time when DB is accessed to manipulate the dataset, and G = {ui|i} is a set
of versions on which D is directly grounded. These elements must satisfy the
following condition:

D ⊂ DB(0,T )/E = {dθ,t,s;τ | 〈θ, t〉 ∈ E, τ < T }

Generating a New Version: There are four types of operation to generate a new
version, sprout, extraction, production, and union.

A version is sprouted when a new dataset is collected from DB, where all
data in the dataset should be primary one that come from sensors directly. A
sprouted version consists of a tuple:

〈E, T , D, φ〉 ,

where E is a set of related events, D is a collected dataset from DB, and T is
a time to collect D.

A version v can be extracted from another version u = 〈Eu, Tu, Du, Gu〉,
where the dataset of v (Dv) is a subset of Dsu. The extracted version v is
denoted as a tuple:

〈Ev, Tv, Dv, {u}〉 ,

where Dv ⊆ Du, Ev = {e|dθ,t,s ∈ Dv, e = 〈θ, t〉}, and Tv (> Tu) is a time of
extraction.

When a session of a simulation outputs a version v as a result using version
u as a ground, we call the version v as a production of the version u, or denote
u � v. The production v is defined as a tuple:

u � v ⇔ v = 〈Ev, Tv, Dv, {u}〉 ,

where Ev is a set of simulated events, Dv is the result of the simulation, and T
is a time to finish the simulation 2.

A union of two versions u and v (u ⊕ v) is a version to imply a sum of the
two versions. A union is a virtual version that includes empty sets of events and
data, so that the unified version is constructed as follows:

u⊕ v = 〈φ, T , φ, {u, v}〉 ,

where T is a time to unify two versions.
We define a version v is grounded in version u (or denote u � v) iff v is

generated by union, production, or extraction from u. As defined above, the
following relation is satisfied:

u � v ⇔ u ∈ Gv

where v = 〈Ev, Tv, Dv, Gv〉.
2 We suppose that results of simulations are stored immediately after the simulations.
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A footmark is a relation of two versions which are linked recursively by ground-
ness relationships as follows: We say that version u is a footmark of version v
iff

u ∗� v ⇔

⎧⎨
⎩

u = v
or
u � u′, u′ ∗� v

We use a trail as a set of a version ({ui|i} = Tr(v)) iff when each version ui in
the set is a footmark of version v.

Consistency: We define that two versions, u and v, are primarily consistent (or
denote u∼̇v) iff

∀e ∈ Eu ∩Ev : Du/e = Dv/e,

where u = 〈Eu, Tu, Du, Gu〉 and v = 〈Ev, Tv, Dv, Gv〉.
We define that two versions, u and v, are consistent (or denote u ∼ v) iff

∀u′ ∗� u, ∀v′ ∗� v : u′∼̇v′.

In order to guarantee a unified version u ⊕ v is dependable, u and v should be
consistent.

We define that a version v is self-consistent iff

v ∼ v.

3.3 World Line

As mentioned at the definition of data, a certain event can have multiple data in
a DB. Some of these data are treated as true and others are ignored in analyses
and simulations. We use the word ‘world line’ to indicate a set of data that are
treated as true and taken into account for the analysis.

Because multiple analyses can be conducted in parallel, there can exist mul-
tiple world lines on a DB. While these world lines are inconsistent with each
other, all data in a world line should be consistent. Here, ‘consistent’ means that

each data in a world line is sensed or simulated based on the same con-
ditions and dataset.

The purpose of the version control is to check and keep the consistency when a
simulation extends a world line.

Formally, world line and related concepts are defined as follow:

World Line: A world line w is any subset of a database DB, that is, w ∈ DB.
When a world line w includes multiple data for a certain event e, the value of the
event e is treated as a distribution of probability by Monte Carlo interpretation.
When a world line w includes no data for a certain event e, the event is treated
as “don’t-care”.

There are no restriction for a world line to select data in a database. Therefore,
whole set of world line is same as power set of whole data, 2DB.

A world line is independent from changes of the database.
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Projection of World Line: w/t = {dθ,t′,s;τ ∈ w|t′ = t} indicates a projection of
a world line w at time t (or simply, time slice of a world at time t).

w/θ = {dθ′,t,s;τ ∈ w|θ′ = θ} indicates a projection of a world line w about a
certain thing θ.

w/e = {de′,s;τ ∈ w|e′ = e} indicates a projection of a world line w about a
certain event e.

Consistency of World Line. We define a world line w supports a version v, or
denote w  v iff the following condition is satisfied:

∀u = 〈Eu, Tu, Du〉 ∗� v, ∀e ∈ Eu : w/e = Du/e

We define a world line w is consistent iff the following condition is satisfied:

∀dθ,t,s;τ ∈ w : s is a sensor id or w  s.

In other words, each simulated data in a consistent world line should be included
by a version supported by the world line.

It is important that only consistent world lines are meaningful in a database.
If a world line is inconsistent, that is, some data are not supported by the world
line, the world line is useless because the data is not well-grounded into the world
line. Such situation should be avoided when we conduct simulations and update
database.

3.4 Theorems About Keeping Consistency

Here, I will derive some theorems that show how generated versions are sup-
ported by consistent world lines.

Lemma 1. When a version v is self-consistent and a world line w consists of
data that belong to versions in a trail of v, any footmarks of v is supported by w.

∀v : v is self-consistent,
w = {d|u = 〈Eu, Tu, Du, Gu〉 ∗� v, d ∈ Du}

→ ∀u ∗� v : w  u

Proof (Lemma 1). Suppose that there exists a footmark u of the version v, which
is not supported by the world line w. In other words,

∃u = {Eu, Tu, Du, Gu} ∗� v, ∃e ∈ E : w/e �= Du/e.

Because of the definition, w is a super set of Du. So, w/e �= Du/e is satisfied
iff ∃d ∈ w/e, d /∈ Du/e. This means:

∃u′{Eu′ , Tu′ , Du′ , Gu′} ∈ Tr(v) : u′ �= u,

d ∈ Du′

However, this violates the definition of self-consistency of version v. Therefore,
any footmark u is supported by w.
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Using this lemma, we can derive the following theorem.

Theorem 1. When a version v is self-consistent, there exists a world line w
that is consistent and supports v.

∀v : v is self-consistent → ∃w : w is consistent, w  v

Proof (Theorem 1). Consider a world line w = {d|u = 〈Eu, Tu, Du, Gu〉 ∗�
v, d ∈ Du}. w supports any footmark of version v because of Lemma 1. On the
other hand, for any simulated data dθ,t,s;τ ∈ w, the version s to which the data
belongs is always in the trail of version v. Therefore, the version s is supported
by the world line w.

This theorem tells that we need pay attention only to keeping self-consistency
of newly generated versions in order to make the versions are meaningful.

Based on the first theorem, we can derive the following theorems about gen-
eration of new versions.

Theorem 2. Any sprouted version is self-consistent.

Proof (Theorem 2). Because of all data in a sprouted version come from sensor
directly, the version is grounded itself 3.

Theorem 3. When a version v is extracted from a self-consistent version u, v
is self-consistent iff the following condition is satisfied:

∀v :u ⊃ v,

v is self-consistent ↔ ∀e ∈ Ev : Du/e = Dv/e,

where u and v are 〈Eu, Tu, Du, Gu〉 and 〈Ev, Tv, Dv, Gv〉, respectively.

Proof (Theorem 3). If the condition is satisfied, u and v is consistent. Because
u is self-consistent, v is also consistent.

Suppose that the condition is not satisfied. In this case, there exists an event
e that has different dataset in u an v, that is Du/e �= Dv/e. Because Ev is
a subset of V Eu, e is included both in Ev and Eu. Therefore, u and v is not
consistent, so that v is not self-consistent.

Theorem 4. When a version u is self-consistent, a production v of the version
u is self-consistent and there exists a consistent world line that supports both
versions v and u.

∀u : self-consistent →
∀v : u � v → v is self-consistent,

∃w : w is consistent, w  v

Here, we suppose that a simulation never estimate data about the same event
as one that it takes as input.
3 Because of this reason, the sprouted version is defined with no grounding versions.
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Proof (Theorem 4). Because of the definition, Tr(v) is {v} + Tr(u). Because
Eu ∩Ev = φ, any footmark of version u is consistent with version v. Therefore,
the version v is self-consistent. As the result, there exists a consistent world line
that supports v because of Theorem 1.

Theorem 5. When two versions, v and u, are self-consistent and consistent
with each other, a union of these versions is self-consistent, and there exists a
consistent world line that supports the union.

∀u, v : self-consistent, u ∼ v →
u⊕ v is self-consistent,

∃w : w is consistent, w  u⊕ v

Proof (Theorem 5). Because of the definition, Tr(u⊕v) is {u⊕v}+Tr(u)+Tr(v).
Suppose that x and y are versions in Tr(u ⊕ v). When both of x and y are in
Tr(u) or Tr(v), they are primary consistent with each other because u and v
are self-consistent. When one of them is in Tr(u) and another in Tr(v), they
are primary consistent with each other because u and v are consistent with each
other. When one of x and y is identical with u⊕ v, they are primary consistent
because the version u⊕ v contain no events.

Therefore, the union u ⊕ v is self-consistent. As the result, there exists a
consistent world line that supports u⊕ v because of Theorem 1.

4 Operation Cost of Version Control

In order to realize version control for integrated simulations, we need to imple-
ment several additional functions into the database as follows:

– to store information about version. As its definition, the information should
includes a set of related events(E), access time to the database(T ), a set of
data (D), and a set of ground version (G). In these items, handling of D is
most important because the number of elements in D is generally large.

– to insert new data to the database with keeping self-consistency of each
existing version. Especially, data that are reported with large delay should
be managed carefully, because events of the data may already be used in
some simulation sessions.

– to check consistency of two version. As shown in theorems in the previous
section, the critical operation to generate a new version is mainly in union
operation. To keep self-consistency of unified version, we must check consis-
tency of two versions.

In the followings subsections, we investigate average cost for each operation
under two typical implementations of the version control.

4.1 Positive Listing

A strait-forward way to store information about D of a version is to store a list
of data (or identifiers of data) in D. We call this method as positive listing.
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Cost to Store Information. The order of the size of storage to keep a list D
in the positive listing is O(|D|). This cost become a problem when a simulation
handle a large-scale phenomena like earthquake, because the number of data is
large in such simulations.

Cost to Insert New Data. When a new data is inserted to DB, there occur
no additional operations for managing consistency of versions, because the new
data does not affect on D of existing version.

Cost to Check Consistency. In order to check consistency between versions
u and v, the following operation is required:

∀u′ ∈ Tr(u), ∀v′ ∈ Tr(v), ∀e ∈ (Eu′ ∩Ev′) :
check Du′/e = Dv′/e

where u′ = 〈Eu′ , Tu′ , Du′ , Gu′〉 and v′ = 〈Ev′ , Tv′ , Dv′ , Gv′〉. The order of the
cost of this operation is O(

∑
|Du′ |+

∑
|Dv′ |).

4.2 Negative Listing

Another strategy to store information about D is to store a list of data that
are related with events in E but do not appear in D. We call this method as
negative listing. In other words, the negative listing stores data that are not used
in the version.

Generally, such not-used data will occur under the following situation:

– When multiple various data about a certain event is reported by different
sensors, some of them may be considered as false data that are not used in
a certain simulation session.

– When a simulation starts at time T using data of a certain event e, other
data about e may be reported after T .

In the negative listing method, a list of the following dataset is stored to keep
information about version v:

D̄v =
∑

e∈Ev

(DB(0,Tv)/e−Dv)

Cost to Store Information. The order of the size of storage to keep a list D̄
is O(

∣∣D̄∣∣). Generally, it is expected that this cost is smaller than the cost in the
positive listing, because the data in D̄ is generally exceptional one.

Cost to Insert New Data. When a new data is reported to DB after a
timestamp Tv of an existing version v, we may need to handle the new data is
in the negative list of v, because the data is not used in the version. However,
we can distinguish such negative data by comparing timestamps of the data (τ)
and the version (T ). Therefore, there occurs no additional operation to manage
the consistency.

Cost to Check Consistency. In order to check consistency between versions
u and v, the following operation is required:
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∀u′ ∈ Tr(u), ∀v′ ∈ Tr(v), ∀e ∈ (Eu′ ∩Ev′) :{
check D̄v′/e− D̄u′/e = DB(T ′

u,T ′
v)/e if T ′

u < T ′
v

check D̄u′/e− D̄v′/e = DB(T ′
v ,T ′

u)/e if T ′
v < T ′

u

where u′ = 〈Eu′ , Tu′ , Du′ , Gu′〉, v′ = 〈Ev′ , Tv′ , Dv′ , Gv′〉, and DB(Tx,Ty) means
a set of data that is inserted between time Tx and Ty. The order of the cost of
this operation is O(

∑∣∣DB(Tv′ ,Tu′)/E
∣∣ +

∑∣∣D̄u′
∣∣ +

∑∣∣D̄v′
∣∣).

5 Discussion

It is not simple to determine which of positive and negative listings is better
than another. In the case of large scale applications, however, the size of data is
generally huge. Therefore, the negative listing has an advantage in both costs of
storage and consistency checking.

In the evaluation of costs in section 4, the cost to projection operations (for
example, DB(T ′

u,T ′
v)/e) is ignored. This is because general database systems like

RDB have sophisticated low-cost facilities using indexing/hashing technique.
The cost to manage a set of events E is also ignored in the above evaluation.

While datasets can be handled only by listing, a set of events can be represented
a projection axis to the database. For example, in geographical application like
disaster-rescue simulation, a set of events can be represented by type of features
and area of interest. Therefore, we can assume the operation of the event sets is
also abstracted and low-cost on storage and consistency checking.

There are several open issues on the formalization as follows:

– How to realize a facility to extract version that is consistent with a certain
version. Such operation will happen when a simulation requires parts of
result of two versions.

– How to formalize statistic operations of results of multiple simulations. One
of purposes of the simulation is to calculate statistic value like averages and
variances based on multiple simulation using different random seeds. Current
formalization can not handle it, because such operations break consistency
among versions.
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Abstract. In this paper a new approach to dynamic optimization of a rough 
terrain rover is introduced. Since rover wheels traction has a significant role in 
rover mobility, optimization is based on the minimization of traction at rover 
wheel-ground interfaces. The method of optimization chosen is Genetic 
Algorithm (GA) which is a directed random search technique along with the 
usual optimization based on directional derivatives. GA is a suitable and 
efficient method of optimization for nonlinear problems. The procedure is 
applied on a specific rough terrain rover called CEDRA-I Shrimp Rover. The 
present work resulted in design and manufacturing of the optimized rover called 
CEDRA-II Shrimp Rover. 

1   Introduction 

Rough terrain rovers are increasingly used for high risk situations such as rescue 
operations, planetary explorations and military missions. Future tasks will require 
robots with high mobility. Keeping stability without tip over or loss of contact with 
the ground is needed for those hazardous tasks. 

In these cases having a flexible rover that can adapt itself to environment of 
challenging tasks, is very useful. Robots with passively articulated suspensions can 
improve rough-terrain mobility by modifying their suspension configuration and thus 
repositioning their center of mass. 

Design and control of these rovers are based on dynamical analysis and simpler 
and more meaningful equations of motion may be helpful in many cases. The 
complication of equations of motion in rovers arises from several factors including: 
mechanism with complicated configuration, rough terrain usually with random bumps 
and nonholonomic constraints. 

Much research has been done on rough terrain rovers dynamical analysis and 
modeling. Tai [1] presented dynamical modeling for mobile robots with suspension. 
Iagnemma and Dubowsky [2] presented a new method for rough terrain rovers’ 

                                                           
1 Graduate Student. 
2 Professor of Mechanical Engineering. 
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control. Their work is based on the static modeling of rovers due to the rovers low 
speed. 

Kawabe et al. [3] performed substantial work on traction control of passenger 
vehicles on flat roads. This work is not applicable to low-speed, rough terrain rovers 
because in these vehicles wheel slip is caused primarily by kinematic 
incompatibilities. Reister and Unseren [4] studied the traction control for low-speed 
mobile robots on flat terrains. Sreenivasan and Waldron [5] have represented the 
displacement analysis of articulated wheeled vehicle configuration and have extended 
it to uneven terrain motion. Hacot [6] illustrated the traction control of a planetary 
rover called Rocker Bogie. In Ref. [7], optimization of a four-wheel rover is 
presented. The optimization objective function is finding the rover parameters so that 
the path traversed by the center of gravity tends to the straight line. 

In this paper an innovative approach to dynamical optimization of a rough terrain 
rover with redundant drive wheels is presented. Optimization is based on the 
minimization of traction in the rovers’ wheel-ground contact. The method of 
optimization is chosen to be Genetic Algorithm (GA) which is known as a directed 
random search technique. GA is a suitable and efficient method of optimization for 
nonlinear problems. In this paper dynamical equations are developed using Kane’s 
method. Compared to other formulations, (Lagrange or Newton) Kane’s method 
involves less arithmetic operations. So, the model simulation is fast and simple. Also, 
Kane’s equations can be easily brought into closed form [8]. 

Finally the analysis is applied to CEDRA-I Shrimp rover, which is a complicated 
rough terrain rover with six-wheels. CEDRA-I Shrimp rover is a laboratory rover 
made at the Center of Excellence in Design Robotics and Automation (CEDRA) and 
ranked second in the Rescue Robot Competitions 2003 (RoboCup Rescue 2003). The 
main structure is based on the rover, which first was constructed at EPFL [9]. This 
robot is similar to Rocky7 [10] and Marsokhod [11] in some parts but a four-link 
mechanism added at the front of the robot has made it more efficient in encountering 
obstacles. The present work resulted in design and manufacturing of the optimized 
rover called CEDRA-II Shrimp rove. Both initial and the optimized rovers are shown 
in Fig. 1. 

2   Dynamics Equations 

2.1   Kinematic Analysis 

The kinematic analysis is the base point in dynamics analysis and as a result the 
optimization. Analyses which have been done on rovers up to now are usually for 
surfaces with simple and specified geometry like an inclined surface; however for a 
rough terrain, the rover kinematical problem will change significantly. Rover 
kinematical analysis of complex geometrical surfaces leads to several nonlinear 
equations; the solution to these problems is the most time consuming part of the 
analysis. In this section the planar inverse kinematical analysis of the shrimp 
mechanism is dealt as an example.  
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(a) (b) 

Fig. 1. (a) CEDRA-I and (b) CEDRA-II rescue robots 

The shrimp mechanism (see Fig. 2) is a one DOF mechanism. Having the path 
geometry in hand, one can determine the position of all mechanisms linkages, using 
the position of the rear wheel. In general for a rover with n wheel-ground interface 
points one can obtain n-1 close kinematic loop. In the Shrimp mechanism for 
interface points B, C and D one can write: 

sin cos( )xB c eα α β= + +  (1) 

cos sin( )yB c eα α β= − + +
 

(2) 

cos sin( )xC c eα α β= − +  
(3) 

sin cos( )yC c eα α β= − − +  (4) 

( ) cos sin cos cosxD a b g f n mα α γ ξ= + − + + +  (5) 

( ) sin cos sin sinyD a b g f n mα α γ ξ= + − − + +  (6) 
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Angles ,α β  are shown in Fig. 2. 
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Fig. 2. Shrimp rover mechanism 

For simplicity, the wheels center line path is considered rather than the real path. If 
the wheel center line path's function is shown as )(xpathy = , then 

( )y xB path B=  (8) 

( )y xC path C=  (9) 

( )y xD path D=  (10) 

In this way by solving these three nonlinear equations, the three unknowns, 
α , β and γ are found and thus the mechanism configuration is determined.  

As it was stated before, kinematical analysis of rovers in rough terrains is a 
cumbersome task. Regarding the shrimp mechanism a nonlinear set of equations 
should be solved for a position analysis.  Since for a velocity or acceleration 
analysis a derivation process exists and in our case the position terms are not 
differentiable, a thorough position analysis is required in advance. Then one can use 
the resultant diagrams to obtain velocity and acceleration with numerical derivation 
methods. 

As it is shown in Fig 2, the shrimp mechanism has 12 linkages. Assuming pure 
rolling for wheels, 18 two-DOF joints could be considered for this mechanism. 
According to Kutzbach criterion the system DOF is: 

001821232)1(3 21 =−×−×=−×−−= jjnDOF  (11) 

Though the Kutzbach criterion yields zero DOF for this mechanism, it is clear 
that the right number of DOF is one. This wrong prediction is due to redundant 
constraint in the middle parallelogram mechanism of the rover. There are several 
methods to remove this redundancy. Here the cylindrical joint inserting is selected 
out of available methods. This modification changes the Kutzbach criterion as 
follows 

 101921332)1(3 21 =−×−×=−×−−= jjnDOF .     (12) 
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2.2   Kane’s Method 

In this section the inverse dynamical analysis of rovers, using the shrimp rover 
mechanism as an example is investigated. A dynamical analysis result is a must for 
objective function derivation, as will be stated in the next section. 

Since the optimization procedure consist of several dynamical analyses at each 
stage, a computationally efficient dynamical analysis is inevitable. In this regard, due 
to Kane method's merits in complex systems, this method was chosen as the rover 
dynamical analysis method. 

As was discussed in last section the shrimp mechanism’s DOF is one. Like 
Lagrangian mechanics, in which generalized coordinates are employed in rover 
mechanics, generalized speed is also used to describe the system motion. The number 
of generalized speeds is equal to the system’s DOF; in the case of the shrimp 
mechanism we need one generalized speed as follows: 

1 1u q=  (13) 

where 1q  is the rear wheel angular velocity. 

The other quantities which have a fundamental role in the construction of 
generalized forces are partial velocities and partial angular velocities. In order to 
calculate the partial velocities of a point one should first find the velocities at that 
point. Then the coefficients of generalized speed in velocity terms are in fact the 
partial velocities. 

Regarding the shrimp mechanism, we have already found the numerical value of 
velocities. Since we have only one generalized speed in this case; we can obtain the 
partial velocities and partial angular velocities as follows: 

1/ u=P P
1V V  (14) 

1/ u=P P
1  (15) 

Now, it is possible to get the generalized active and generalized inertial forces. The 
only external forces and torques are linkage weights and motor torques. Thus for 
generalized active forces we have: 

1
1

m

i
i

F m
=

= ⋅ + ⋅iW P
i 1 1M g V  (16) 

where mi represents the mass of different parts of the mechanism and Wi represents 
mechanism wheels; with torque Mi applied to each. 

The generalized inertial force equations are derived as below: 

1
1

( ) ( )
m

i

F ∗

=

= − ⋅ + − ⋅i i iB W B P
1 1a V  (17) 

where Bi represents different parts of the mechanism which counted as n and iBa  is 

the acceleration of the center of mass of part Bi and  iB is the angular acceleration of 
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part Bi. In this way the generalized inertia and generalized active forces are found. 
Using Eqs. 16 and 17 the following equation of motion is derived: 

1 1 0F F ∗+ =  (18) 

Which is equivalent to 

1 1 1 1

( ) ( )
m m m m

i
i i i i

m
= = = =

⋅ = − ⋅ + − ⋅ − ⋅i i i iW B W B P P
i 1 1 1 1M a V g V  (19) 

The right hand side of the Eq. 19 is known, provided we have the accelerations and 
angular accelerations. Thus an equation for applying torques is obtained. With an 
appropriate assumed relation between wheel torques, it is possible to calculate each 
wheel torque. In the shrimp mechanism the following relations are considered 
between different wheel torques: 

2
2 1

1
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3 1
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4 1

1
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N
M M

N

=

=

=

 (20) 

where Ni is normal force in the wheel-ground interface of ith wheel. This assumption 
is equivalent with considering more wheel torque as normal force increases. Eqs. 19 
and 20 are sufficient for finding wheel torques.  

The next step is to calculate the normal forces. Normal forces are among constraint 
forces and can not be seen in equation of motion; this is expected, as Kane's method is 
based on energy. Several methods exist to obtain these forces which have been used 
both in Eqs. 20 and the optimization objective function. 

The method introduced in Ref. [12] in order to bring the constraint forces into 
evident, is to define a set of generalized speeds that violate the constraints. This 
results in an increase in the numbers of partial velocities and number of governing 
equations from which the constraint forces and moments are determined. In Ref. [13] 
the same issue is solved by introducing Lagrange-multiplier-like scalars to adjoin the 
constraint matrix with Kane's equation for holonomic systems. The resulting 
equations together with the constraint equations are solved for these scalars and 
generalized speeds and, hence, for the constraint forces and moments. This approach 
is suitable for small systems with few degrees of freedom. 

Lesser [14] suggested the method of projecting the active and inertia forces and 
moments on the orthogonal complement space of the configuration space spanned by 
the partial angular and partial velocities. This requires finding the spanning set of 
vectors to this defined space and solving the resulting complementary equations for 
constraint forces and moments. 

In this paper the first method was employed for developing the constraint forces  
(i. e. normal forces). 
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3   Optimization 

To have a rough terrain rover with high mobility that can traverse through 
unstructured surfaces without loss of wheel-ground contact or slipping, optimization 
of wheel-ground contact forces is performed. Power efficiency is also considered in 
rover dynamical optimization. Due to dynamical nonlinearities of the problem, 
Genetic Algorithm (GA) is selected as the optimization method. GA is a directed 
random search technique which is applicable to non-linear problems [15]. 

3.1   Optimization Criteria 

The most common optimization criterion used for rovers is the minimization of 
traction in the wheel-ground interface. To avoid wheel slipping, the ratio of traction to 
normal force in wheel-ground contact point should be lower than a specific value. A 
function Ri that represents this ratio can be used as follows: 

i

i
i N

T
R =  (21) 

where Ti is traction and Ni is normal force in the wheel-ground interface. Ri is also 
called wheel slip ratio. 

For the shrimp rover with four wheels the objective function is selected as the sum 
of maximum of slip ratios in wheels. Our objective function is in the form of: 

4

1

max{ }i
i

OF R
=

= . (22) 

3.2   Problem Constraints 

There may be physical constraints for optimization problems. The first one is to keep 
all wheels in contact with the ground; i.e. normal contact forces should be greater than 
zero: 

4...10 => iforNi  (23) 

The second constraint is that the ratio of traction force to normal force (i.e. R) 
should not be greater than the ground-wheel coulomb coefficient of friction: 

4...1=≤ iforRi μ . (24) 

4   Simulation Results 

In this section, performance of the optimized shrimp rover and the first version of the 
rover (i.e. CEDRA-I Shrimp Rover) are compared. Since stairs are challenging 
terrains, in most cases they are considered as a standard testing rough terrain. In this 
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research the terrain is chosen to be standard stairs. Path specifications are listed in 
Table 1. A sketch of the path and rover are shown in Fig. 3.  

CEDRA-I Shrimp Rover is used for the first run. The Rover’s specifications 
including geometric parameters and dynamic properties are listed in Table 2.  

 
Fig. 3. Sketch of the simulated path and the rover 

Table 1. Stairs geometric specifications 

a 0.25 m a

b

 
b 0.25 m 

 
Traversing the stairs path, the rover is dynamically simulated. Dynamic parameters 

are obtained by solving dynamical equations. 
Figure 4 illustrates the results of the simulation. This figure contains rover wheels 

slip ratio (i.e. R function in Eq. 21). As seen in the figure, the wheel-ground interface 
slip ratio is close to static coefficient of friction. High slip ratio can reduce the traction 
at wheel-ground interface; as a result, the rover mobility is reduced.  

In the next step, the optimization is applied on the rover. The optimized rover 
traversed the path and dynamical parameters are obtained by solving dynamical 
equations obtained using Kane’s method. Results containing wheel-ground interface 
slip ratio are shown in Fig. 5. The geometric parameters of the optimized rover are 
listed in Table 2. 

Obviously the slip ratios are reduced considerably. It can be seen from comparison 
of Fig. 4 and Fig. 5 that, in some wheels the slip ratio is reduced up to 40 percent. 
Consequently, the traction at the wheel-ground interface is increased. This is 
equivalent to the increase in rover mobility that is an important point in rovers. Also it 
is inspected that there is no loss of contact in wheel-ground interface. 
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Table 2. CEDRA-I Shrimp rover and the optimized rover specifications 

CEDRA-I Rover  Optimized Rover 
ITEM VALUE  ITEM VALUE 

b 0.07 m  b 0.105 m 
c 0.29 m   c 0.277 m  
d 0.180 m  d 0.188 m 
e 0.130 m  e 0.116 m 
f 0.33 m  f 0.318 m 
g 0.01 m  g 0.035 m 
h 0.21 m  h 0.53 m 
k 0.21 m  k 0.284 m 
l 0.16 m  l 0.22 m 
m 0.31 m  m 0.26 m 
n 0.21 m  n 0.25 m 
p 0.13 m  p 0.16 m 
r1 0.05 m  r1 0.07m 
r2 0.05 m  r2 0.07 m 
r3 0.05 m  r3 0.07 m 
r4 0.05 m  r4 0.07 m 

Mass 40 kg  Mass 40 kg 
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Fig. 4. Slip ratio of wheels for CEDRA-I Shrimp Rover 
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Fig. 5. Slip ratio of wheels for optimized rover 

5   Conclusions 

In this paper an innovative approach to dynamical optimization of rough terrain 
rovers is presented. Dynamical equations are obtained using Kane’s method. 
Optimization is performed for the rover. Optimization criteria are the minimization of 
traction in rover wheel-ground interface. Analysis is applied on a 4-wheel rough 
terrain rover called CEDRA-I Shrimp Rover. Results show an improvement in rover 
traction, which has an important role in rover mobility.  
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Abstract. USARSim is a high fidelity robot simulation tool based on
a commercial game engine. We illustrate the overall structure of the
simulator and we argue about its use as a bridging tool between the
RoboCupRescue Real Robot League and the RoboCupRescue Simulation
League. In particular we show some results concerning the validation of
the system. Algorithms useful for the search and rescue task have been
developed in the simulator and then executed on real robots providing
encouraging results.

1 Introduction

Urban search and rescue (USAR) is a fast growing field that obtained great
benefits from the RoboCup competition. Society needs robust, easy to deploy
robotic systems for facing emergency situations. The range for potential appli-
cations is very wide. Fire fighters inspecting vehicles transporting hazardous
materials involved in road accidents is one end, while locating people and co-
ordinating big rescue teams after a major natural disaster like a earthquake or
a tsunami is at the other side of the spectrum. The two leagues introduced in
the Robocup competition somehow represent these two extremes. Currently, in
the Real Robot League the issues being addressed concern mainly locomotion,
sensing, mapping and localization. Up to now, very few attempts were made in
the direction of autonomy and cooperation using teams of robots. The techni-
cal difficulties encountered while dealing with the formerly indicated aspects still
dominate the scene. In the Simulation League, the problem is addressed from the
other side. Large teams of heterogenous agents with high level capabilities have
to be developed. Topics like coordination, distributed decision making, multi-
objective optimization are some of the crisp matters being addressed. It is part
of the overall vision that in the future the two scientific communities will move
towards each other, and will eventually meet. It is nevertheless evident that this
is not going to happen soon. Deploying a team of 20 autonomous robots per-
forming a rescue task over an area of a few hundred square meters and for a time
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horizon of hours is beyond the current capacity. In this context, we illustrate a
simulation project called USARSim that has been developed at the University
of Pittsburgh. We envision that USARSim is the tool needed to foster and ac-
celerate cooperation between the formerly described communities. On the one
hand, USARSim allows a high fidelity simulation of real robots, and offers great
flexibility when it comes to model new environments or hardware devices. On
the other hand, the software allows the simulation of reasonably sized teams of
agents. Section 2 describes the USARSim simulation software. Next, in section 3
we illustrate our current experience in using the USARSim software to develop
algorithms to be used to control real robots. Finally, conclusions are offered in
section 5.

2 USARSim

USARSim is a high fidelity simulation of USAR robots and environments in-
tended as a research tool for the study of HRI and multi-robot coordination.
USARSim supports HRI by accurately rendering user interface elements (par-
ticularly camera video), accurately representing robot automation and behavior,
and accurately representing the remote environment that links the operator’s
awareness with the robot’s behaviors. The current version of USARSim consists
of: environmental models (levels) of the National Institute of Standards and
Technology (NIST) Yellow, Orange, and Red Arenas, and Nike site which serve
as standardized disaster environments for mobile robot studies, robot models
of commercial and experimental robots, and sensor models. USARSim also pro-
vides users with the capabilities to build their own environments and robots. Its
socket-based control API allows users to test their own control algorithms and
user interfaces without additional programming. USARSim uses Epic Games’
Unreal Engine 2 [1] to provide a high fidelity simulator at low cost. Unreal is
one of the leading engines in the ”first-person shooter” genre and is widely used
in the gaming industry. It is also gaining a strong following in the academic
community as more researchers use it in their work. Recent academic projects
have included creating VR displays [2], studying AI techniques [3], and creating
synthetic characters [4]. In addition to the egocentric perspective, there are sev-
eral other features of the Unreal Engine that make it particularly appealing for
HRI research.

– Graphics: The Unreal Engine provides fast, high-quality 3D scene render-
ing. It supports mesh, surface (texture) and lighting simulation, and can
import models from other popular modeling tools such as Maya [5] and 3D
Studio Max [6]. Moreover, its dynamic scene graph technology enables sim-
ulation of mirrors, glass and other semi-reflective surfaces. The high fidelity
of these graphics allows the Unreal engine to simulate realistic camera video,
the most critical feature in current approaches to human control of mobile
robots.

– Physics engine: The Unreal Engine integrates MathEngine’s Karma En-
gine [7] to support high fidelity rigid body simulation. The details of physical
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simulation, including collision detection, joint, force and torque modeling are
encapsulated within the high level game programming language. This fea-
ture lets the simulation replicate both the physical structure of the robot
and its interaction with the environment.

– Authoring tool: The Unreal Engine provides a real-time design tool for
developers to build their own 3D models and environments. The editing
tool, UnrealEd, is fully integrated into Unreal Engine to provide users a
what-you-see-is-what-you-get style authoring tool. UnrealEd permits HRI
researchers to accurately model both robots and their environments.

– Game Programming: The Unreal Engine provides an object-oriented
scripting language, UnrealScript, which supports state machine, time based
execution, and networking on a programming language level. With Unre-
alScript, the rules of the simulation can be manipulated. This affords the
ability to customize the interaction with the simulation to match the specifics
of desired robot behaviors.

– Networking: The Unreal Engine uses an efficient client-server architecture
to support multiple players. This embedded networking capability allows
USARSim to support control of multiple robots without modification.

Figure 1 shows Unreal Engine components and the expandable library of robot-
themed models and environments and control interfaces to acquire sensor data
and issue commands we have added to create the USARSim simulation.

2.1 Robot Models

USARSim currently provides detailed models of six robots: the Pioneer P2AT
and P2DX [8], iRobot ATRV-Jr, the Personal Exploration Rover (PER) [9], the
Corky robot built for this project and a generic four-wheeled car. Figure 2 shows
some of these simulated and real robots. These models were constructed by build-
ing the components of the robot and defining how these parts were connected
using joints which serve as mechanical primitives for the Karma physics engine.
Since the physics engine is mechanically accurate, the resulting movement of
the aggregate robot is highly realistic. Karma uses a variety of computational
strategies to simplify, speed up, and exclude non- interacting objects to achieve
animation level speed without sacrificing physical fidelity. Because USARSim is
intended for use by researchers from diverse backgrounds we have added a re-
configurable robot model to allow researchers to construct and customize their
own robots without detailed mechanical modeling. Building a new robot model
using this facility is as simple as 1) building geometric models for the robot, 2)
configuring the robot model to specify the physical attributes of the robot and
define how the chassis, parts and auxiliary items are connected to each other
and 3) performing additional programming only if the robot needs features or
behaviors not included in the robot model.

2.2 USAR Environments

USARSim includes detailed models of the NIST reference arenas [10], [11] and
will soon include a replica of the fixed Nike site reference environment.
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Fig. 1. System architecture

Fig. 2. Some robots in USARSim
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Fig. 3. The real and simulated USAR arenas

Significantly larger disaster environments are under development for the Vir-
tual Robot USAR demonstration at RoboCup 2005. To achieve high fidelity
simulation, 3D CAD models of the real arenas were imported into Unreal and
decorated with texture maps generated from digital photos of the actual en-
vironments. This ensures geometric compatibility and correspondence between
camera views from the simulation and actual arena. In addition to this basic
structure, the simulated environments include the real and simulated USAR
arenas (figure 3). A collection of virtual panels, frames, and other parts used to
construct the portable arenas are included with USARSim. These efforts attempt
to simulate specific, physical spaces. Using the UnrealEd tool, it is possible to
rearrange these elements to quickly develop alternate USAR layouts in much the
same way the arenas are reconfigured during USAR contests.

2.3 Sensor Models

Sensors are a critical part of the simulation because they both provide the basis
for simulating automation and link the operator to the remote environment.
USARSim simulates sensors by programmatically manipulating objects in the
Unreal Engine. For example, sonar and laser sensors can be modeled by querying
the engine for the distance given the sensor’s position and orientation to the first
object encountered. To achieve high fidelity simulation, noise and data distortion
are added to the sensor models by introducing random error and tailoring the
data using a distortion curve. Three kinds of sensors are simulated in USARSim.

– Proprioceptive sensors: including battery state and headlight state.
– Position estimation sensors : including location, rotation and velocity sen-

sors.
– Perception sensors: including sonar, laser, sound and pan-tilt-zoom cameras.

USARSim defines a hierarchical architecture (figure 4) to build sensor models. A
sensor class defines a type of sensor. Every sensor is defined by a set of attributes
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Fig. 4. Sensor Hierarchy Chart

stored in a configuration file. For example, perception sensors are commonly
specified by range, resolution, and field-of-view. To get a sensor with specified
capability, we can either directly configure a sensor class or derive a new sensor
from an existing sensor class. Once the sensor is configured, it can be added to
a robot model, by simply including a line in the robot’s configuration file. A
sensor is mounted on a robot specified by a name, position where it is mounted
and the direction that it faces.

2.4 Simulating Video

Cameras provide the most powerful perceptual link to the remote environment
and merit a separate discussion. The scenes viewed from the simulated camera
are acquired by attaching a spectator, a special kind of disembodied player,
to the camera mount on the robot. USARSim provides two ways to simulate
camera feedback. The most direct is to use the Unreal Client as video feedback,
either as a separate sensor panel or embedded into the user interface. While
this approach is the simplest, the Unreal Client provides a higher frame rate
than is likely to be achieved in a real robotic system and is not accessible to the
image processing routines often used in robotics. The second method involves
intermittently capturing scenes from the Unreal Client and using these pictures
as video feedback an approach that is very close to how a real camera works.
USARSim includes a separate image server that runs alongside the Unreal Client.
This server captures pictures in raw or jpeg format and sends them over the
network to the user interface. Using this image server, researchers are able to
better tune the properties of the camera, specifying the desired frame rate, image
format and communication properties to match the camera being simulated.

3 Validation: Preliminary Results

Mapping is one of the fundamental issues when rescue robots are used to assist
humans operating in buildings. Maps help rescue operators while finding vic-
tims and avoiding dangerous areas. To this end, at the International University
Bremen (IUB) we investigated different mapping strategies with real robots.
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Fig. 5. On the left, the rescue platform developed at IUB. On the right, the model of
the same robot while performing into the simulated yellow arena.

In particular, we focused on grid based maps, and we also tackled the prob-
lem of multi-robot map merging [12]. Recently, however, we have decided to
move towards other approaches, like SLAM [13], that require the identification
of features. In this context, we started to develop algorithms to extract natural
landmarks in unstructured environments. The problem of features extraction has
been faced first in simulation and currently on the real robots. The IUB rescue
robots are self developed systems (see figure 5). The platform has a six-wheels
differential drive, and is equipped with a number of different sensors, including
a proximity range finder, odometry, an orientation sensor, and a set of different
cameras [14]. Victim detection is human supervised, and is assisted by an in-
frared camera and a CO2 sensor. Mapping is performed using the robot’s pose
(provided by odometry and orientation sensor) and the data coming from the
range finder. Developing the model of the IUB robot for the USARSim software
has been a straightforward process. USARSim is shipped with the models of
several robots based on differential drive platforms. This allowed us to quickly
develop the kinematic model of the robot. The proximity range sensor provided
in the USARSim simulation environment can be configured in terms of the num-
ber of beams used to sample the sweeped area, the maximum reachable distance,
and the noise. The real sensor we use (Hokuyo PB9-11) sweeps an area of 162
degrees with 91 beams. Its detection distance is 3 meters, and we experimentally
determined that under the conditions found in the IUB rescue arena the signal
to noise ratio is about 30 dB. These properties can be easily transferred to the
parameters controlling the simulated range finder. We first run the simulated
robot into the model of the IUB rescue arena [15] and gathered the data pro-
duced by the simulated proximity range finder. Then, we run the real robot into
the real arena and collected the same data. Features extraction at the moment is
based on the Hough transform, a widely used tool coming from image processing
and used also in robotics. For line detection, the parameterized form of the line
is used, i.e. ρ = xcosθ + ysinθ where ρ is the perpendicular distance of the line
from the origin and θ is the angle that the normal makes with the x axis. The
basic idea is that the Hough Transform maps points from the Cartesian space to
the (ρ,θ) Hough space. Each point in the Cartesian space corresponds to a sinu-
soidal curve in the Hough Space. Once the hough transform has been performed
on the image, a simple voting scheme can be set up in the hough space. In this
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Fig. 6. On the left, the data collected with USARSim. On the right, the Hough trans-
form calculated on the same data.

Fig. 7. On the left, the data collected with the real robot. On the right, the Hough
transform calculated on the same data.

way, for a given range of values for ρ and θ, each point in the Cartesian space is
mapped to the hough space which accumulates the values in a two-dimensional
histogram. Local maxima of this histogram correspond to lines detected in the
image. In the case of an image, local maxima can easily be found by an ap-
propriate hill climbing algorithm. However in the case of range finder data, we
have only a few data points and a rather vast space for ρ and θ. This results in
a very sparse accumulator for which hill climbing is not ideally suited. So in this
case, it makes sense to find the global maximum, remove those scan points that
contribute to this line, and repeat the procedure until the global maximum drops
below a certain threshold of the initial maximum. Note that the discretization of
the Hough space must be tuned according to the problem. If the discretization
is too fine, we might find several local maxima too close to each other in the
Hough space. However, the degree of discretization directly affects the precision
of the detected lines, so it should not be set too low. The following figures show
a comparison between the data collected with the simulator (figure 6) and with
the real robot (figure 7), as well as the corresponding Hough transforms. The fine
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tuning of parameters was completely performed within USARSim. No change
was necessary when the code was later used to perform the same processing on
real data.

4 Future Work

Though the initial results with USARSim appear promising, further develop-
ments are needed in order to make it a really effective tool. Specifically, more
models of robot sensors are under planning and will be developed. Given the im-
portance that video input has in real robots, the improvement of its simulation
is a must. For example stereo vision, which proved to be highly successful in the
Real Robots League will be available inside USARSim as well. Along the same
lines, the possibility to simulate infrared cameras has to be considered, because
of their high potential for victim recognition. Also other sensors like CO2 probes,
thermometers, and similar will be included.

Along the same lines, more robot models will be developed. This is particularly
important in the search and rescue domain, where custom platforms with high
mobility are often developed to overcome obstacles. With this respect, one of
the more urgent aspects to address is the simulation of tracked vehicles. Finally,
in order to make the migration of code developed under USARSim towards real
robots an easy task, common interfaces need to be developed. This is already
partially achieved by the Player [16] interface currently available, though at the
moment few experiments in this direction have been performed.

5 Conclusions

In this paper we introduced USARSim, a high fidelity simulation tool which
supports development of advanced robotic capabilities in complex environments
such as those found in the urban search and rescue domain. We showed how
USARSim’s detailed models of the arenas used to host the RoboCupRescue
Real Robot League competitions, along with kinematically correct robot models
and simulated sensors, can provide a rich environment for development of robotic
behaviors and innovative robot designs. We further showed initial experimental
results captured at IUB which demonstrate that a high level of correlation can
be obtained between the simulated environment and real arenas. This was shown
through a feature extraction example using a simulated range sensor within the
simulated environment and a real range sensor deployed on a robot within an
actual arena. Such correlation reinforces expectations that algorithms developed,
and shown to be effective, within the simulated environment can be transferred
to real robots with reasonable expectations of effectiveness; thus USARSim can
reduce the need for costly and problematic robot hardware to support iterative
development and testing practices.

USARSim’s usefulness in this regard will be on display to the community at
this year’s RoboCup 2005 in Osaka, Japan, where it will be demonstrated as the
basis for a new league to compliment the existing RoboCupRescue leagues: the
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Real Robot League and the Simulation League. Specific rules for this proposed
league, called the RoboCupRescue Virtual Robot, are under development. But
the performance metric used in the Real Robot League has been adopted to
maintain close ties between league goals and approaches. Existing models of the
rescue arenas housed at NIST, IUB, and elsewhere are already available for dis-
semination, along with several robot models and sensors described previously in
this paper. The plan is for each year’s competition to feature an entire building,
with partially and fully collapsed sections, which will be made available as prac-
tice environments after the competition. This proposed league, if adopted after
the Osaka demonstration, would provide a logical link between the required per-
ception and negotiation of physical environments within the Real Robot League
arenas, and the citywide responder allocation tasks associated with the Sim-
ulation League. The goal is to ultimately combine efforts in all three levels of
abstraction to help develop and demonstrate comprehensive emergency response
capabilities across a city and within particular buildings.
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Abstract. Sound source localization can be used in the Robocup Rescue Robots
League as a sensor that is capable to autonomously detect victims that emit sound.
Using differential time of flight measurements through energy cross-spectrum
evaluation of the sound signals, the angular direction to multiple sound sources
can be determined with a pair of microphones for SNRs better than -8dB. As-
suming that the robot pose is known, this information is sufficient to create prob-
abilistic occupancy grid map of the sound sources in the environment and thus
localize the victims in a global map. This has been demonstrated using example
measurements in an urban search and rescue scenario.

1 Introduction

Urban search and rescue robotics has established itself as a new field for teleoperated
and autonomous robots in the recent years. One of the major advances of the field has
been the establishment of regular competition-based benchmarks such as the Robocup
Rescue Robots league. ([2],[3],[4]) As the competition is using a scoring system that is
adapted to new challenges each year, the focus within the competition can be shifted
slowly from teleoperated systems with a main focus on mechanical engineering and mo-
bility issues to more advanced systems with limited autonomy up to fully autonomous
systems. Currently, most teams rely on teleoperation and visual feedback through on-
board cameras. In the last year, mapping of the environment has become a standard
capability of many teams, but victim localization is still done by the operator by using
the visual feedback from the teleoperated robot. The development of sensors capable of
automatic victim identification, localization and state assessment is therefore the next
step towards fully autonomous rescue robots.

This paper presents a novel approach for an inexpensive victim localization sensor
based on a stereo microphone pair.

The IUB Robocup Rescue team has been competing in the Robocup Rescue Robot
League competitions in Fukuoka [5] and Padova [6].

All disaster scenarios set up at these competitions contain a number of victim dum-
mies that have human appearance and are equiped with detectable features such as
movement, sound, body heat and CO2 emission. The performance of each team is eval-
uated through a common scoring function that analyzes the quality of the information

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 312–322, 2006.
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gained and scores it against the number of human operators used by the team. This
function thus both rewards autonomy and high-quality localization and multi-sensoric
assessment of victims and their state.

During the 2002 competition, it became clear that the onboard autio sensor was
useful within the competition as it was the only sensor that was capable of locating
invisibly trapped or entombed victims. This finding has been one of the reasons for
the extension of the robots with additional sensors with similar capabilities, such as
body-heat detection through thermographic cameras.

With the introduction of the new control middleware FASTRobots [7] in the 2003
robot system, it became possible to add more sensors to the robot platform, first for
non-victim related tasks such as localization and environment mapping. The generated
LADAR-based map provided to be useful for robot localizaion [8]. However, as no
automatic victim localizing sensor was available, the localization and identification of
the victim dummies was still performed manually by the operator. In order to do this,
the operator would carefully analyze all available sensors including the sound from the
microphones, then note down the perceived signs of the presence and state of the victim
in a paper victim sheet and then mark the victims location by using a mouse to click on
the approximate position of the victim next in the LADAR map that is displayed on his
operator control station screen together with the robots current position and orientation.
This process is time-consuming and error-prone.

For automatic victim localization with bitmap sensors such as the visible light and
thermographic cameras, computer vision based approaches may be used. However,
these approaches are computationally expensive and their performance in the highly
unstructured environment of a robocup rescue scenario is hard to predict.

The sensor described in this paper is capable of localizing a sound source in a global
probabilistic occupancy grid map of the environment. These sources still have to be
manually inspected and eventually identified as victims using the onboard cameras and
other sensors but as their location is known now, their localization in the global map will
be much more precise. The approach can easily be distributed over multiple robots, as
no strict timing requirements for the acquisition of the sound data is required. To allow
this, it is assumed that the sound sources stay at fixed positions in the environment.

The remaining part of this paper is structured as follows: The second section gives an
overview over the system setup and an introduction into the theory of sound source lo-
calization. The third section describes an experiment to estimate the performance of the
obtained sound source localization and shows that the measurements obtained are close
to the theoretical boundaries. These results are then used to simulate the performance
of a probabilistic map based on a occupancy grid. Then, an experiment is described that
uses an existing robot to gather data in a rescue scenario to produce such a probabilistic
map. The last section discusses the results obtained so far.

2 System Overview and Theoretical Analysis

A typical robot system used for Robocup rescue consists of one or more mobile robots
and one or more operator control stations. For the IUB Robocup Rescue system, the
communication between the mobile robots and the control station is implemented
through the FAST-Robots middleware[7]. Each mobile robot runs an instance of the
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Fig. 1. An overview of the sound source localisation system

platform component of the framework that instantiates multiple sensor and actuator
driver objects that communicate with the corresponding sensor and actuator hardware.
The platform communicates with its counterpart, the controlstation component running
on the control stations through a TCP/IP network. The controlstation visualizes sensor
data coming from the platform and transmits control commands to the platform.

The sensor described in this paper can easily be accomodated by this framework.
Figure 1 shows an overview of the components that are part of the sound localization
sensor system.

2.1 Microphone Phase Array

The problem of sound source localization can be solved in different ways. One approach
is sound source localization based on beamforming techniques, such an approach has
for example been presented in [1]. However, our approach is using the cross-energy
spectrum of signals recorded at microphone pairs to evaluate the sound source direc-
tions. This is computaionally less expensive for a small number of microphones and
allows for easier detection of multiple sound sources. This approach is explained in the
following paragraph.

A simple way to model the localisation of a sound source (sometimes also called
“passive sonar”) by using multiple microphones is the so-called linar microphone phase
array. In this model, a number of microphones are located equidinstant along the x axis
of our coordinate system. It is then possible to determine the position of a sound source
in the coordinate system using differential time-of-flight measurements, i.e. the time
difference for the signal of the same sound source to arrive at different microphones.
This system however cannot detect the correct sign of the y coordinate, i.e. it cannot
distinguish between sound sources in positive or negative y direction. When the array is
limited to only two microphones, the position of the sound source can only be restricted
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Fig. 2. Two hyperbolas indicating the possible location of the sound source for a given time-of-
flight difference δt and −δt

to a hyperbola given by the path length difference of the sound signals from the source to
the microphones. These hyperbolas can be approximated by their asymptotes for sound
sources that are further away than the distance of the microphones, i.e. the direction to
the sound source can be determined.

To determine the time delay between two incoming sound signals at the micro-
phones, the cross-energy spectrum of the two signals is evaluated. Identical, but shifted
signal portions produce peaks in this spectrum; the position of the peak is an indicator
for the delay between the first and the second occurance of the same signal portion in
the different signals. Should there be several distinct sound sources with different rela-
tive delays, one peak for every sound source can be detected. For the remainder of this
section, it will be assumes that only a single sound source is being localized. It will
be shown later that with multiple sound sources can be dealt with using probabilistic
occupancy grids.

In order to process the signal from the microphones, it is sampled with the highest
possible time resolution that the hardware offers. For the standard audio interfaces of
PCs, this is typically 48khz, i.e. 20.8 microseconds between two samples. This conse-
quentially is the shortest delay Δtmin that the system can distinguish. Together with the
speed of sound c, this results in a quantization of the differential distance measurements
into cΔtmin.

As the distance difference δ is quantized, the angular resolution of the microphone
pair detector significantly differs for different angular areas. Angles near the direction
of the normal vector, i.e. “in front” of the microphone pair, can be measured with a fine
resolution and angles in the direction of the line connecting the microphone pair, i.e.
outside of the ’focal region’ can only be measured with a high uncertainty.

2.2 Angular Resolution

The resolution of the localization is strongly depending on the resolution of δ. Given
a sampling frequency fs and the speed of sound c, the maximal time difference of k
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Fig. 3. The angular sectors that can be distinguished by one microphone pair 10cm apart, using
48kHz sampling frequency

samples is reached, when a signal is coming from the x-axis outside of the microphone
pair. It is:

k =
m · fs

c
(1)

δ varies from −k to k samples.
Evaluating the angles for all possible k, the half-circle in front of the microphone

pair can be divided into different zones, a sample resolution is shown in figure 3.
With several angular measurements from different positions, the position of the

sound source can be determined through triangulation.
Assuming that the sound source is immobile, these angular measurements can as

well be done sequentially by one robot only. The robot needs to measure at one point,
move for a precise distance and measure the angle again. Using both angles and the
base length, triangulation can be performed.

Assuming that the current pose of the robot is known, the system has sufficient in-
formation to create a probabilistic occupancy grid map [12] of the environment in a
world coordinate system. Unlike the occupancy grid map used for robot navigation[8],
this map does not contain information about the probability of cells being occupied by
obstacles but with the probability of cells being the location of a sound source.

This type of map has been chosen over other approaches to probabilitstic mapping
([9],[10],[11] or see [13] for an excellent overview of the topic) as we assume that it
is hard to extract features from the sensory input that could be redetected in the future.
Moreover, the location of sound sources will not provide much structure as the location
of walls in an office environment would give us. As this sensor is not intended for robot
self-localization but only for sound source localization, it is assumed that an accurate es-
timation of the current pose of the robot is provided by other means. Note that this infor-
mation could be provided through other means of probabilistic mapping and localization
such as SLAM[11], but this mapping would then use other sensors such as LADAR.

The probabilistic map building algorithm is implemented in a straight-forward way:
For every grid cell a value is calculated that represents its change in probability of being
a sound source based on the current sensor data and this value is added to the current
value stored for the grid cell.
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The calculation of this change in probability does not only depend on the current
sensor value but also on the properties of the sensor, i.e. on a sensor model. Here we
assume that the sensor only gives good information for sound sources that are neither
too faint (i.e. far away) nor are outside of the focus area where angular information is
unreliable. Information concerning these areas is ignored.

If a sound source is located within the focus area of the sensor, its signal energy
level is compared against a threshold T . If there is no signal higher than the treshold,
the angular area reaching from the robot to a constant maximum reliability distance
D is considered free of sound sources and every cell that has its centerpoint in this
angular area receives a negative probabiltity change −Δ. If a sound source is detected
in the angular area, every cell receives a positive probability change Δ. The probability
values in the cells are then updated and limited to reasonable positive and negative
maxima PMAX and PMIN .

Initially, all cells are initialized with a value of 0 that corresponds to a maximum of
uncertainty for this cell, we neither know that it is a sound source nor we know that it
is one.

It can easily be seen that the occupancy grid can solve the triangulation from two
different robot poses provided that the sound source is within the detection range from
both poses. If the robot is in the first pose A, it will increase the probability value of all
cells between its location and its detection range in the direction of the sound source. All
other cells within the detection range will receive a decrease in probability value. After
a number of sensor readings are analyzed, the probability value for all cells between the
robots current position and the sound source will converge to a value of PMAX and all
other cells of the grid will either remain 0 or will converge to PMIN . If the robot is now
moved to a pose B and if the sound source is still in the detection range of the robot, it
will further increase the probability value in all cells in between of the current position
of the robot and the sound source and it will decrease the probability value for all cells
that are not in the direction of the sound source, thus the probability value of all cells in
the proximity of the sound source will remain at PMAX and all other cells will either
converge to PMIN or remain 0.

Unfortunately, a sector that has received a positive probability from pose A and is not
in the detection range from pose B will remain with PMAX probability value. However,
this value is misleading as it only depends on a single measurement and therefore is not
a true triangulated value. These sectors would lead to false positives, i.e. the detection
of a sound source when there is none. In order to eliminate these false positives, ad-
ditional measures have to be taken. A true triangulation consists of two measurements
that use different angular directions to establish the triangulation. To distinguish true
triangulations from false positives, the robot taking the measurement and incrementing
the probability value in a cell additionally computes an angular sector ID in world co-
ordinates. This angular sector ID is an integer that numbers the angular sectors of the
semicircle from 0 to ASMAX so that every direction gets a distinct ID. If a robot finds
a different sector ID in the grid cell it is about to increment, it sets a flag in the cell
indicating that it contains the result of a true triangulation.

This algorithm uses a number of parameters. The parameters that specify the size
of the distinguished angular areas are determined by the geometric properties and the
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sampling frequency of the sensor. The treshold energy T and the reliability distance
D parameters are dependent on the properties of the transmission system formed by
the sound sources to be detected, the transmission medium and the microphones. The
Parameters Δ, PMAX and PMIN determine the number of iterations that are needed
for convergence. Additionally, the model described here assignes the same probability
value increase to all grid cells in a sector. This does not reflect the real probabilities as
the sector becomes wider when the cells are further away from the sensor. Consequently
an individual cell that is further away should receive a linearily lower probability in-
crease than a cell that is close to the sensor, but the simulations have shown that for
rather small angular sensors, a fixed value is a reasonable approximation.

3 Experimental Results

The perfomance of the whole system was evaluated using a combination of simulations
and measurements.

First, the performance of the angular detector in the presence of (white-gaussian)
background noise was simulated and it was concluded that the system is rather immune
to this kind of disturbances, provided that the SNR at the receiver is above −8dB.1

Then, the predicted angular resolution of the sensor was verified in an experiment. In
this experiment, a mobile sound source and the microphone pair were set up on a desk.
In this setting, all angular sectors could be detected correctly. (see [14]).

Fig. 4. One of the zones that can be distinguished by the sensor

3.1 Probabilistic Mapping

In order to to estimate the performance of the sensor in a probabilistic grid map, a sensor
model has been derived from the data gained so far. The sensor model has a number of

1 Altough white-gaussian background noise is far from realistic, it is a good test pattern for this
situationas it has minimal cross-correlation, any correlated noise would result in additional
sound sources being detected with only minor impact on the detection of the primary source.
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Fig. 5. A simulation of three sensor readings of a single sound source with a simple sensor model

Fig. 6. A simulation of three sensor readings of a single sound source with a better sensor model
using a touchcount filter

different zones that can be distinguished, each zone consisting of two angular sectors in
positive and negative y direction as shown in Figure 4. To produce this figure, a sensor
in the origin with a normal orientation of 45 degrees and 16 distinguishable angular
sectors and a sound source at position x=2/y=1 was simulated. As the sensor cannot
distinguish the exact position of the sensor in the zone, the probability of the presence
in the zone is uniformly increased (red areas) and the probability of it not being in any
other zone is uniformily decreased (green areas). The sensor is assumed to have a fixed
range and for sources that are further away, it is assumed that the source is lost in the
background noise, so it will not be detected. From the simulation result, it can be seen
that a single sensor measurement is quite ambiguous.

In Figure 5, the simulation results for a sound source from three different sensor
positions are shown. In this case, the sound source at position x=1/y=1 is clearly indi-
cated with a positive probability. However, there are other parts of the map that receive
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positive probability. This occurs due to the fact that these areas are only covered by a
single sensor reading, so the probability is increased by the sensor model of that one
sensor reading, but is never decreased by the model of another sensor reading. This sen-
sor model is formally correct, as there could be indeed three independent sources that
are each only detectable by a single sensor. However, it is much more likely that only
a single source creates the sensor readings. Therefore, we add an additional counter
to each cell of the probabilistic map that counts how many sensor readings have con-
tributed to the final value of the cell. By comparing this value against a threshold and
filtering the result by this, we obtain the simulation result shown in Figure 6. Here the
sound source can clearly be distinguished as the single point with positive probability
that remains.

3.2 Full Sytem Experiment

To test the performance of the mapping system under the intended working conditions,
a robot was placed in a scenario with one sound source present (see Figure 7). It was
driven into 4 different poses and the perceived sound recorded. The data was analyzed
and fed to the mapping algorithm yielding the map shown in Figure 8. The position of
the robot were obtained by measuring the marks after the robot had been removed, thus
eliminating errors created by the self-localization system of the robot.

It is important to note that, due to a design difference in the sensor system, this robot
is using a sensor base length of m = 20cm, which is wider than in the systems used
for simulation and thus leads to 57 distinguishable sectors. Using this high number of
sectors did not improve results, so the angular resolution was then reduced again by
joining several neighboring sectors to produce results comparable to the simulation.
Additionally, the sensor range in the sensor model was increased as it was found that
the attenuation model in simulation was overestimating, so sound sources further away
could be detected by the sensor.

On Figure 8, it can be seen that the region detected as sound source is much wider
than in the theoretical simulation. This can be explained by the fact that the robot po-
sition is further away from the sound source than in the simulated case and that the

Fig. 7. An image of the scenario. The robot pose is marked with red tape, the open side of the
rectangle being the back of the robot.
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Fig. 8. The map created from real sensor readings. There is one source present and measurements
have been taken from 4 different poses.

robots were all measuring the sound source from similar positions, this leads to a fuzzy
and elongated localization. Additionally, it was found that the angular resolution of the
sensor and the resolution of the grid map are important parameters to be tuned. In this
case, a map resolution of 5 centimeters per grid cell and an angular resolution of 7.5
degrees produced the best results, for finer angular resolutions an more coarse grids, the
sensor beams would not overlap sufficiently to allow for a good detection.

4 Conclusion

The problem of automatic victim localization in RoboCupRescue has been presented.
A solution using microphones mounted on mobile robots and differential time-of-flight
measurements of sound has been simulated and its accuracy shown to be sufficient in
a simple experiment. A mapping algorithm using occupancy grids has been presented
based on the experimental finding and it has been shown in simulation that is able to
localize a sound source in a global map.

The next step will be the implementation of the sensor on a robot of the IUB Robocup
Rescue team and the comparision of the simulation results with the real performance
of the sensor. This will be an improvement over current victim localization techniques
that are entirely based on human operators.
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Abstract. RoboCupRescue Simulation is a large-scale multi-agent simulation
of urban disasters where, in order to save lives and minimize damage, rescue
teams must effectively cooperate despite sensing and communication limitations.
This paper presents the comprehensive search and rescue approach of the ResQ
Freiburg team, the winner in the RoboCupRescue Simulation league at RoboCup
2004.

Specific contributions include the predictions of travel costs and civilian life-
time, the efficient coordination of an active disaster space exploration, as well as
an any-time rescue sequence optimization based on a genetic algorithm.

We compare the performances of our team and others in terms of their capa-
bility of extinguishing fires, freeing roads from debris, disaster space exploration,
and civilian rescue. The evaluation is carried out with information extracted from
simulation log files gathered during RoboCup 2004. Our results clearly explain
the success of our team, and also confirm the scientific approaches proposed in
this paper.

1 Introduction

The RoboCupRescue simulation league is part of the RoboCup competitions and aims
at simulating large scale disasters and exploring new ways for the autonomous coor-
dination of rescue teams [8]. These goals are socially highly significant and feature
challenges unknown to other RoboCup leagues, like the coordination of heterogeneous
teams with more than 30 agents, the exploration of a large scale environment in order
to localize victims, as well as the scheduling of time critical rescue missions. Moreover,
challenges similar to those found in other RoboCup leagues are inherent to the domain:
The simulated environment is highly dynamic and only partially observable by a single
agent. Agents have to plan and decide their actions asynchronously in real-time. Core
problems in this league are path planning, coordinated fire fighting and coordinated
search and rescue of victims.

This paper presents the comprehensive search and rescue approach of the ResQ
Freiburg team, the winner in the RoboCupRescue Simulation league at RoboCup 2004.
We show how learning and planning techniques can be used to provide predictive mod-
els that allow to act rationally despite the high dynamics of the simulation. Specific

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 323–334, 2006.
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contributions include the prediction of the life-time of civilians based on CART [4]
regression and ADABoost [6], travel cost prediction and its integration into target selec-
tion, the efficient coordination of an active disaster space exploration based on sensing,
communication and reasoning, as well as an any-time rescue-sequence optimization
based on a genetic algorithm. These techniques have in common that they provide ResQ
agents with formal models for reasoning about the present and future state of the sim-
ulation despite its high dynamics. These models allow deliberative instead of purely
reactive behavior, a capacity that we believe to be the reason for our team’s success.

We have conducted an extensive comparison of the performance of our team with
the performance of other teams in terms of the capability of extinguishing fires, freeing
roads from debris, disaster space exploration, and civilian rescue. The evaluation is car-
ried out with information extracted from simulation log files that were gathered during
the RoboCup competition 2004. This evaluation gives much more information about
a team’s strengths and weaknesses than the standard scoring in the RoboCup Rescue
Simulation league; yet it can be automated and therefore provides an instrument for
precise analysis of teams. The results of our study clearly explain the success of our
team, and also confirm the scientific approaches proposed in this paper.

The remainder of this paper is structured as follows. We present the active search
and exploration approach in Section 2. The civilian rescue based on sequence optimiza-
tion is described in Section 3. Path planning and travel cost prediction are covered in
Section 4. Finally, an extensive evaluation and analysis of the 2004 RoboCupRescue
competition is given in Section 5 and concluded in Section 6.

2 Exploration

In a partially observable environment like the RoboCupRescue simulation, exploration
is the key means for agents to enlarge their knowledge. It is especially important to find
injured civilians as quickly as possible without losing time by redundant exploration of
the same area by several agents. Our agents achieve this ability by maintaining a Knowl-
edge Base (KB) that keeps track of information collected on civilians during the search.
Each agent maintains locally its own KB that is updated from senses, communication
and reasoning. The KB allows them to efficiently focus and coordinate the search for
civilians. It maintains the knowledge of an agent on the relation between the set of civil-
ians C and the set of locations L. This is carried out by maintaining for each civilian
c ∈ C a set of locations Lc that contains all possible locations of the civilian. Further-
more, we maintain for each location l ∈ L a set of civilians Cl that contains all civilians
that are possibly situated at location l. Initially, ∀c ∈ C, Lc = L and ∀l ∈ L, Cl = C.

The KB allows us the calculation of the expectation of the number of civilians sit-
uated at any location l. This is achieved by calculating the probability that civilian c is
situated at location l, given the current state of the knowledge base:

P (loc(c)= l | KBt) =
{ 1

|Lc| if l ∈ Lc

0 otherwise
(1)

Which yields the expectation on the number of civilians situated at location l:

E[|Cl|] =
|C|∑
i=0

P (loc(ci) = l | KBt) (2)
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Note that it follows from the above that initially the expectation for each location l is
given by E[|Cl|] = |C|

|L| . That means that we expect civilians to be uniformly and inde-
pendently distributed on the map. This is clearly not the case if buildings have a different
size or different degree of destruction. As an improvement, one could incooperate this
information as well. The KB is updated by either visual or auditory perception, com-
munication of perception from other agents, and reasoning with respect to the agent’s
sensor model. The sensor model returns for any location l the set of locations Vl and Al

that are in visual (10m) or auditory (30m) range of l, respectively [11].
The KB is implemented as a |C|x|L| boolean matrix, whereas C is the set of civilians

and L the set of locations. Any entry 〈c, l〉 is set to false if a civilian c is definitely not
at location l, and set to true otherwise (including the case of uncertainty). Initially, all
entries are set to true. Based on the sensor model, one can perform either positive or
negative update operations on the KB:

1. Positive updates:
(a) Civilian c seen at location l

We can reduce the set of possible locations for civilian c to l: Lc := {l} and
reduce 1 the set of possible civilians at location l to c: Cl := {c} ;

(b) Civilian c heard at location l
We can remove civilian c from all civilian lists that are not in range of the
sensor: ∀l′ : l′ /∈ Al ⇒ C′

l := C′
l \ {c} and reduce the set of possible locations

for civilian c to all locations that are in range of the sensor: Lc := Lc ∩Al

2. Negative updates:
(a) Civilian c not seen at l

We can reduce the set of possible locations for civilian c by the set of locations
within visual range: Lc := Lc \ Vl and remove civilian c from all civilian lists
for locations within visual range: ∀l′ : l′ ∈ Vl ⇒ C′

l := C′
l \ {c}

(b) Civilian c not heard at l
No safe conclusion possible

These update rules are very efficient due to the fact that the perception of the agents is
free of noise. It is assumed that the agent is always able to see any civilian within the
range of its sensors. Certainly this is not true in a real disaster situation. If, for example,
victims are covered by rubble, they are even for humans hard to see. However, the
proposed update rules can easily be enhanced towards probabilistic methods if there are
probabilistic sensor models, which in turn have to be supported by the RoboCupRescue
simulation system.

District exploration. District exploration is a multi-agent behavior for the coordinated
search of buried civilians. The behavior guarantees that at any time each agent is as-
signed to a reachable and unexplored district on the map. In order to minimize the
number of times an agent gets stuck in a blockade during exploration, districts have to
consist of highly connected locations. The connectivity of two locations results from the
number of alternative paths between them, the number of lanes and degree of blockage
of each single road, and the degree of uncertainty on the state of the road. Due to the fact
that blockades on the map and hence the map’s connectivity is unknown to the agents

1 Note if we see more than one civilian at the location, the set of possible civilians at l has to
contain all of them.
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in advance, the clustering has to be revised continuously. We used agglomerative [3]
and KD-tree [2] based clustering in order to calculate a near optimal separation of the
map into districts and to approximate the connectivity between them. These methods
calculate from a given connectivity graph G = 〈V, E〉 of a city, where V represents the
set of locations and E the set of connections between them, a hierarchical clustering.
The hierarchical clustering, represented by a binary tree, provides at each level a par-
titioning of the city into n districts, reflecting the reachability of locations on the map
(e.g. locations with a high connectivity are found within the same cluster). Based on this
clustering, each team member is exclusively assigned to one reachable and unexplored
cluster that represents a district on the map.

Active Exploration. Active exploration is an extension to the previously described
district exploration task in that the search focuses on locations with high evidence on
civilian whereabouts. This is carried out by exploiting the knowledge collected from
senses, communication, and reasoning in the KB. Evidence from the KB is utilized by
calculating an utility value U(l) which is equal to the number of civilians expected to
be found at observable locations Ol:

U (l) =
∑
k∈Ol

E[|Ck|] (3)

which yields, after inserting equation 2:

U (l) =
∑
k∈Ol

|C|∑
i=0

P (loc(ci) = k | KBt) (4)

The overall sum of utilities over time can be maximized by the selection of targets
with high utility as well as targets that are reachable within a short amount of time.
Hence, from the set of locations LD that are within the agent’s district, a target location
lt is decided based on the trade-off between utility U (l) and travel cost T (l):

lt = argmax
l∈LD

U (l)− α ∗ T (l) (5)

whereas α is a constant regulating the trade-off between the estimated travel costs and
the exploration utility and has to be determined experimentally. The estimated travel
costs T (l) are provided by a path planner that estimates costs based on a pre-calculated
Dijkstra matrix (see Section 4).

Active surveillance. Furthermore, it is important for the rescue team to have up-to-
date information on the injured civilians that have been found during the exploration
task. The prediction module, described in Section 3, provides predictions of the civilian
life time that are the more accurate the more up-to-date the information on buriedness,
damage and health is. As we will describe in Section 3, the number of civilians that
can be rescued depends on the efficiency of the rescue team, which in turn, depends on
the accuracy of predictions. Hence, we extended the active exploration behavior in that
it assigns agents to the surveillance of known civilian locations after the map has been
explored sufficiently. The surveillance behavior is carried out by randomly sampling
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interesting locations from the set of known civilian locations whereby locations with
obsolete information are selected with high probability. In general, information on lo-
cations are considered as obsolete if they haven’t been visited by agents for a long time.

The number of agents that are assigned to active search is limited to |L|
k , whereas L

is the set of open locations and k a constant that has to be determined experimentally.
All agents above the assignment limit are performing active surveillance. If k = 1 then
there will be at least as many explorers as open locations. If k < 1 then the exploration
speed will be increased, but in turn there might be obsolete information on the health
state of known victims. If k > 1 then the quality of information on known victims will
increase, but the search for new agents might take more time.

Team coordination. Besides the team coordination due to the assignment of districts,
it is necessary to further coordinate the multi-agent search in order to prevent the mul-
tiple exploration of locations. This is carried out by communicating the information on
found civilians as well as locations that have been visited. However, if agents select ex-
ploration targets from the same district (i.e. due to the overlap or the shortage of avail-
able districts), it might occur that they explore locations twice. We implemented two
methods to locally reduce the probability of multiple target exploration. Firstly, agents
select exploration targets from a probability distribution. Secondly, agents negotiate tar-
gets they plan to explore in the next cycle via the short range communication channel
(say and hear). It turned out that the latter performs poorly if agents are able to move
much longer distances in a cycle than they are able to observe, which is true for the
current parameter setting of the RoboCupRescue kernel. The problem could be solved
by performing the negotiation via the long-range communication. Unfortunately, this
does no pay off since long-range communication is a limited resource. Hence, agents
choose their exploration targets from a probability distribution that assigns to each tar-
get a probability that is proportional to the score following equation 5. Note that the
local target selection strategy could further be improved by utilizing game-theoretic
methods.

3 Civilian Rescue

Lifetime prediction. To achieve good results in the civilian rescue process, it is neces-
sary to know a civilian’s chance of survival. If there is a reliable prediction for the life
time of a certain civilian, the scheduling of the rescue operation can be adapted accord-
ingly. On the one hand, it is possible that a civilian does not need to be rescued at all
because she will be alive at the end of the simulation. On the other hand, it is possible
that a civilian would die within a short amount of time and therefore has to be rescued
as soon as possible in order to survive.

For the ResQ Freiburg agents, machine learning techniques were used to gain a pre-
diction of the civilian’s life time and classification into survivors and victims. We cre-
ated an autorun tool that starts the simulation and the agents simultaneously in order
to collect data. The tool was used for several simulation runs on the Kobe, VC, and
Foligno maps, from which a large amount of datasets were generated.

A data set consists of the values for health and damage of each civilian at each time
step gained during the simulation. In order to reduce the noise in the data, simulations
were carried out within 400 time steps, without rescue operations by the agents and
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without fires on the map. The latter two conditions are necessary in order to prevent un-
expected changes of the damage to a civilian due to its rescue, resulting in zero damage,
or due to fires, resulting in unpredictable high damage. For the calculation of the life
time, there has to be determined a time of death for each dataset. Hence, the simulation
time was chosen to be 400 rounds, which seemed to be a good compromise between an
ideal simulation time of ∞ and the standard simulation time of 300 rounds that would
lead to a non-uniform distribution of the datasets.

Regression and classification was carried out with the WEKA [12] machine learning
tool. We utilized the C4.5 algorithm (decision trees) for the classification task. The re-
gression of the simulation time is based on Adaptive Boosting (Ada Boost) [6]. Since
the current implementation of the WEKA tool does only provide Ada Boost on classi-
fication, we had to extend this implementation for regression [5], which then has been
applied with regression trees (CART) [4].

The regression trees have been evaluated on test data sets in order to learn the confi-
dence of a prediction in dependency of the civilian’s damage and the distance between
the query time and the predicted time of death. Confidence values are necessary since
the higher the difference between the observation and the civilian’s actual time of death,
the less accurate predictions are. The sequence optimization, described in Section 3, re-
lies on the confidence values in order to minimize sequence fluctuations.

Genetic Sequence Optimization. If the time needed for rescuing civilians and the
life time of civilians is predictable, one can estimate the overall number of sur-
vivors after executing a rescue sequence by a simulation. For each rescue sequence
S = 〈t1, t2, ..., tn〉 of n rescue targets, an utility U(S) is calculated that is equal to the
number of civilians that are expected to survive. Unfortunately, an exhaustive search
over all n! possible rescue sequences is intractable. A straightforward solution to the
problem is, for example, to sort the list of targets by the time necessary to reach and
rescue them and to subsequently rescue targets from the top of the list. However, as
shown in Section 5, this might lead to unsatisfying solutions. Hence, we decided to
utilize a Genetic Algorithm (GA) for the optimization of sequences and thus the subse-
quent improvement of existing solutions [7].

The time for rescuing civilians is approximated by a linear regression based on the
buriedness of a civilian and the number of ambulance teams that are dispatched to the
rescue. Travel costs between two targets are estimated by averaging over costs sampled
during previous simulation runs. This is much more efficient than the calculation of
exact travel cost involving, in the worst case, the calculation of the Floyd-Warshall
matrix in O(n3).

The GA is initialized with heuristic solutions, for example, solutions that greedily
prefer targets that can be rescued within a short time or urgent targets that have a short
lifetime. The fitness function of solutions is set equal to the previously described utility
U(S). In order to guarantee that solutions in the genetic pool are at least as good as
the heuristic solutions, the so called elitism mechanism, which forces the permanent
existence of the best found solution in the pool, has been used. Furthermore, we utilized
a simple one-point-crossover strategy, a uniform mutation probability of p ≈ 1/n, and
a population size of 10. Within each cycle, 500 populations of solutions are calculated
by the ambulance station from which the best sequence is broadcasted to the ambulance
teams that synchronously start to rescue the first civilian in the sequence.
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One difficulty of the sequence optimization is given by the fact that information
stored in the KB on civilians changes dynamically during each round and thus might
cause fluctuations of the rescue sequence. This can be caused by two reasons: Firstly,
civilians are discovered by active exploration, which is executed by other agents at the
same time. Secondly, predictions vary due to information updates from active or passive
surveillance. The latter effect can be weakened by updating the sequence with respect
to the confidence of predictions. Updates of the information on civilians are ignored, if
they are not statistically significant with respect to their confidence interval.

The effect of information updates due to exploration has to be controlled by de-
ciding between rescue permanence and rescue latency, i.e. how frequently change the
ambulances their targets and how fast can they react on emergency targets. Therefore
we implemented additionally a reactive mechanism that recognizes emergency rescue
targets that have to be rescued immediately. A target is defined as an emergency target
if it would die if not being rescued within the next round. However, any other target is
only taken as emergency target, if the current target would safely survive if postponing
its rescue.

4 Path Planning

Every rescue agent must do path planning in order to reach its selected target position.
ResQ Freiburg agents, however, use path planning already during target selection and
thus can account for the time needed to reach a target when calculating its utility. Such
an approach is only possible with a very efficient path planner that can be queried
several hundred times in each cycle.

The efficiency of the ResQ path planner stems from the following realization (ex-
plained in more detail in [9]): many nodes on the road graph of a RoboCup Rescue
map connect exactly two roads plus one or more houses. If none of these houses is the
source or destination of the path planner query, the node can only be crossed, leaving no
choices for the planner. Only nodes with more than two adjacent roads constitute real
crossings. The road segments and simple nodes between the crossings can be joined
in one longroad, which has no inner crossings. Longroads and crossings form a new,
much smaller graph on which shortest path algorithms can be run much more quickly
than on the larger original graph.

Since every node n from the original graph lies on a longroad, each path to or from n
must include one of the two endpoint crossings of that longroad, c1

n and c2
n. An optimal

path from nodes s and e from the original graph therefore has length

min
i,j

(
sci

s + P (ci
s, c

j
e) + cj

ee
)

where i, j ∈ {1, 2} (6)

To solve this formula efficiently, the ResQ planner stores the direct routes from a
location to its adjacent crossings. The optimal paths P (ci

s, c
j
e) between crossings are

computed with Dijkstra’s algorithm.
Adequacy of the path planner for the Rescue Domain is even more important than its

efficiency. Most often agents want to know how long it will take to reach destinations.
Therefore the cost functions used by the ResQ path planner have been designed not to
return path lengths (although this is of course possible) but to predict the time it will
take an agent to reach its destination. To compute this, the planner tries to consider
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not only the length of a path, but also partial blockades, acceleration/deceleration at
crossings, right of way (depending on from where a crossing is entered), and other
agents’ trajectories. While in the RCR system, these factors are accurately simulated, it
is necessary for the ResQ Path Planner to use predictive functions in order to obtain the
speed for several hundred queries per second.

We have provided several such prediction functions which, depending on the situa-
tion, use different aspects of an agent’s knowledge about the world. For example, agents
may sometimes want to choose only among roads that are known to be unblocked, but
in other cases may ignore blockades completely in order to find out the minimal time to
reach a target. Since the complex metrics used account for many of the specific influ-
ences mentioned above, we have been able to give a quite accurate prediction of travel
durations in many cases. This prediction is then utilized by other components, e.g. the
sequence optimizer for civilian rescue (cf. Section 3).

The simulation is cycle-based. Hence, finding paths with minimal lengths or even
minimal duration is often not the wisest choice, since two paths differing only by a few
meters or, respectively, a few seconds can often be considered as equivalent as long as
they will take the same number of cycles to travel. This allows agents to build equiv-
alence classes among paths and, consequently, targets. Several selection mechanisms
allow to optimize other criteria when, for a set of targets, the expected number of cy-
cles to reach them is equal. It is thus possible for an agent to select the most important
target among the ones most easily reachable or, vice-versa, the closest among the most
important targets.

5 Results

During the competition, teams are evaluated by an overall score that is calculated based
on the state of civilian health and building destruction. However, since this score in-
cooperates the total performance of all agent skills, such as exploration, extinguishing,
and rescuing, it is impossible to assess single agent skills directly. In order to compare
our agents with agents from other teams, the performance of typical agent skills are

Table 1. Percentage of clean roads

ResQ Damas Caspian BAM SOS SBC ARK B.Sheep

Final-VC 74,68 82,22 71,79 70,43 N/A N/A N/A N/A
Final-Random 77,84 86,51 77,66 63,10 N/A N/A N/A N/A
Final-Kobe 92,25 93,74 92,08 92,05 N/A N/A N/A N/A
Final-Foligno 96,41 97,72 97,22 96,07 N/A N/A N/A N/A
Semi-VC 67,93 79,57 68,86 57,90 67,22 57,85 53,27 80,53
Semi-Random 82,53 87,44 77,47 81,93 82,26 79,53 80,30 78,76
Semi-Kobe 92,40 93,65 92,71 92,51 92,62 92,56 93,55 99,72
Semi-Foligno 95,45 97,08 95,58 96,37 96,93 97,07 95,92 83,44
Round2-Kobe 92,52 93,52 91,46 92,46 92,78 93,45 92,25 99,50
Round2-Random 87,74 90,03 87,62 87,71 87,86 88,73 85,03 99,97
Round2-VC 91,34 91,62 90,74 89,87 91,40 90,92 N/A 98,86
Round1-Kobe 89,19 89,51 87,78 88,21 88,30 87,70 91,12 81,17
Round1-VC 91,90 92,13 91,74 91,84 N/A 91,81 91,54 99,82
Round1-Foligno 95,84 96,92 96,52 96,36 94,19 96,62 97,63 80,15

Number of wins 0 7 0 0 0 0 2 5
AVG %: 87,72 90,83 87,09 85,49 88,17 87,62 86,73 90,19
STD %: 8,25 5,09 8,59 11,25 8,93 11,59 13,63 9,96
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Table 2. Percentage of saved buildings

ResQ Damas Caspian BAM SOS SBC ARK B.Sheep

Final-VC 47,21 54,13 81,67 43,19 N/A N/A N/A N/A
Final-Random 24,04 26,38 15,03 12,35 N/A N/A N/A N/A
Final-Kobe 38,24 61,89 38,38 13,51 N/A N/A N/A N/A
Final-Foligno 91,15 62,77 60,92 34,56 N/A N/A N/A N/A
Semi-VC 23,45 23,60 25,49 27,14 19,12 25,10 26,36 27,22
Semi-Random 23,18 28,73 18,09 19,55 22,82 21,45 17,09 18,91
Semi-Kobe 96,49 76,76 94,32 95,41 24,32 90,54 55,27 94,19
Semi-Foligno 36,22 38,06 32,72 37,79 31,89 28,48 26,82 23,23
Round2-Kobe 70,27 37,03 59,73 95,41 48,38 61,49 10,54 95,54
Round2-Random 99,04 60,91 54,68 99,16 63,55 97,60 80,70 99,52
Round2-VC 10,23 11,57 10,23 13,53 12,67 71,99 N/A 36,51
Round1-Kobe 99,46 98,92 99,73 99,73 99,05 98,78 67,16 91,89
Round1-VC 97,25 99,53 79,70 99,76 N/A 98,90 99,53 99,53
Round1-Foligno 98,99 98,99 36,13 45,99 32,53 54,29 43,59 29,86

Number of Wins: 3 5 2 2 0 1 0 3
AVG %: 61,09 55,66 50,49 52,65 39,37 64,86 47,45 61,64
STD %: 37,80 34,11 31,83 37,50 27,28 31,63 30,49 36,70

Table 3. Percentage of explored buildings

ResQ Damas Caspian BAM SOS SBC ARK B.Sheep

Final-VC 83,48 83,24 87,02 67,27 N/A N/A N/A N/A
Final-Random 69,62 72,62 78,13 49,92 N/A N/A N/A N/A
Final-Kobe 89,19 92,97 89,73 94,19 N/A N/A N/A N/A
Final-Foligno 84,15 85,25 86,73 74,29 N/A N/A N/A N/A
Semi-VC 69,39 72,86 77,42 45,08 52,01 52,87 47,92 59,72
Semi-Random 78,91 68,73 71,91 54,36 59,36 70,27 46,18 46,18
Semi-Kobe 85,41 96,22 92,97 95,54 66,62 97,30 99,46 91,89
Semi-Foligno 74,75 89,12 84,98 62,49 65,35 92,53 79,08 20,74
Round2-Kobe 87,16 90,68 95,00 91,76 80,54 94,19 99,46 92,43
Round2-Random 81,18 80,94 88,61 84,53 60,67 94,24 82,61 87,89
Round2-VC 83,40 70,18 84,58 40,44 67,74 87,88 N/A 89,54
Round1-Kobe 87,43 90,27 94,05 96,08 96,62 97,70 97,84 80,95
Round1-VC 85,37 90,48 95,28 94,26 N/A 97,72 100,00 91,35
Round1-Foligno 83,78 90,05 90,05 60,00 54,65 88,57 67,37 13,00

Number of Wins: 1 1 4 1 0 2 4 1
AVG %: 81,66 83,83 86,89 72,16 67,06 87,33 79,99 67,37
STD %: 5,82 9,98 7,87 22,21 13,87 14,59 21,84 30,80

emphasized by an evaluation of log files that were collected during the 2004 competi-
tion. The following tables provide results from all rounds of all teams that passed the
preliminaries. All values refer to the last round, i.e. the percentage of clean roads at
round 300. Bold numbers denote the best results that have been achieved during the
respective round.

Table 1 shows the percentage of blockades that have been removed by the police
agents. The results show that particularly the teams Damas Rescue and The Black Sheep
most efficiently removed blockage from the roads. Table 2 shows the percentage of
buildings that have been saved by the fire brigades. Obviously the team Damas Rescue
saved most of the buildings, whereas SBC reached a robust behavior, shown by the good
average value. The efficiency of exploration turned out to be one of the most important
criteria for the team evaluation. The more locations of civilians are known, the more ef-
ficiently rescue operations can be scheduled. Table 3 shows the percentage of buildings
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Table 4. Percentage of found civilians

ResQ Damas Caspian BAM SOS SBC ARK B.Sheep

Final-VC 97,22 94,44 100,00 81,94 N/A N/A N/A N/A
Final-Random 90,91 85,71 81,82 70,13 N/A N/A N/A N/A
Final-Kobe 98,77 97,53 95,06 98,77 N/A N/A N/A N/A
Final-Foligno 96,67 96,67 96,67 72,22 N/A N/A N/A N/A
Semi-VC 77,92 77,92 85,71 45,45 53,25 53,25 50,65 63,64
Semi-Random 88,51 73,56 72,41 63,22 67,82 80,46 52,87 55,17
Semi-Kobe 100,00 100,00 100,00 98,61 79,17 100,00 100,00 97,22
Semi-Foligno 90,12 95,06 86,42 81,48 83,95 97,53 85,19 30,86
Round2-Kobe 98,89 98,89 97,78 95,56 91,11 100,00 100,00 98,89
Round2-Random 98,89 95,56 98,89 81,11 70,00 96,67 85,56 94,44
Round2-VC 92,22 78,89 90,00 45,56 72,22 88,89 N/A 87,78
Round1-Kobe 94,29 100,00 100,00 98,57 100,00 100,00 94,29 78,57
Round1-VC 100,00 100,00 100,00 97,14 N/A 100,00 100,00 98,57
Round1-Foligno 100,00 97,14 94,29 77,14 74,29 92,86 77,14 14,29

Number of Wins: 9 4 7 1 1 5 3 0
AVG %: 94,60 92,24 92,79 79,06 76,87 90,97 82,85 71,94
STD %: 7,17 10,53 9,03 20,75 13,73 14,69 19,35 30,25

Table 5. Number of saved civilians

ResQ Damas Caspian BAM SOS SBC ARK B.Sheep

Final-VC 42 43 52 34 N/A N/A N/A N/A
Final-Random 32 25 29 16 N/A N/A N/A N/A
Final-Kobe 46 45 46 30 N/A N/A N/A N/A
Final-Foligno 66 54 50 29 N/A N/A N/A N/A
Semi-VC 18 15 17 12 11 12 12 14
Semi-Random 22 26 16 14 20 14 15 15
Semi-Kobe 57 47 54 52 20 39 34 44
Semi-Foligno 37 46 44 43 42 28 29 24
Round2-Kobe 57 37 43 50 43 35 28 43
Round2-Random 52 48 39 45 47 44 50 37
Round2-VC 31 33 32 24 37 51 N/A 34
Round1-Kobe 45 51 47 43 47 31 25 34
Round1-VC 62 62 55 57 N/A 51 54 44
Round1-Foligno 53 53 37 33 37 41 30 23

#Wins: 9 5 2 0 0 1 0 0
Σ TOTAL: 620 585 561 482 304 346 277 312
Σ SEMI+PREM 434 418 384 373 304 346 277 312

that were visited by agents2. The result shows that Caspian explored most of the build-
ings. However, the percentage of explored buildings does not necessarily correlate with
the percentage of found civilians, as shown by table 43. This is due to the fact that
communication as well as reasoning might increase the efficiency of exploration. At
the end, more civilians were found by ResQ Freiburg than Caspian, although the latter
team explored more buildings. Important for efficient rescue operations is the point in
time when civilian whereabouts are known. The earlier civilians are found, the better
their rescue can be scheduled. Fig. 1 shows the number of civilians found during each
cycle on the RandomMap. The results confirm the efficiency of ResQ Freiburg’s ex-
ploration: At any time, the agents knew about more civilians than agents of any other
team.

2 Note: Full communication of visited locations and exploitation of a sensor model was assumed.
3 Note: Civilians are considered as being found if one of the agents was within their visual range.
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Fig. 1. Number of civilians found by exploration on a randomly generated map during the final
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Fig. 2. Number of rescued civilians under two different strategies

Fig. 2 documents the difference between a greedy rescue target selection, i.e. prefer-
ring targets that can be rescued fast and selection based on an optimization by a genetic
algorithm. It can be seen that an optimization of the rescue sequence clearly increases
the number of rescued civilians. Finally table 5 shows the number of civilians saved by
each team: ResQ Freiburg saved more than 620 civilians during all rounds, which are
35 more than the second best and 59 more than the third best in the competition.

6 Conclusion

The results presented explain the success of the ResQ Freiburg team during RoboCup
2004: While ResQ Freiburg’s police agents (removal of blockades) and fire agents (ex-
tinguishing fires) performed comparably as good as agents from other teams (see table 2
and 1), the exploration and rescue sequence optimization abilities clearly outperformed
the strategies of other teams (see table 4 and 5). Even during the competition’s final on
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the RandomMap, which decided by only 0.4 points of the total score the positioning
between Damas Rescue and ResQ Freiburg, ResQ Freiburg was able to rescue seven
civilians more than the second best.

In total, our results provide an interesting insight into the RoboCupRescue simu-
lation competition: In addition to strategies for extinguishing fires and the removal of
blockades, as they were favored by teams during the last years, exploration and se-
quence optimization are crucial subproblems in the RoboCupRescue simulation league.
The proposed analysis provides a methodology for the further study of different strate-
gies in this complex domain. The scoring metric for team evaluation shown in this paper
has been integrated into the new 3D viewer of the RoboCupRescue simulation league,
which we contributed for the next RoboCup competitions [10].

Currently, our team started to develop robots for the RoboCupRescue Real Robot
league. We are confident that the methods proposed in this paper are also helpful in
this context. Likewise as agents in the simulation, these robots have to find victims au-
tonomously in an unknown terrain. Sensors, such as thermo cameras or CO2 detectors,
are used to make the search more efficient, in fact they are used to search for victims
actively.

In addition to the proposed methods, various tools for agent world modelling and
communication were developed by our team. These tools and also all algorithms dis-
cussed in this paper, are freely available for download from the official home page of
RoboCupRescue simulation 2005 [1].
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Abstract. A basic task of rescue robot systems is mapping of the envi-
ronment. Localizing injured persons, guiding rescue workers and excava-
tion equipment requires a precise 3D map of the environment. This paper
presents a new 3D laser range finder and novel scan matching method for
the robot Kurt3D [9]. Compared to previous machinery [12], the apex an-
gle is enlarged to 360◦. The matching is based on semantic information.
Surface attributes are extracted and incorporated in a forest of search
trees in order to associate the data, i.e., to establish correspondences.
The new approach results in advances in speed and reliability.

1 Introduction

Rescue robotic systems are designed to assist rescue workers in earthquake, fire,
flooded, explosive and chemical disaster areas. Currently, many robots are ma-
nufactured, but most of them lack a reliable mapping method. Nevertheless, a
fundamental task of rescue is to localize injured persons and to map the envi-
ronment. To solve these tasks satisfactorily, the generated map of the disaster
environment has to be three-dimensional. Solving the problem of simultaneous
localization and mapping (SLAM) for 3D maps turns the localization into a
problem with six degrees of freedom. The x, y and z positions and the roll, yaw
and pitch orientations of the robot have to be considered. We are calling the
resulting SLAM variant 6D SLAM [10].

This paper addresses the problem of creating a consistent 3D scene in a com-
mon coordinate system from multiple views. The proposed algorithms allow to
digitize large environments fast and reliably without any intervention and solve
the 6D SLAM problem. A 360◦ 3D laser scanner acquires data of the environ-
ment and interprets the 3D points online. A fast variant of the iterative closest
points (ICP) algorithm [3] registers the 3D scans in a common coordinate system
and relocalizes the robot. The registration uses a forest of approximate kd-trees.
The resulting approach is highly reliable and fast, such that it can be applied
online to exploration and mapping in RoboCup Rescue.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 335–346, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The paper is organized as follows: The remainder of this section describes the
state of the art in automatic 3D mapping and presents the autonomous mobile
robot and the used 3D scanner. Section 2 describes briefly the online extraction
of semantic knowledge of the environment, followed by a discussion of the scan
matching using forests of trees (section 3). Section 4 presents experiments and
results and concludes.

1.1 3D Mapping – State of the Art

A few groups use 3D laser scanners [1,5,11,14,15]. The RESOLV project aimed
to model interiors for virtual reality and tele presence [11]. They used a RIEGL
laser range finder on robots and the ICP algorithm for scan matching [3]. The
AVENUE project develops a robot for modeling urban environments [1], using
an expensive CYRAX laser scanner and a feature-based scan matching approach
for registration of the 3D scans in a common coordinate system. Nevertheless, in
their recent work they do not use data of the laser scanner in the robot control
architecture for localization [5]. Triebel et al uses a SICK scanner on a 4 DOF
robotic arm mounted on a B21r platform to explore the environment [14].

Instead of using 3D scanners, which yield consistent 3D scans in the first
place, some groups have attempted to build 3D volumetric representations of
environments with 2D laser range finders [7, 8, 13, 15]. Thrun et al. [7, 13] use
two 2D laser range finder for acquiring 3D data. One laser scanner is mounted
horizontally, the other vertically. The latter one grabs a vertical scan line which
is transformed into 3D points based on the current robot pose. The horizontal
scanner is used to compute the robot pose. The precision of 3D data points
depends on that pose and on the precision of the scanner. Howard et al. uses
the restriction of flat ground and structured environments [8]. Wulf et al. let
the scanner rotate around the vertical axis. They acquire 3D data while moving,
thus the quality of the resulting map crucial depends on the pose estimate that
is given by inertial sensors, i.e., gyros [15]. In this paper we let rotate the scanner
continuously around its vertical axis, but accomplish the 3D mapping in a stop-
scan-go fashion, therefore acquiring consistent 3D scans as well.

Other approaches use information of CCD-cameras that provide a view of the
robot’s environment. Some groups try to solve 3D modeling by using a planar
SLAM methods and cameras, e.g., in [4].

1.2 Automatic 3D Sensing

The Robot Platform Kurt3D. Kurt3D (Fig. 1) is a mobile robot platform
with a size of 45 cm (length) × 33 cm (width) × 26 cm (height) and a weight of
15.6 kg, both indoor as well as outdoor models exist. Two 90 W motors (short-
term 200 W) are used to power the 6 wheels. Compared to the original Kurt3D
robot platform, the outdoor version has larger wheels, where the middle ones
are shifted outwards. Front and rear wheels have no tread pattern to enhance
rotating. Kurt3D operates for about 4 hours with one battery charge (28 NiMH
cells, capacity: 4500 mAh) charge. The core of the robot is a laptop computer
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Fig. 1. The mobile robot platform Kurt3D offroad (left) and the 3D laser scanner
(right) The scanner rotates around the vertical axis. It’s technical basis is a SICK 2D
laser range finder (LMS-200).

running a Linux operating system. An embedded 16-Bit CMOS microcontroller
is used to process commands to the motor. A CAN interface connects the laptop
with the microcontroller.

The 3D Laser Scanner. As there is no commercial 3D laser range finder
available that could be used for mobile robots, it is common practice to assemble
3D sensors out of a standard 2D scanner and an additional servo drive [6, 12].
The scanner that is used for this experiment is based on a SICK LMS 291 in
combination with the RTS/ScanDrive developed at the University of Hannover.
Different orientations of the 2D scanner in combination with different turning
axes result in a number of possible scanning patterns. The scanning pattern that
is most suitable for this rescue application is the yawing scan with a vertical 2D
raw scan and rotation around the upright axis (see Fig. 1). The yawing scan
pattern results in the maximal possible field of view (360◦ horizontal and 180◦

vertical) and an uniform distribution of scan points.
As 3D laser scanner for autonomous search and rescue applications needs fast

and accurate data acquisition in combination with low power consumption, the
RTS/ScanDrive incorporates a number of improvements. One mechanical im-
provement is the ability to turn continuously, which is implemented by using
slip rings for power and data connection to the 2D scanner. This leads to a
homogeneous distribution of scan points and saves the energy and time that is
needed for acceleration and deceleration of panning scanners. Another improve-
ment that becomes more important with short scanning times of a few seconds
is the compensation of systematic measurement errors. In this case the compen-
sation is done by sensor analysis and hard real-time synchronization, using a
Linux/RTAI operation system. These optimizations lead to scan times as short
as 3.2s for a yawing scan with 1.5◦ horizontal and 1◦ vertical resolution (240x181
points). For details on the RTS/ScanDrive see [17].
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2 Extracting Semantic Information

The basic idea of labelling 3D points with semantic information is to use the
gradient between neighbouring points to differ between three categories, i.e.,
floor-, object- and ceiling-points. A 3D point cloud that is scanned in a yawing
scan configuration, can be described as a set of points pi,j = (φi, ri,j , zi,j)T given
in a cylindrical coordinate system, with i the index of a vertical raw scan and j
the point index within one vertical raw scan counting bottom up. The gradient
αi,j is calculated by the following equation:

tan αi,j =
zi,j − zi,j−1

ri,j − ri,j−1
with − 1

2
π ≤ αi,j <

3
2
π.

The classification of point pi,j is directly derived from the gradient αi,j :

1. floor-points: αi,j < τ
2. object-points: τ ≤ αi,j ≤ π − τ
3. ceiling-points: π − τ < αi,j

with a constant τ that depends on the maximal ascent being accessible by the
robot (here: τ = 20◦).

Applied to real data, this simple definition causes two problems. As can be
seen in Fig. 2(a) noisy range data can lead to wrong classifications of floor- and
ceiling-points. Changing the differential quotient as follows solves this problem:

tan αi,j =
zi,j − zi,j−k

ri,j − ri,j−k

(a)

(b) (c)

Fig. 2. Extracting semantic information using a slice of a 3D scan. (a) Problems with
simple gradiant definition, marked with circles. (b) Problems with jump edges. (c)
Correct semantic classification.
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Fig. 3. Semantically labeled 3D point cloud from a single 360◦ 3D scan. Red points
mark the ceiling, yellow points objects, blue points the floor and green points corre-
spond to artefacts from scanning the RTS/ScanDrive and the robot.

with k ∈ , k ≥ 1 the smallest number so that
√

(ri,j − ri,j−k)2 + (zi,j − zi,j−k)2 > dmin

for a constant dmin depending on the scanner’s depth accuracy σ (here: σ =
30 mm, dmin = 2σ).

The second difficulty is the correct computation of the gradient across jumping
edges (see Fig. 2(b)). This problem is solved with a prior segmentation [16], as
the gradient αi,j is only calculated correctly if both points pi,j and pi,j−k belong
to the same segment. The correct classification result can be seen in Fig. 2(c).
Fig. 3 shows a 3D scan with the semantic labels.

3 Scan Registration and Robot Relocalization

Multiple 3D scans are necessary to digitalize environments without occlusions.
To create a correct and consistent model, the scans have to be merged into
one coordinate system. This process is called registration. If the localization
of the robot with the 3D scanner were precise, the registration could be done
directly based on the robot pose. However, due to the unprecise robot sensors,
self localization is erroneous, so the geometric structure of overlapping 3D scans
has to be considered for registration. Furthermore, Robot motion on natural
surfaces has to cope with yaw, pitch and roll angles, turning pose estimation into
a problem in six mathematical dimensions. A fast variant of the ICP algorithm
registers the 3D scans in a common coordinate system and relocalizes the robot.
The basic algorithm was invented in 1992 and can be found, e.g., in [3].

Given two independently acquired sets of 3D points, M (model set, |M | =
Nm) and D (data set, |D| = Nd) which correspond to a single shape, we aim
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Fig. 4. Point pairs for the ICP scan matching algorithm. The left image show parts of
two 3D scans and the closest point pairs as black lines. The right images show the point
pairs in case of semantically based matching (top) whereas the bottom part shows the
distribution with closest points without taking the semantic point type into account.

to find the transformation consisting of a rotation R and a translation t which
minimizes the following cost function:

E(R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j ||mi − (Rdj + t)||2 . (1)

wi,j is assigned 1 if the i-th point of M describes the same point in space as the
j-th point of D. Otherwise wi,j is 0. Two things have to be calculated: First,
the corresponding points, and second, the transformation (R, t) that minimize
E(R, t) on the base of the corresponding points. The ICP algorithm calculates
iteratively the point correspondences. In each iteration step, the algorithm selects
the closest points as correspondences and calculates the transformation (R, t)
for minimizing equation (1). The assumption is that in the last iteration step the
point correspondences are correct. Besl et al. prove that the method terminates
in a minimum [3]. However, this theorem does not hold in our case, since we
use a maximum tolerable distance dmax for associating the scan data. Here dmax

is set to 15 cm for the first 15 iterations and then this threshold is lowered to
5 cm. Fig. 4 (left) shows two 3D scans aligned only according to the error-prone
odometry-based pose estimation. The point pairs are marked by a line.

3.1 Computing the Optimal Rotation and Translation in 6D

In every iteration the optimal transformation (R, t) has to be computed. Eq.
(1) can be reduced to

E(R, t) ∝ 1
N

N∑
i=1

||mi − (Rdi + t)||2 , (2)

with N =
∑Nm

i=1

∑Nd

j=1 wi,j , since the correspondence matrix can be represented
by a vector containing the point pairs.
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In earlier work [10] we used a quaternion based method [3], but the following
one, based on singular value decomposition (SVD), is robust and easy to imple-
ment, thus we give a brief overview of the SVD based algorithms. It was first
published by Arun, Huang and Blostein [2]. The difficulty of this minimization
problem is to enforce the orthonormality of matrix R. The first step of the com-
putation is to decouple the calculation of the rotation R from the translation t
using the centroids of the points belonging to the matching, i.e.,

cm =
1
N

N∑
i=1

mi, cd =
1
N

N∑
i=1

dj (3)

and

M ′ = {m′
i = mi − cm}1,...,N , (4)

D′ = {d′
i = di − cd}1,...,N . (5)

After replacing (3), (4) and (5) in the error function, E(R, t) eq. (2) becomes:

E(R, t) ∝ 1
N

N∑
i=1

||m′
i −Rd′

i − (t− cm + Rcd)︸ ︷︷ ︸
=t̃

||2

=
1
N

N∑
i=1

||m′
i −Rd′

i||
2 (6a)

− 2
N

t̃ ·
N∑

i=1

(m′
i −Rd′

i) (6b)

+
1
N

N∑
i=1

∣∣∣∣t̃∣∣∣∣2 . (6c)

In order to minimize the sum above, all terms have to be minimized. The second
sum (6b) is zero, since all values refer to centroid. The third part (6c) has its
minimum for t̃ = 0 or

t = cm −Rcd. (7)

Therefore the algorithm has to minimize only the first term, and the error func-
tion is expressed in terms of the rotation only:

E(R, t) ∝
N∑

i=1

||m′
i −Rd′

i||
2
.

Theorem: The optimal rotation is calculated by R = VUT . Herby the matrices
V and U are derived by the singular value decomposition H = UΛVT of a
correlation matrix H. This 3× 3 matrix H is given by

H =
N∑

i=1

m′T
i d′

i =

⎛
⎝Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞
⎠ ,
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with Sxx =
∑N

i=1 m′
ixd′ix, Sxy =

∑N
i=1 m′

ixd′iy , . . . . The analogous algorithm
is derived directly from this theorem.

Proof: See [2] or [9].
Finally, the optimal translation is calculated using eq. 7) (see also (6c)).

3.2 Computing Point Correspondences

As mentioned earlier, the strategy of ICP is to always use closest points. To
speed up computation, kd-trees have been proposed [3]. kD-trees are a general-
ization of binary search trees. Every node represents a partition of a point set
to the two successor nodes. For searching points we use optimized, approximate
kd-tree. The idea behind this is to return as an approximate nearest neighbor
the closest point in the bucket region where the query point lies. This value is
determined from the depth-first search, thus expensive ball-within-bounds tests
and backtracking are not used. Here, optimization means to choose the split axis
during construction perpendicular to the longest axis to minimize the amount
of backtracking.

A forest of kd-trees is used to search the point correspondences. For every
color, i.e., semantic label, a separate search kd-tree is created. The algorithm
computes point correspondences according to the color. E.g., points belonging
to the wall are paired with wall points of previous 3D scans. Fig. 4 shows the
point correspondences in case of semantic based matching (top) in comparison
with normal closest point matching (bottom). The points at the change of colors
are paired differently. Fig. 5 shows extracted slices of the kd-trees for the colors
red and yellow.

Fig. 5. A forest of kd-trees based on the semantic interpretation is used to compute
the point correspondence. Left: Vertical slices through the trees (top: Ceiling points.
Bottom: Wall points). Right: Horizontal slice using ceiling points.
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Using semantic information helps to identify the correct correspondences, thus
the number of ICP iterations for reaching a minimum is reduced. In addition,
maximizing the number of correct point pairs guides the ICP algorithm to the
correct (local) minimum leading to a more robost algorithm.

4 Results and Conclusion

The proposed methods have been tested on a data set acquired at RTS, Han-
nover. Fig. 3 shows a single 3D scan with semantic labeling. Fig. 6 presents the
final map, consisting of five 3D scans, each containing 43440 points. Table 1
shows the computing time for matching of two 3D scans. Using semantically
labeled points results in a speedup of up to 30% with no loss of quality.

Fig. 7 shows a detailed view of the ceiling. 3D points belonging to the lamp at
the ceiling are also colored yellow. The correct match will be in no way affected

Fig. 6. The final 3D map of an office corridor / laboratory environment. The map
consists of 5 3D scans and contains 217200 3D points. Left: Front view. Right: Top
view.

Table 1. Computing time and number of ICP iterations to align all 32 3D scans
(Pentium-IV-3200). In addition, the computing time for scan matching using reduced
points are given. Point reduction follows the algorithm given in [10].

used points search method computing time number of iterations
all points kd-trees 17151.00 ms 49
reduced points kd-trees 2811.21 ms 38
all points forest of kd-trees 12151.50 ms 39
reduced points forest of kd-trees 2417.19 ms 35
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Fig. 7. Left: scanned 3D points of the ceiling including a lamp. Some 3D points of the
lamp are marked yellow. The fingerprint like structure is the result of the scanning
process. On plane surfaces the laser beam describes a circle. Right: Photo of the scene.

Fig. 8. Resulting 3D map (top view) if the scan matching algorithm uses only 3D
points in front of the robot, i.e., the 3D scan is restricted to 180◦.

by this fact. In fact, the semantic meaning is that data points of the lamp will
be matched correctly with their correspondents.

Contrary to previous works, every single 3D scan is a full 360◦ scan. They
are acquired in a stop-scan-go fashion to ensure consistency within the single
3D scans. In RoboCup Rescue the operator drives the robot and acquires 3D
scans. In the 2004 competition we encountered that the overlap between two
consecutive scans was sometimes too low, so that the operator had to intervene in
the matching process. The new scanner will reduce this problem, since it provides
backward vision. Fig. 8 shows the analogous map of Fig. 6 without backwards
vision, i.e., the algorithm uses only points that lie in front of the robot. The
3D scans can no longer be matched precisely, the map shows inaccuracies for
example at the lab door. In fact, doors and passages are a general problem of
mapping algorithms, due to the small overlap. Fig. 9 shows the final map of an
additional experiment with 9 3D scans and 434400 data points.
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Fig. 9. Results of a second experiment. Left: 3D point cloud (top view). Middle: Some
view of the points. Right: A floor plan extracted from the 3D model, i.e., only points
with a height of 125 cm ± 15 cm are drawn.

This paper presented a robotic 3D mapping system consisting of a robot
platform and a 3D laser scanner. The laser scanner provides a 360◦ vision; the
scan matching software, based on the well-known ICP algorithm, uses semantic
labels to establish correspondences. Both approaches improve previous work,
e.g., [9, 10], in terms of computational speed and stability.

The aim of future work is to combine the mapping algorithms with mecha-
tronic robotic systems, i.e., building a robot system that can actually go into the
third dimension and can cope with the red arena in RoboCup Rescue. Further-
more, we plan to include semi-autonomous planning tools for the acquisition of
3D scans in this years software.
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Abstract. This paper presents a method for automatic on-line color
calibration of soccer-playing robots. Our method requires a geometrical
model of the field-lines in world coordinates, and one of the ball in im-
age coordinates. No specific assumptions are made about the color of
the field, ball, or goals except that they are of roughly homogeneous dis-
tinct colors, and that the field-lines are bright relative to the field. The
classification works by localizing the robot(without using color informa-
tion), then growing homogeneously colored regions and matching their
size and shape with those of the expected regions. If a region matches
the expected one, its color is added to the respective color class. This
method can be run in a background thread thus enabling the robot to
quickly recalibrate in response to changes in illumination.

1 Introduction

Color classification in the RoboCup Mid-Size League usually involves tedious
calibration procedures. A typical approach is to manually define which parts of
the color space correspond to a color class using some kind of GUI tool. This
involves capturing images from different positions on the field, defining the color-
boundaries between color classes, or classifying individual color pixels into one of
the color classes. This method is error-prone and time consuming. Furthermore,
a classification obtained at one point can fail at another, if the lighting conditions
are different. For this reason, all objects in the environment are strictly color-
coded and the organizers try to provide lighting that is as steady, bright and
uniform as possible.

Our method remedies the problem by automatically classifying regions of
homogeneous color into the following four color classes: field, ball, yellow goal,
and blue goal. Regions that do not fit the criteria of any of the classes are not
classified and can be considered obstacles. The white field-lines are detected
without the use of color information, and can be identified as non-obstacles. The
output of the method is essentially a separate list of color values for each color
class. These lists grow over time, as more and more colors are classified. In our

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 347–358, 2006.
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application, we store these lists as a look-up table using the full 24-bit YUV
color depth.

The method can run on-line during a game to compensate for changes in
lighting, and is able to calibrate a whole image from scratch and error-free in 1-2
seconds. It is robust against false classification even with robots, humans and
other objects cluttering the field.

For each color class the method consists of the following steps:

• localize the robot on the field using edge detection(see section 2).
• loop:

- Grow a homogeneous color region (see section 3).
- Compare the grown region’s size and shape to the size and shape of the

corresponding expected region (see section 4).
- if the grown region is within the boundaries of the expected region, and

fills more than a certain percentage of the expected size:
– add all the colors in the grown region to the corresponding color class.

- else
– add no colors to the color class.

The homogeneity thresholds for the color growing are computed automatically
(see section 5).

Related work includes [5], which presents a method for off-line, semi-
autonomous color-calibration, implemented in the Mid-Size League. RETINEX,
a biologically-inspired algorithm is used for improving color constancy, and k-
means clustering is used for the adaptation of color classes. HSV thresholds are
found from the clusters that determine each color class, which are then manually
mapped to symbolic colors. This method analyzes the vicinity of colors in the
color-space and then forms clusters that represent color-classes. In contrast, the
method presented here relies on the expected geometrical shape of the objects
belonging to a color-class and does not rely on color-space analysis. Furthermore,
our method is fully automatic, not requiring manual mapping to symbolic colors.

A method called KADC (Knowledge-based Autonomous Dynamic Colour Cal-
ibration) is presented in [9]. KADC is a method for autonomous on-line color
classification, implemented in the Sony Legged League. KADC also utilizes the
geometric information of the field to define color classes, and then updates them
with the help of a color cluster similarity metric called EMD. Our method is
also based on geometric knowledge of the field, but we combine this with the
color-less detection of the robot’s position. We then update the classification
using only geometric criteria without having to incorporate any color similarity
metrics to previously established classification. This enables us to deal with an
abrupt increase/decrease in illumination, which is reported to be troublesome
when applying KADC(by [9]). What further differentiates our method from [9]
is that we also handle the ball color class.

In [6], Juengel et al. present an efficient object detection system (also im-
plemented in the Sony Legged League) which only requires a linear division of
the UV-color space. This system is extended in [7] to obtain a more fine-grained
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classification. The division is calibrated automatically, and the objects are heuris-
tically detected. However, such a linear division and the use of heuristics may
be inadequate for more demanding situations. For example when color classes
are not linearly separable, or when numerous color classes are required.

Austermeier et al. ([10]) find the color-correspondence between two illumina-
tion settings by using self-organizing feature maps (SOM) in color-space. Two
SOMs are built, one for the cloud of color points under the initial reference illumi-
nation and another one for the new illumination settings. The distance between
corresponding grid locations in the two maps is then used as a correction vector
for the set of color points belonging to that volume element. This solves the
problem of maintaining a classification, but does not generate it. Unfortunately,
the method is also very computationally expensive.

The method we present was tested on our Mid-Size robots, which are equipped
with an omni-directional vision system and use conventional sub-notebooks for
processing (see [4]). We now proceed with a step-by-step description of our cali-
bration method. We then describe how the thresholds used for the color growing
are found and adapted. Finally, we present experimental results.

2 Color-Less Localization

In order to allow image coordinates to be transformed into world coordinates,
the robot needs to localize itself in an initialization step. We do this by using a
region tracker (described in [2]), which stops growing a region when a possible
field-line is encountered. The stopping criterion is based on the assumption that

Fig. 1. A tracked region (painted black) and white scan-lines along its edges. Here a
green region is being tracked. s and e are the start and end-points of the scan-line. p is
the actual point to be checked for edge criteria, and the points marked above, below,
left and right, are its neighbors used to determine the brightness around p.
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a field-line is bright compared to the neighboring points. In our implementation
we use 4 pixels to the left, right, above and below the actual point p, which have a
pixel distance from it corresponding to the expected field-line width (see Fig. 1).
We decide that a field-line is found if p is one standard deviation σ brighter than
at least two of its neighbors, where σ is the standard deviation of the brightness
of those pixels in the image which correspond to points on the field. The value
of σ is calculated on-line by sampling a certain number of random pixels in the
image.

Now we need to extract the pixels that coincide with the points of the white
field-lines. To accomplish this, we search for dark-white-dark transitions on short
scan-lines perpendicular to the edges of each of the tracked regions. This is done
in the following manner: find the brightest point p on the scan-line. Inspect the
endpoints s and e of an extended scan-line centered on p and having length twice
the expected field-line width (the length was tuned experimentally, the idea is
that s and e do not lie on the field-line, see Fig. 1). If p is σ-brighter than s and
e, declare it a white pixel corresponding to a point on a field-line.

The set of points obtained in this way is the input for our localization al-
gorithm. The localization exploits the presence of certain features in the field’s
line-model (center circle, corners, etc. see Fig. 2) and localizes the robot using
them and a force field matrix (Hundelshausen et al. describe this localization
technique in [1] and [3]). The localization we obtain this way is uniquely deter-
mined up to the symmetry of the field because we have no information about
the two goal box colors. Nonetheless, the method can proceed without it, as we
explain in the next section.

A drawback of this localization is that more false field-line points are found
than with our conventional localization, which tracks green regions. It is also
potentially slower since more pixels are processed. Even though we could localize

Fig. 2. Example of features found in the field-line contours. Here the center circle, a
T-junction and the inner and outer right penalty area corners have been successfully
detected. With these features the robot can localize itself on the field.



The Color and the Shape: Automatic On-Line Color Calibration 351

the robot by calibrating the goal colors only (to break the field’s symmetry),
there is still a need for calibrating the color of the field. Without it we cannot
identify obstacles on the field.

3 Choosing Regions by Color Growing

The second step is to grow homogeneous color regions. It is not important to start
growing a region at a specific pixel, but choosing them intelligently can accelerate
the classification. This is achieved by building different sets of starting pixels for
each expected region. Subsequently, one pixel is chosen at random from each
set and separate color region growing processes are started (see figure 3). The
grown color regions are then passed along for further validation (see section 4).
Different pixel criteria are required to obtain the various pixel-sets we use for
the expected regions of the field, the ball, and the goals.

Since the green field color usually covers a large area of the image, a possible
method to obtain the field pixel-sets would be to pick a certain amount of ran-
domly chosen pixels and assign them to the pixel-set of the expected region they
correspond to. Instead, we gather pixels from our field-line detection procedure
which provides us with pixels that are close to a line, but not on one. These
pixels - excluding the ones corresponding to points lying outside the field, are
then assigned to the pixel-set of the expected world region they correspond to
(there are 10 such field-regions, see Fig.4).

A goal-box pixel-set consists of pixels corresponding to points lying behind
one of the two goal lines in the field-model. The two goal-box pixel-sets are
separated by the spatial location of the goals. We decide later to which goal-box
the two sets belong (see section 4).

Fig. 3. Regions grown successfully for an expected ball region, one of the expected
field regions, and an expected goal region. The grown goal region is enclosed by a
white curved line, the ball’s by a red curved line and the field’s by a green curved line.
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Fig. 4. The 10 expected field regions

Since the ball can be small in the image and we don’t know where to look
for it (even if the robot’s position is known), it pays off to pick the pixel-set
for the ball color-growing carefully in order to make its classification faster. The
procedure we use only considers pixels corresponding to field-points (because
the ball is on the field). It then checks if a pixel has either been classified as the
ball color in a previous iteration of the calibration procedure, or if it could be
the center of an expected ball at that point. If this is the case, we add the pixel
to the ball pixel-set. Essentially this is a form of pre-validation that verifies if
a region starting from this pixel could ever grow into the expected ball at this
pixel. It does this by checking if pixels along the axes of the expected ball ellipse
are unclassified.

Growing a homogeneous color region works in the following manner: Starting
with a pixel p, neighboring pixels are inspected. If their color is within a certain
homogeneity threshold with respect to the color at p, they are added to the
color region. The neighbors of the newly added pixels are inspected in the same
manner, always comparing them to the color of the first pixel p. The homogeneity
thresholds are adapted automatically (see section 5).

4 Validating Grown Color Regions

After picking one point from each pixel-set and growing separate color regions
(one region for the ball, ten regions for the field, and two regions for the goals),
we need to make sure that they belong to the corresponding expected regions. To
ensure this, the regions have to pass through validation criteria. The criteria are
similar for each color class, and are based on the following observation: if a grown
color region r is totally inside and covers an expected region of a color class C,
then the colors in r are members of C. The expected regions are defined assuming
ideal conditions such as an obstacle-free field and perfect self-localization.
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In the case of the field color class, we can define 10 expected regions in world
coordinates using the current field-model (see Fig. 4). In accordance with our
general guidelines, a grown field-color region should lie entirely inside one of the
expected regions. After checking that the region fulfills this criterion, we check
if it covers enough of the expected region. In our implementation we require a
field-color region to cover 70% of the corresponding expected region, and all of
its points to lie inside it. If the criteria are not fulfilled, we do not add any colors
from the region to the field color class in this iteration.

In the case of the goal-box color classes, we can use the field line-model and
the robot’s position to calculate at which angle in the image we expect a grown
goal-box-color region to appear. Furthermore, we know that this region cannot
be inside any of the expected field regions. In our implementation we require a
goal-color region to lie between the angle defined by the goal-box’s posts, and to
cover 70% of the angle. We also require the goal-box to be clearly visible given
the current position of the robot, e.g. that the expected angle to the left and
right posts is sufficiently large. Furthermore, no point of the region can lie in any
of the expected field regions. If the criteria are not fulfilled, we do not add any
colors from this region to the respective goal-box color class in this iteration.

Once a grown goal-color region has been successfully validated, and its colors
have been associated with one of the arbitrarily chosen goal-boxes, the symmetry
of the field has been broken, and the sides can be labeled and recognized. Future
validated goal-color regions will therefore be assigned to the correct goal-box
color class. This is based on the assumption that the robot does not de-localize
and flip sides, while the illumination simultaneously changes to prevent goal-
identification. However, since there is a convention in RoboCup to paint one of
the goals yellow, and the other one blue, we compare a grown goal-color region to
a blue and a yellow reference color in our implementation. We then add it to the
class whose reference color is closer to the region’s mean color. This automates
the setup of the robot and also increases the robustness of the classification.

In the case of the ball color class, an expected ball region in the image has an
elliptic form where the size of the minor and major axis depends on the distance
from ball to robot. We represent the expected ball by storing ball-fitting ellipses
at different distances from ball to robot. One ellipse data entry consist of the
pixel distance from the robot to the center of the ellipse (the robot being in the
center of the image), as well as the minor and major axis of the ellipse, measured
in pixels. In our implementation we require all pixels in a ball-color region to
be inside the expected ball region, and the area to be more than 40% of the
expected area. If the criteria are not fulfilled, we do not add any colors from the
region to the ball color class in this iteration.

5 Adaptive Thresholds for Color Growing

The thresholds for color growing are in general not the same for each color class,
and vary with lighting conditions. Furthermore, it is advantageous to use various
thresholds for the same color class in one and the same scene. This is especially
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Fig. 5. Grown regions which fail to meet the validation criteria. Pixels of the goal-box
and ball regions are outside the expected region, or the field region does not cover a
required percentage of the expected region.

advantageous in the case of the field class, because it is large and can therefore have
wide variations in color homogeneity. Accordingly, we deploy three separate sets of
thresholds, one for each expected region of the field, the ball and the goals. These
sets are initialized with a constant amount of random thresholds. The thresholds
are then adjusted with the help of the validation criteria outlined previously in
section 4. Essentially, this means decreasing the threshold if the region grownusing
it was too big, and increasing it, if it was too small.

Before a region is grown, a threshold is picked at random from the correspond-
ing set. If a certain threshold was involved in a successful growing, it “survives”
and is still part of the set in the next iteration of the calibration procedure. If a
region growing has failed a certain number of times using the same threshold, the
threshold “dies” and a new randomly initialized threshold takes its place in the
set. Each time a region grown with a threshold is too big, we decrease the threshold
by a small random amount. If the region is too small, we increase the threshold,
and try to grow a region at the same point. We continue increasing the threshold
until the region is successfully grown, or grows outside the expected region.

6 Results

The method we present in this paper is able to adapt to changes in illumination
in a few seconds. We tested the method on our robots which are equipped with
a lightweight laptop having a Pentium III M 933 MHz processor, and 256 MB
RAM. For the run-time tests of the method we recorded how long it took to adapt
to an abrupt change in illumination. The scene we processed can be considered
a standard RoboCup scene with the ball in view, and a robot in the goal, except
that a foreign pink piece of paper is present in the field. Note that it will not be
classified since it does not fit any expected region. The results of the classification
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Fig. 6. Row 1 to 4 (counting from top to bottom): Original images on the left, static
classifications from previous illumination setting in the middle, and the result of the
automatic classifications on the right. The CPU-time it took the method to produce
the automatic classifications (right), starting with the classifications achieved from the
prior illumination (middle) for row 1-4 was: 0.5, 0.8, 2.0, and 2.9 seconds, respectively.
The color code is: white = unclassified, gray = field, check-board-pattern = blue goal,
diagonal-pattern = ball.

can be seen in Fig.6. The first column shows the original images. The second
column shows a segmented image using the automatic classification from the
previous illumination setting without adjusting to the new illumination (the first
row has no previous classification). As we can see, under the new illumination
the color segmentation is poor. The third column shows a segmented image
after adapting the classification from the previous scene with our automatic
calibration method.
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Fig. 7. The classification (on the right) was obtained after a few second with no
previous classification. Here the ball and the goals are too far away to be calibrated so
only the field can be calibrated. The color code is: white = unclassified, gray = field.

The runtime for the adaptation for row 1-4 was: 0.5, 0.8, 2.0, and 2.9 seconds,
respectively. The current implementation does not try to match the field-regions
inside the goal (regions 1 and 10 in Fig. 4), and therefore its colors are not clas-
sified in any of the scenes. The regions on the other side of the field are also not
classified since they are obscured, and hence can not be matched to the corre-
sponding expected regions. The first row demonstrates the classification under
a mixed neon - and indirect floodlight. All regions that are clearly visible have
been successfully classified. The same goes for the second row, which displays
a darker scene with neon lighting only. The third row shows a classification
under neon lighting, and with one floodlight directed down on the field. Here
the method fails to classify some of the brightest green colors lying under the
floodlight after 2.0 seconds, but after letting the method run for about 12 sec-
onds, the classification improves (not illustrated), without managing to classify
some of the extremely bright green colors. The fourth and last row of images
was captured under neon lighting and with three floodlights directed down on
the field. A successful classification of this scene was obtained after 2.9 seconds.
Note however, that the colors of the inner penalty area are not classified. This
is due to the fact that the goalie is placed in the middle of it, and thereby cuts
the homogeneous color region in half. It can therefore not be matched properly
to the expected area of the inner penalty area.

Fig.7 illustrates the performance of the method where the robot is close to
a border line and sees a large area outside the field. The classification (on the
right) was obtained after a few second with no previous classification. Here the
ball and the goals are too far away to be calibrated.

7 Future Work and Summary

The method encounters certain problems when colors belonging to a color class
are present in regions not belonging to the class. This is for example the case
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when the blue goal is so dark that some colors in it are indistinguishable from
the ones appearing in robots. In this case, a very dark-blue or black region is
grown inside the goal, which is found to correspond to the expected goal region.
The method then defines these colors as belonging to the blue goal color-class
even though they are encountered in robots as well. Another potential weakness
of the method is that a color does not become “outdated”, e.g. a color cannot
loose a previous classification. This can present a problem when the lighting is
changed, for example from white neon lighting to a more warm, yellow lighting.
Now, colors that were previously classified as the yellow goal can appear on the
white field-lines. A possible solution would be to mark a color as not belonging
to a class if it occurs in an unexpected region. Another approach used in [9],
would be to incorporate a color decay factor.

A method for tuning the camera-parameters is presented in [8], and could be
combined with our method to enable the robot to operate in a wider range of
lighting-conditions. The “ground truth” (manually defined color classes) needed
in that method could be provided by our automatic calibration.

In this paper we presented a method that can be used for automatic color
calibration of autonomous soccer playing robots. It is based on a color-less local-
ization of the robot, a geometric line-model of the field and a geometric model
of the ball. The method needs no manual calibration and can deal with various
difficult lighting conditions that change abruptly over time. It can be integrated
into existing systems and will be used by our robots at RoboCup 2005 in Osaka.
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ChipVision2 – A Stereo Vision System for
Robots Based on Reconfigurable Hardware

Lars Asplund, Henrik Bergkvist, and Thomas Nordh

Mälardalen University

Abstract. A system utilizing reconfigurable hardware of 1 million gates
and two CMOS cameras is used in an image analysis system. The system
is a part of a sensor system for a robot, and can deliver data about the
robots position as well as relative distances of other objects in real time.

1 Introduction

Many algorithms used in digital signal processing for image analysis require large
computational resources. The most commonly approach is to use a DSP (Digital
Signal Processor), such as Texas Instruments TMS320C6201 and C6701, Philips
TriMedia TM1100 and Analog Devices Sharc ADSP 21160M. These processors
are variations of SIMD architectures, and they contain several processing units.
By the internal pipelining and by using the processing units in an optimal way
quite high throughputs can be achieved. Standard PCs are naturally used for
image analysis, but for real-time applications these systems has in the past not
been powerful enough.

Reconfigurable hardware has most often been regarded as a means for speed-
ing up standard processors or DSP’s. Operating systems implemented in an
FPGA as an accelerator can in a Real-Time system guarantee that the system
is fully predictable [16].

There have also been attempts to use reconfigurable hardware for Image Pro-
cessing, [12] and [1].

The current project aims at building a stereo vision system (a vision system
using image analysis in configurable hardware – FPGA, Field Programmable
Gate Array) in the new robot design, Aros. ChipVision will analyze the output
from two digital cameras in order to find objects (football, goal, opponents, lines
etc.). The output from ChipVision will be data to the main computer in the
robot about distance and angles to found objects and the estimated position
and direction of the robot itself.

The design is based on an estimated throughput of 15-30Hz. ChipVision is
mounted on a free rotating disc, rotated by a stepper motor. Communication
with other parts of the robot is by means of an optical CAN–bus.

2 Overview of the Camera System

The FPGA used in this work is equivalent to one million gates and is mounted
on a six layer PCB. On the board there is also 64 MB RAM and 32 MB Flash

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 359–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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EPROM. The two CMOS cameras are from OmniVision Technologies Inc. type
OV7610 and are directly coupled to the FPGA. The output from the camera is
either RGB or YUV. In the current design only 8 wires are used for data transfer,
and the format of data used is RGB. The cameras are used in non-interlaced
format and the colour filter pattern is the Bayer-pattern, this implies that the
green-value is new for each pixel, but the red and blue are alternating. We treat
two pixels as one pixel, and thus giving full information of both Red, Green
and Blue. The camera chip also has an I2C bus. This serial bus uses two wires
and it can be used to control the camera. Typical controls are gain and white
balance.

The internal hardware design (further on referred to as the program) of the
FPGA is stored in the Flash–memory in a so called bit–file. A CPLD (Complex
Programmable Logic Device) handles the loading of the program into the FPGA.
There is a selector–switch with which one of eight programs can be selected for
loading. This selection can also be performed by the micro controller (AVR
ATmega16) mounted on the PCB for the disc. One of the eight programs is a
program for loading the Flash. Thus, each camera–disc can have seven different
programs stored in the Flash, thus seven different algorithms can be selected
during run-time. The time to load a new program is less than one second.

In this paper three different programs are described. The first program is using
one camera for finding the ball and the other camera for finding white lines. The
two cameras have different gain–settings for the individual colours. A stereo
matching algorithm is the second program. Detected feature transitions from a
row for both cameras are stored in a CAM for fast comparison and matching. The
stereo matching program successfully detects and matches feature transitions
and depth information, this can be obtained from two camera images in real-
time. The third program implements Harris and Stephens combined corner and
edge detection algorithm, and it uses both cameras. With a frame–rate of 13Hz
corners are outputted from left and right cameras.

Fig. 1. PCB holding the FPGA-board and the two cameras and the corresponding
block diagram
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3 Algorithms for Image Analysis

The proposed solution is based on algorithms that are suitable for hardware
implementation, i.e. the inherent parallel nature of an FPGA can be fully uti-
lized. In cases where an algorithm is described in a sequential language such as
C, there are tools that can convert the C program into a hardware description
language such as VHDL [7]. In ref [2] a language called Handel–C has been used.
Another way is to use a language that has been developed for the application
domain, such as SA–C, a Single Assignment variant of C. In ref [4] this language
has been used to implement image analysis algorithms in an FPGA. The per-
formance is in ref [5] compared to the performance of a Pentium processor. The
FPGA has in this test been used as a co processor to a rather slow processor. Due
to communication the performance in some of the tests are not convincing, but
for other tests, the FPGA outperforms the Pentium processor. In ref [2] a true
comparison between a high speed DSP (TMS320C44) and a 400k gate FPGA is
shown. The number of clock cycles in the FPGA are 64 for a cluster analysis.
The corresponding number in the DSP is 16000 cycles. With cycle times of 30 ns
for the FPGA and 33 ns for the DSP the time per cluster is 21μs for the FPGA
and 5.3 ms for the DSP.

The vision system presented in this paper is aimed to be used in a robot
system, and there are numerous industrial applications where vision is an im-
portant part. A survey of applications and tools is given in the paper presented
by Malamas et al [10].

The size of an FPGA today is far above 1 million gates. This amount of gates
allow the full system to be implemented on one FPGA. This can be compared to
the ARDOISE system [3], which is a modular system based on smaller FPGA’s.

In [9] a hardware setup which resembles our system is described. Instead of
using an analogue video source we are using a camera with a digital output.
Since our system communicates with the host computer using the CAN–bus,
there is no need for a second FPGA. Due to increased performance of circuits,
our FPGA and the memory chips have better performance both in speed and
number of gates and memory size.

In [8] the ISODATA algorithm is presented, and this algorithm does a mapping
from RGB–colour information into classes. The algorithm is used as a first stage
and the number of bits in the further processing is reduced by a factor of six. The
filter solution in this project is based on a two–dimensional filter, corresponding
to the filter used in [11].

For the higher level analysis some version of the object recognition models
presented in [6] is used. Still for high performance it is important to have a
pipe–line architecture and in the stage after classifying the data there are tables
for start and stop pixels for all possible objects.

3.1 Overview of Algorithms

The following steps are the main algorithms of the image analysis. First the
RGB representation is transferred into HSI representation. One reason for this
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is that the analysis should not be sensitive for differences in light or shading ef-
fects. The HSI representation includes a separate variable/channel for intensity I.
H is the variable which represents colour tone. H is usually represented by a disc
with 0-255 levels . By this representation the colour is described with in one di-
mension instead of three. From this representation the interesting objects could
be thresholded out using their colour values.

Every pixel is given a number indicating their class, depending on their class
and the class of the neighbors the pixels are labeled. Noise reduction is performed
to minimize the number of pixels with erroneous object classification.

3.2 RGB to HSI Conversion

Mathematical formulas for transformation from RGB to HSI. These formulas
take for granted that the RGB values are normalized to [0, 1].

I =
R + G + B

3
(1)

S = I − 3
R + G + B

min (R, G, B) (2)

H = arccos

[
1
2 (R−G) + (R −B)√

(R−G)2 + (R−B)(G −B)

]
(3)

If B > G then H = 360o −H .
For Robocup the Saturation is not required since the colours are well sepa-

rated in the Hue-circle. Thus only the H channel (and maybe the I channel) are
relevant for finding interesting objects. S never needs to be calculated. H is a
disc with radius 0-360 and can be represented as 256 gray levels (8 bits).

The equations above are not well suited for implementation in VHDL. The
formula 3 is quite complex. Since the resulting H–value is to be represented as
an 8–bit value the following algorithm which is a simplification of the Kender’s
algorithm [17] has proved to have high enough accuracy. In this implementation
the full circle is represented between 0 and 252.

Fig. 2. The original pictures from the camera (RGB)
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Max = MAX (R,G,B); H’=42*(MID(R,G,B)-MIN(R,G,B))/Max
if R=Max if G=Max if B=Max
if G>B if R>B if R>G
H=H’ H=84+H’ H=168+H’

else else else
H=252-H’ H=84-H’ H=168-H’

By sorting the three values of R,G,B the right sector (6 in total) of the colour
circle can be found. The range 0 to 255 is not suitable since it can not be divided
by 6. The closest value is therefore 0 to 252. Within in each sector the linear
expression H’ is accurate enough for finding the H-value within the sector.

3.3 Segmentation

The segmentation will take place concurrently as the calculation of H.

1. Is the pixel white? I > Thwhite gives white
2. Is the pixel black? I < Thblack give black
3. Calculate H for pixel N.
4. Segment using multiple thresholds, etc.

– x > H or H > X Red
– y < H < Y Orange
– z < H < Z Green
– u < H < U Yellow
– v < H < V Light blue
– r < H < R Magenta

Each pixel is now represented by its class ID. There are eight different colour
classes and one background class. These can be represented by 4 bits. What is
left is a picture matrix with 16 gray levels.

3.4 Noise Reduction

This algorithm describes how noise reduction is performed. This step is per-
formed once the segmentation is completed. A median filter sets a pixels class
value based on its neighbor’s class values. Of this follows that the image will be
more homogeneous in terms of object classes. This since erroneous pixels will be
adjusted. If this step is performed, over segmentation, which would complicate
the classification, will be avoided.

For each pixel, look in a n× n neighborhood and assign the current pixel the
group belonging of which most of its neighbors belong to.

So, given a pixels x and y coordinate, loop around its neighbors and let
counters describe the number of pixels belonging to each class. Set the current
pixels class belonging to the class which has the largest number of members in
the current surrounding.
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Fig. 3. Pictures from the right camera after multi segmentation and noise reduction

Fig. 4. Final result with found straight lines and ball

3.5 Ball Finder

The Ball Finder is using the output from the noise reduction stage.
When two consecutive red points is found, the min and max x-values are

updated and the row is marked as a row with red on it. If red points are found
and whose x–values differs more than 50 pixels from previous min and max
values they are discarded as noise. When red is found on a row the max y–value
is updated, and if red was not found on the previous row the min y–values is
updated as well. After the last pixel in the row, the max and min values are
checked and if big enough the ball is found. If no red points are found on a row,
but was found on the previous row all max and min values are reset. If no ball
is found a min–value greater than max is reported.

3.6 Linealyzer – A simple Non-horizontal Straight-Line Finder

When a line segment, a green-white-green edge, has been detected the row, width
and center of that segment is stored in a FIFO queue. After a segment is read,
check if there is a stored line with a center that differs at most ten pixels, if not,
start a new line and save x, row and width of the first line. If the segment is a
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part of a previous line, update the center of last line and the number of rows
that the line consists of.

When eight consecutive rows have been found, compute the slope of that line
part. When sixteen consecutive rows have been found compute the slope of the
line part and compare it against the slope of the first part. If the slope is within
an error marginal of two pixels the line is considered as a straight line. Mark
the line as valid and update the data for the endpoint of the line. Compute the
slope of every eight–row block and compare it to the first block. If the slope is
within the error marginal update the endpoints, otherwise don’t update the line
anymore.

When the FIFO is empty, the memory is searched for bad lines, i.e. lines that
have been started but not found at least sixteen consecutive rows with the same
slope. A line is considered bad when starting row plus number of rows is less
than the current row in the picture and is not marked as valid.

All lines start– and endpoints are reported at the beginning of the next frame.

3.7 Stereo Matching

Three FIFO queues (FIFO l, FIFO r, FIFO res) and one content addressable
memory, CAM are used in the stereo matching.

First detect all feature transitions for both cameras and store the row, x
position and colour in FIFO l and FIFO r. When all transitions in a row have
been detected, the first eight (or as many that has been found) transitions and
positions from FIFO l are read to memory and the transitions are stored in CAM
for fast comparisons.

The first transition of FIFO r is compared to the transitions in the CAM.
If a match is found, the corresponding transitions position is loaded and if the
difference in x position is within the predetermined range (150 pixels in our case
to detect objects that is about 3 dm away) it is considered a good match. If it is
a good match, the transition is stored with the row number, disparity and mean
x value of the two images and is stored in FIFO res for further analysis. If it
isn’t a good match, the next possible match in the CAM is checked in the same

Fig. 5. Pictures from left and right camera for Stereo matching
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Fig. 6. Left image shows points found in both right and left camera. Right image shows
the distance as gray-scale.

way. When a good match is found, the transition at that and lower addresses
are shifted out CAM, and the CAM is filled with any transitions that are left at
the same row in FIFO l.

If no good match is found a check for partial matches is started. A partial
match could happen when for example, the ball lies close to a line and one
camera sees ball-line and the other sees ball-grass-line, or just a mismatch in
sensitivity in the cameras.

For a partial match, first the transition from a colour in FIFO r is searched
for and if found, the to colour in FIFO r is searched. Only if both from and to
colours are found any match is considered good. When both from and to colours
are found, two transitions is stored in FIFO res, first the transition that matched
the from colour and then the transitions matching the to colour, effectively
inferring one extra transition in the original point. If no good match is found
the next entry in FIFO r is analyzed, and if necessary the entries in CAM is
updated with new points from FIFO l.

The pictures in fig (5) are the starting images for the stereo matching. The
result is shown in fig (6) and it shows all matched edges to the left and to the
right the distances are displayed. White is close and black is far away. The shift
to the ball is 72 pixels. The shift to the beginning of the line is 69 pixels and to
the end 30 pixels.

There are some errors in the background and in the ball due to the differences
in colours and lighting in the pictures

3.8 Harris and Stephens Combined Corner and Edge Detector

For Robocup 2005 a new algorithm has been implemented in the vision system
that complement existing functionality. The widely–used Harris and Stephens
combined corner and edge detector [14] has been implemented in hardware. It’s
based on a local autocorrelation function and it performs very well on natural
images. The hardware implementation in this paper takes as input RGB-signals
from the two synchronized OV7610 cameras in real–time. Pixels whose strength
is above an experimental threshold are chosen as visual features. The purpose is
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to extract the image feature in a sequence of images taken by the two cameras.
The obtained data is detected feature–points on each image and can be future
analyzed by for example, feature matching algorithms, stereo vision algorithms
and visual odometry.

Harris and Stephens combined corner and edge uses small local window w to
analyze the image I given by the mathematical formula 4. Note that the small
local window only traverses the image with small shifts:

E(x, y) = Ax2 + 2Cxy + By2 (4)

where:

A = X2 ⊗ w, B = Y 2 ⊗ w, C = (XY )⊗ w (5)

where X and Y are approximated by:

X = I ⊗

⎡
⎣−1 0 1
−1 0 1
−1 0 1

⎤
⎦ = ∂I/∂x (6)

Y = I ⊗

⎡
⎣−1 −1 −1

0 0 0
1 1 1

⎤
⎦ = ∂I/∂y (7)

The response to this function is noisy caused by the rectangle window, so we
introduced as Harris and Stephens declared a smooth circular Gaussian window
equ (8) instead:

wu,v = e−(u2+v2)/2σ2
(8)

With a lot of potential corners detected from the function described above, we
then apply the experimental threshold to sort out the true corners from the less
distinctive ones. Finally a corner filter has been applied by only storing the most
distinctive corners within a 3x3 pixel window sliding over the final feature set.
This filter eliminates all corners that are to close to each other and will reduce
the amount of data to analyze in the next step.

To implement this algorithm on the 1 million gates FPGA used on the vision
system the VHDL language has been used. But to parallelize Harris and Stephens
combined corner and edge detector; the system was first implemented in Matlab
to test different approaches, local window sizes and thresholds. In Matlab real
images from the vision system could be analyzed and also detected corners could
be plotted on the analyzed images for comparison.

To gain real-time speed of the system the algorithm was designed as a pipeline,
so each step execute in parallel. This means that it takes some cycles for the
first two pixels to traverse the entire pipeline, but when the first two pixels has
been analyzed the next two pixels will come the immediately at the end of next
cycle. So when the system is running two pixels will be analyzed every cycle,
note that one cycle is not the same as one tick on the system clock.
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Three different window generators are used; the first one is before the calcu-
lation with derivative masks, next is before the factorization stage and the last
one is before the comparison stage. Each window generator store values incoming
from the stage before and will not generate any output until the entire window
is full. When the window is full the values within it will be transferred to the
next stage and the window will be shifted. The size of the last two window gen-
erator gave us a satisfied result and was decided when the algorithm was tested
in Matlab. The size of the first window generator was not optional because it
must have the same size as the derivative mask which is 3–by–3.

In general we can say that the first real stage of the pipeline is to calculate
the pixels within the first small window with the derivative masks described by
formula 6 and 7 above. The next step in the pipeline is to factorize (5) and apply
the Gaussian filter (8). The stage after that is to calculate formula 4 which will
give us a corner strength value. And the last stage is to compare corners with
the experimental threshold and filter our corners that are to close to each other
on the image.

When testing and design of a parallel version of Harris and Stephens corner
and edge detector was complete the system was implemented in VHDL. When
each stage of the pipeline was implemented the stage was tested in ModelSim
and the result was always compared and verified with Matlab as reference.

When the entire algorithm was completely implemented, the system was
tested in reality. To test it an image capture and corner plotting program was
implemented and the result can be seen in Figure 7).

From the resulting images we can clearly see that many of the corners that
have been found in both images are the same corners. This will facilitate for
feature matching algorithms to match pair corners from both images. When
corners in both images have been pair, stereo vision algorithm can be applied
and visual odometry can be obtained from a sequence of paired features. More
research will be done on these subjects in the near future.

Fig. 7. The corner detection result of one of the first real tests of the system. These
two images is a pair out of a sequence of images analyzed by the hardware implemented
algorithm.
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The frame rate obtained when the system is running was approximately 13.7
frames per second on our 50 MHz FPGA.

4 Results and Discussion

For any kind of robot the sensor system is crucial for its observation of the
environment. Of various sensors used in Robocup, vision is the most powerful.
The main way vision is implemented today is on ordinary computers. Although
a modern PC has very high performance there is always a trade–off between
frame–rate and resolution.

The results from this study shows that; by using an FPGA with only 1 million
gates, it is possible to achieve a frame–rate of 13Hz on a stereo–camera setup,
where all corners are detected in real–time. There are plans of implementing the
stereo matching in the FPGA as well as a variant of the ICP–algorithm, which
can be used for both localization and movement of the robot. A modified version
of the ICP–algorithm (Iterative Closest Point)[15], can also be used to monitor
the movements of other robots as well as the ball.

The limitation of frame–rate to 13Hz is due to the number of hardware mul-
tipliers, and the clock–frequency of the FPGA. By increasing the number of
multipliers the frame–rate can be turned up to the maximal 25Hz, which is then
limited by the frame–rate of the cameras.
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Abstract. Interest on using mobile autonomous agents has been growing, 
recently, due to their capacity to cooperate for diverse purposes, from rescue to 
demining and security. In many of these applications the environments are 
inherently unstructured and dynamic, requiring substantial computation 
resources for gathering enough sensory input data to allow a safe navigation 
and interaction with the environment. As with humans, who depend heavily on 
vision for these purposes, mobile robots employ vision frequently as the 
primary source of input data when operating in such environments. However, 
vision-based algorithms are seldom developed with reactive and real-time 
concerns, exhibiting large variations in the execution time and leading to 
occasional periods of black-out or vacant input data. This paper addresses this 
problem in the scope of the CAMBADA robotic soccer team developed at the 
University of Aveiro, Portugal. It presents an evolution from a monolithic to a 
modular architecture for the vision system that improves its reactivity. With the 
proposed architecture it is possible to track different objects with different rates 
without losing any frames. 

1   Introduction 

Coordinating several autonomous mobile robotic agents in order to achieve a common 
goal is currently a topic of intense research [11,7]. This problem can be found in 
many robotic applications, either for military or civil purposes, such as search and 
rescue in catastrophic situations, demining or maneuvers in contaminated areas. One 
initiative to promote research in this field is RoboCup [7] where several autonomous 
robots have to play football in a team to beat the opponent.  

As for many real-world applications, robotic soccer players are autonomous, 
though potentially cooperative, mobile agents that must be able to navigate in and 
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interact with their environment. Some of these actions exhibit real-time 
characteristics, although with different levels of criticality. For instance, the capability 
to timely detect obstacles in the vicinity of the robot can be regarded as a hard activity 
since failures, either in the temporal or value domains, can result in injured people or 
damaged equipment. On the other hand, activities like self-localization or tracking the 
ball, although important for the robot performance, are inherently soft since failing in 
these activities simply causes performance degradation.  The capability to timely 
perform the required image-processing activities at rates high enough to allow visual-
guided control or decision-making is called real-time computer vision (RTCV) [13]. 

The RoboCup soccer playfield resembles human soccer playfields, though with 
some (passive) elements specifically devoted to facilitate the robots navigation. In 
particular the goals have solid and distinct colors and color-keyed posts are placed in 
each field corner. This type of environment can be classified as a passive information 
space [2]. Within an environment exhibiting such characteristics, robotic agents are 
constrained to rely heavily on visual information to carry out most of the necessary 
activities, leading to a framework in which the vision subsystem becomes an integral 
part of the close-loop control. In these circumstances the temporal properties of the 
image-processing activities (e.g. period, jitter and latency) strongly impact the overall 
system performance. Therefore, the application of real-time techniques to these 
activities so as to improve their temporal behavior by reducing mutual interference 
and limiting processing demand seems adequate to improve global performance.  

In this paper we propose a new modular architecture for the vision subsystem, 
where different objects are tracked by independent processes. Using appropriate 
operating system services, these processes are then scheduled according to their 
relative importance, with preemption. The result is a noteworthy improvement of the 
temporal behavior of the processes deemed to have greater impact on the overall 
system performance. 

The remainder of the paper is structured as follows: Section 2 presents the generic 
computing architecture of the CAMBADA robots. Section 3 shortly describes the 
working-principles of the vision-based modules and their initial implementation in the 
CAMABADA robots.  Section 4 describes the new modular architecture that has been 
devised to enhance the temporal behavior of the image-processing activities. Section 
5 presents experimental results and assesses the benefits of the new architecture. 
Finally, Section 6 concludes the paper. 

2   The CAMBADA Computing Architecture 

The computing architecture of the robotic agents follows the biomorphic paradigm 
[9], being centered on a main processing unit (the brain) that is responsible for the 
higher-level behavior coordination (Fig. 1). This main processing unit handles 
external communication with other agents and has high bandwidth sensors (the vision) 
directly attached to it. Finally, this unit receives low bandwidth sensing information 
and sends actuating commands to control the robot attitude by means of a distributed 
low-level sensing/actuating system (the nervous system). 
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The main processing unit is currently implemented on PC-based computers that 
deliver enough raw computing power and offer standard interfaces to connect the 
other systems, namely USB. The PCs run the Linux operating system over the RTAI 
(Real-Time Applications Interface [5]) kernel, which provides time-related services, 
namely periodic activation of processes, time-stamping and temporal synchronization. 

The agents software architecture is developed around the concept of a real-time 
database (RTDB), i.e., a distributed entity that contains local images (with local 
access) of both local and remote time-sensitive objects with the associated temporal 
validity status. The local images of remote objects are automatically updated by an 
adaptive TDMA transmission control protocol [3] based on IEEE 802.11b that 
reduces the probability of transmission collisions between team mates thus reducing 
the communication latency. 

Main
Processor

High bandwidth
sensors

Distributed sensing/
actuation system

External communication
(IEEE 802.11b)

Coordination
layer

Low-level
control layer

 

Fig. 1. The biomorphic architecture of the CAMBADA robotic agents 

The low-level sensing/actuating system follows the fine-grain distributed model [8] 
where most of the elementary functions, e.g. basic reactive behaviors and closed-loop 
control of complex actuators, are encapsulated in small microcontroller-based nodes, 
interconnected by means of a network. This architecture, which is typical for example 
in the automotive industry, favors important properties such as scalability, to allow 
the future addition of nodes with new functionalities, composability, to allow building 
a complex system by putting together well defined subsystems, and dependability, by 
using nodes to ease the definition of error-containment regions. This architecture 
relies strongly on the network, which must support real-time communication. For this 
purpose, it is used the CAN (Controller Area Network) protocol is used [1], which has 
a deterministic medium access control, a good bandwidth efficiency with small 
packets and a high resilience to external interferences. Currently, the interconnection 
between CAN and the PC is carried out by means of a gateway, either through a serial 
port operating at 115Kbaud or through a serial-to-USB adapter. 

3   The CAMBADA Vision Subsystem 

The CAMBADA robots sense the world essentially using two low-cost webcam-type 
cameras, one facing forward, and the other pointing the floor, both equipped with 
wide-angular lenses (approximately 106 degrees) and installed at approximately 80cm 
above the floor. Both cameras are set to deliver 320x240 YUV images at a rate of 20 
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frames per second. They may also be configured to deliver higher resolution video 
frames (640x480), but at a slower rate (typically 10-15 fps). The possible 
combinations between resolution and frame-rate are restricted by the transfer rate 
allowed by the PC USB interface.  

The camera that faces forward is used to track the ball at medium and far distances, 
as well as the goals, corner posts and obstacles (e.g. other robots). The other camera, 
which is pointing the floor, serves the purpose of local omni-directional vision and is 
used for mainly for detecting close obstacles, field lines and the ball when it is in the 
vicinity of the robot. Roughly, this omni-directional vision has a range of about one 
meter around the robot.  

All the objects of interest are detected using simple color-based analysis, applied in 
a color space obtained from the YUV space by computing phases and modules in the 
UV plane. We call this color space the YMP space, where the Y component is the 
same as in YUV, the M component is the module and the P component is the phase in 
the UV plane. Each object (e.g., the ball, the blue goal, etc.) is searched independently 
of the other objects. If known, the last position of the object is used as the starting 
point for its search. If not known, the center of the frame is used. The objects are 
found using region-growing techniques. Basically, two queues of pixels are 
maintained, one used for candidate pixels, the other used for expanding the object. 
Several validations can be associated to each object, such as minimum and maximum 
sizes, surrounding colors, etc. 

Two different Linux processes, Frontvision and Omnivision, handle the image 
frames associated with each camera. These processes are very similar except for the 
specific objects that are tracked. Figure 2 illustrates the actions carried out by the 
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Fig. 2. Flowchart of the Frontvision process 
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Frontvision process. Upon system start-up, the process reads the configuration files 
from disk to collect data regarding the camera configuration (e.g. white balance, 
frames-per-second, resolution) as well as object characterization (e.g. color, size, 
validation method). This information is then used to initialize the camera and other 
data structures, including buffer memory. Afterwards the process enters in the 
processing loop. Each new image is sequentially scanned for the presence of the ball, 
obstacles, goals and posts. At the end of the loop, information regarding the diverse 
objects is placed in a real-time database.  

Keyboard, mouse and the video framebuffer are accessed via the Simple 
DirectMedia Layer library (SDL, [12]). At the end of each loop the keyboard is 
pooled for the presence of events, which allows e.g. to quit or dynamically change 
some operational parameters. 

4   A Modular Architecture for Image Processing: Why and How 

As referred to in the previous sections, the CAMBADA robotic soccer players operate 
in a dynamic and passive information space, depending mostly on visual information 
to perceive and interact with the environment. However, gathering information from 
such type of environments is an extremely processing-demanding activity [4], with 
hard to predict execution times.  Regarding the algorithms described in Section 3, 
above, it could be intuitively expected to observe a considerable variance in process 
execution times since in some cases the objects may be found almost immediately, 
when their position between successive images does not change significantly, or it 
may be necessary to explore the whole image and expand a substantial amount of 
regions of interest, e.g. when the object disappears from the robot field of vision. This 
expectation is in fact confirmed in reality, as depicted in Figure 3, which presents a 
histogram of the execution time of the ball tracking alone. Frequently the ball is 
located almost immediately, taking less than 2.5ms to complete. However, a 
significant amount of instances require between 17.5ms and 32.5ms to complete and, 
sometimes, the process requires over 50ms, which is the inter-frame period used by 
the cameras. 

As described in Section 3, the CAMBADA vision subsystem architecture is 
monolithic with respect to each camera, with all the image-processing carried out 
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within two processes, the Frontvision and the Omnivision, respectively. Each of these 
processes tracks several objects sequentially. Thus, the following frame is acquired 
and analysed only after tracking all objects, which may take, in the worst case, 
hundreds of milliseconds, causing a certain number of consecutive frames to be 
skipped. These are vacant samples for the robot controllers that degrade the respective 
performance and, worse, correspond to black-out periods in which the robot does not 
react to the environment. Considering that, as discussed in Section 1, some activities, 
like obstacle detection, have hard deadlines this situation becomes clearly 
unacceptable. Increasing the available processing power could, to some extent, 
alleviate the situation (although not completely solve it). However, the robots are 
autonomous and operate from batteries, and thus energy consumption aspects are 
highly relevant, which renders brut-force approaches undesirable.  

4.1   Using Real-Time Techniques to Manage the Image Processing 

As remarked is Section 1, some of the activities carried out by the robots exhibit real-
time characteristics with different levels of criticality, importance and dynamics. For 
example, the latency of obstacle detection limits the robots maximum speed in order 
to avoid collisions with people, walls or other robots. Thus, the obstacle detection 
process should be executed as soon as possible, in every image frame, to allow the 
robot to move as fast as possible in a safe way. On the other hand, detecting the 
corner poles for localization is less demanding and can span across several frames. 
However, this activity should not block the more frequent obstacle detection. This 
calls for the encapsulation of each object tracking in different processes as well as for 
the use of preemption and appropriate scheduling policies, giving higher priority to 
most stringent processes. These are basically the techniques that were applied to the 
CAMBADA vision subsystem as described in the following section. 

4.2   A Modular Software Architecture 

Figure 4 describes the software modular architecture adopted for the CAMBADA 
vision subsystem, for each of the two cameras used. Standard Linux services are used 
to implement priority scheduling, preemption and data sharing.  

Each camera uses one process (ReadXC) to create a shared memory region where 
the images are buffered. The processes are periodically triggered by the cameras, 
whenever a new image frame is available. Each object tracking process (e.g. obstacle, 
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Fig. 4. Modular software architecture for the CAMBADA vision subsystem 
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ball), generically designated by proc_obj:x, x={1,2,…n}, is triggered by a process 
manager module, according to the relevant process attributes (period, phase) stored in 
a process database. Once started, each process gets a link to the most recent image 
frame available and starts tracking the respective object. Once finished, the resulting 
information (e.g. object detected or not, position, degree of confidence, etc.) is placed 
in a real-time database [6] (Object info), similarly located in a shared memory region.  
This database may be accessed by any other processes on the system, e.g. to carry out 
control actions. A display process may also be executed, which is useful mainly for 
debugging purposes. 

Scheduling of vision related processes relies on the real-time features of the Linux 
kernel, namely the FIFO scheduler and priorities in the range 15-50. At this level 
Linux executes each process to completion, unless the process blocks or is preempted 
by other process with higher real-time priority. This ensures that the processes are 
executed strictly according to their priority (i.e., importance) with full preemption, 
relying solely on operating system services, in a non intrusive and transparent way. 
The real-time features of Linux, despite limited, are sufficient at this time-scale 
(periods multiple of 50ms) as long as memory swapping and disk access are avoided. 

The buffer management system keeps track of the number of processes that are 
connected to each buffer. Buffers may be updated only when there are no processes 
attached to them, thus ensuring that processes have consistent data independently of 
the time required to complete the image analysis. This approach is adequate to 
situations where different objects have different degrees of dynamism, e.g., the ball is 
highly dynamic and needs being tracked in every frame but the relative goal position 
is less dynamic and can be tracked every four frames. Moreover, in the latter case 
prediction methods can be effectively used, as suggested in [10], to allow obtaining 
estimates of object positions based on past data.    

The process activation is carried out by a process manager that keeps, in a 
database, the process properties, e.g. priority, period and phase. For each activation, 
the process manager scans the database, identifies which processes should be 
activated and sends them appropriate signals. The cameras are set to grab images 
periodically, and the arrival of each new image frame is used to activate the process 
manager. This framework allows reducing the image processing latency, since 
processes are activated immediately upon the arrival of new images. Another relevant 
feature that is supported is the possibility of de-phasing the process activations in the 
time domain, to minimize mutual interference and thus reducing their response time. 

5   Experimental Results 

In order to assess the benefits of the modular approach with respect to the initial 
monolithic one, several experiments were conducted, using a PC with an Intel 
Pentium III CPU, running at 833MHz, with 256MB of RAM. The PC runs a Linux 
2.4.21 kernel, patched with RTAI 24.1 for the experiments involving the real-time 
architecture. The image-capture devices are Logitech Quickcams, with a Philips 
chipset. The cameras were set-up to produce 320*240 images at a rate of 20 frames-
per-second. The time instants were measured accessing the Pentium TSC. 
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5.1   Monolithic Architecture 

The code of the Frontvision and Omnivision processes (Section 3) was instrumented 
to measure the start and finishing instants of each instance. Figure 5 presents a 
histogram of the inter-activation intervals of these processes, while Table 1 presents a 
summary of some relevant statistical figures regarding their response-time. 

 

 
Fig. 5. Activation interval for Frontvision (left) and Omnivision (right) 

The response time of both processes exhibits a substantial variance, with execution 
times ranging from 10ms to over 600ms and an average execution time around 44ms. 
Noting that the processing of a frame can only start after the previous one being fully 
processed, this response-time variance leads to the activation time dispersion 
observed in Figure 5.  

Table 1.  Frontvision and Omnivision response–time statistical figures 

Process Max 
(ms) 

Min 
(ms) 

Average 
(ms) 

Stand. 
deviation 

Frontvision 427.7 9.9 43.6 30.6 
Omnivision 635.5 10.8 44.0 30.4 

 
The combination of such an irregular activation pattern with highly variant response-

times results in a high jitter value and number of skipped frames. Remembering that the 
image-processing is part of the robot control loop, this leads to an irregular and poor 
robot performance.  

5.2   Modular Architecture 

The different image-processing activities have been separated and wrapped in 
different Linux processes, as described in Section 4. The periods, offsets and priorities 
assigned to each one of the processes are summarized in Table 2.  

The obstacle avoidance processes are the most critical ones since they are 
responsible for alerting the control software of the presence of any obstacles in the 
vicinity of the robot, allowing it to take appropriate measures (e.g. evasive maneuvers 
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or immobilization). Therefore these processes are triggered at a rate equal to the 
camera frame rate and receive the highest priority, ensuring a response-time as short 
as possible. It should be remarked that these processes scan delimited image regions, 
only, looking for specific features, thus their execution time is bounded and relatively 
short. In the experiments the measured execution time upper bounds were 7ms and 
9ms for Avoid_Om and Avoid_Fr, respectively. Therefore, this architecture allows 
ensuring that every frame will be scanned for the presence of obstacles.  

Table 2. Image-processing processes properties 

Process Period 
(ms) Priority 

Offset 
(ms) Purpose 

Ball_Fr 50 35 0 Ball tracking (front camera) 
BGoal / YGoal 200 25 50/150 Blue / Yellow Goal tracking  
BPost / YPost 800 15 100/200 Blue / Yellow Post tracking 
Avoid_Fr 50 45 0 Obstacle avoidance (front cam.) 
Ball_Om 50 40 0 Ball tracking (omni camera) 

Avoid_Om 50 45 0 
Obstacle avoidance (omni 
camera) 

Line 400 20 0 Line tracking and identification 
KGoal 100 30 0 Goal line tracking 

 
The second level of priority is granted to the Ball_Om process, which tracks the 

ball in the omni-directional camera. This information is used when approaching, 
dribbling and kicking the ball, activities that require a low latency and high update 
rate to be successful. Therefore this process should, if possible, be executed on every 
image frame, thus its period was also set to 50ms.  

The third level of priority is assigned to the Ball_Fr process, responsible for 
locating the ball in the front camera. This information is used mainly to approach the 
ball when it is at medium to far distance from the robot. Being able to approach the 
ball quickly and smoothly is important for the robot performance but this process is 
more delay tolerant than the Ball_Om process, thus it is assigned a lower priority. 

The KGoal process detects the goal lines, being mainly used by the goal keeper. 
Contrarily to the previous processes, the dynamics of the lines depend only on the 
robot movement. Furthermore, the localization of the robot within small regions is 
complemented with an odometry subsystem, which updates the robot position. This 
allows having a lower activation rate and priority of the vision-based goal lines 
detection without incurring in significant performance degradation. 

A similar reasoning was applied to decide the attributes of the BGoal and YGoal 
processes, which track the position of the blue and yellow goals, respectively. Since 
the goals are stationary with respect to the play fields, and due to the availability of 
odometry data, updates can be made more sparsely and are not particularly sensitive 
to jitter. For this reason these processes were assigned a priority of 25 and a period of 
200ms (every 4 frames). 

The field line detection process (Line) detects and classifies the lines that delimit 
the play field, pointing specific places in it. This information is used only for 
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calibration of the localization information and thus may be run sparsely (400ms). Post 
detection processes (BPost and YPost) have a similar purpose. However, since the 
information extracted from them is coarser than from the line detection (i.e., it is 
affected by a bigger uncertainty degree), it may be run at even a lower rate (800ms) 
without a relevant performance degradation. 

The offsets of the different processes have been set-up to de-phase the process 
activations as much as possible. With the offsets presented in Table 2, besides the 
obstacle and ball detection processes, which are executed for every frame, no more 
than two other processes are triggered simultaneously. This allows minimizing mutual 
interference and thus reducing the response-time of lower priority processes. 

Figures 6, 7 and 8 show the inter-activation intervals of selected processes 
(obstacle, ball, goal line and yellow post tracking), which clearly illustrate the 
differences between the modular and the monolithic architectures regarding the 
processes temporal behavior. The processes that receive higher priority (obstacle 
detection, Fig. 6) exhibit a narrow inter-activation variance, since they are not blocked 
and preempt other processes that may be running. Figure 7 regards the inter-activation 
intervals of the ball tracking processes. As stated above, the ball tracking process on 

 

 

Fig. 6. Front (left) and omni-directional (right) obstacle detection processes inter-activation 
intervals 

 

Fig. 7. Front (left) and omni-directional (right) ball tracking processes inter-activation intervals 
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Fig. 8. Goal line (left) and yellow post (right) tracking processes inter-activation intervals 

the omni-directional camera received higher priority since its data is used by more 
time sensitive activities. For this reason its inter-activation interval is narrower than 
the ball tracking process related to the front camera. Ball-tracking processes exhibit a 
significantly higher response-time jitter than obstacle detection because, in the worst 
case, they must scan the whole image. For this reason the lower-priority ball-tracking 
process exhibits a much higher inter-activation jitter than the higher-priority one. The 
same behavior is observed for the remaining processes, which see their inter-
activation jitter increase as their relative priorities diminish. 

Table 3 shows statistical data regarding the inter-activation intervals of these 
processes, which confirm, in a more rigorous way, the behavior observed above. The 
processes are sorted by decreasing priorities exhibiting, from top to bottom, a steady 
increase in the gap between maximum and minimum values observed as well as in the 
standard deviation. This is expected since higher priority processes, if necessary, 
preempt lower priority ones increasing their response-time. 

Comparing the data in Tables 1 and 3, a major improvement can be observed with 
respect to the activation jitter of the most time-sensitive processes, which was reduced 
from around 30ms to 2ms-3ms (object avoidance) and 3ms-9ms (ball tracking). 
Furthermore, since the obstacle avoidance processes have a relatively short execution  

 
Table 3. Modular architecture: statistical data of process inter-activation intervals  

Process Max  
(ms) 

Min 
(ms) 

Standard 
deviation (ms) 

Avoid_Om 56.9 43.0 1.9 
Avoid_Fr 58.1 41.9 2.5 
Ball_Om 63.6 35.8 4.7 
Ball_Fr 75.9 25.4 8.9 
KGoal 506.6 0.5 27.4 
Bgoal 547.9 0.6 39.1 
YGoal 654.6 0.6 42.0 
Line 711.0 38.8 53.3 
BPost 1159.7 541.1 60.8 
YPost 1101.0 485.6 53.3 
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time (up to 8.5ms in this architecture) it becomes possible to guarantee their execution 
in every image frame allowing the robots to run at higher speed without compro- 
mising safety.  

6   Conclusion 

Computer vision applied to guidance of autonomous robots has been generating large 
interest in the research community as a natural and rich way to sense the environment 
and extract the necessary features. However, due to the robots motion, vision-based 
sensing becomes a real-time activity that must meet deadlines in order to support 
adequate control performance and avoid collisions. Unfortunately, most vision-based 
systems do not rely on real-time techniques and exhibit very poor temporal behavior, 
with large variations in execution time that may lead to control performance 
degradation and even sensing black-out periods (skipped image frames). 

In this paper, the referred problem is identified in the scope of the CAMBADA 
middle-size robotic soccer team, being developed at the University of Aveiro, 
Portugal. Then, a new architectural solution for the vision subsystem is presented that 
substantially improves its reactivity, reducing jitter and frame skipping. 

The proposed architecture separates the vision-based object-tracking activities in 
several independent processes. This separation allows, transparently and relying 
solely on operative system services, to avoid the blocking of higher priority processes 
by lower priority ones as well as to set independent activation rates, related with the 
dynamics of the objects being tracked, together with offsets that de-phase the 
activation instants of the processes to further reduce mutual interference.  

As a consequence, it became possible to guarantee the execution of critical 
activities (e.g., obstacle avoidance) and privilege the execution of others that, 
although not critical, have greater impact on the robot performance (e.g., ball 
tracking). This result and approach are relevant for a class of robots in which the 
vision subsystem is part of their control loop, leading to a better control performance. 
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Illumination Independent Object Recognition

Nathan Lovell

School of CIT, Griffith University, Nathan 4111 QLD, Australia

Abstract. Object recognition under uncontrolled illumination condi-
tions remains one of hardest problems in machine vision. Under known
lighting parameters, it is a simple task to calculate a transformation
that maps sensed values to the expected colors in objects (and min-
imize the problems of reflections and/or texture). However, RoboCup
aims to develop vision systems for natural lighting conditions in which
the conditions are not only unknown but also dynamic. This makes fixed
color-based image segmentation infeasible. We present a method for color
determination under varying illumination conditions that succeeds in
tracking the objects of interest in the RoboCup legged league.

1 Introduction

Vision systems that perform colour based object recognition (as in the SONY
Aibo Four-Legged RoboCup League) rely heavily on a static lighting environ-
ment where objects of interest have known colors (for example, the ball is
orange). This simplifies the vision problem significantly and has resulted in stan-
dard vision modules consisting of three steps [1]:

Color segmentation: Each pixel in the image is classified as being either one
of the important colours or an unknown colour.

Blob formation: Identify groups of same coloured pixels (blobs).
Object recognition: Blobs are analysed to determine objects.

Of course, if pixels are incorrectly classified, then the blobs inaccurately reflect
the features of the object resulting in identification error. Even in known and
static lighting environments, specular reflection can make (for example) white
pixels look pink and orange pixels look yellow. The Aibo camera is very unsophis-
ticated compared to other digital cameras that have very complex mechanisms
for dealing with changing lighting conditions including variable shutter speeds
and automatic focusing. Work in other leagues shows how these features can be
used effectively [2]. The Aibo camera, however, lacks many of these advantages
and it provides only the most simple of lighting modes that must be manually
set. It does not even provide a consistent colour sampling across single images [3].

As we move toward using natural lighting conditions, with unknown and
dynamic lighting temperature and intensity, and including shadows and indirect
and reflected light, the problems are compounded significantly. If the lighting
conditions are known, then the change in perceived colours for different lighting
conditions is well modelled by a computable mathematical transformation [3].

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 384–395, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Illumination Independent Object Recognition 385

In unknown lighting conditions the problem of correctly classifying a pixel is
very difficult on a pixel by pixel basis.

RoboCup has a strong interest in uncontrolled illumination due to its 2050
target. There has been a stream of papers on lighting conditions over the 2003
and 2004 symposiums [4, 5, 6, 7, 8, 9, 10, 11, 12], however, the implementations in
the actual robots has been disappointing. Consider as an illustration the techni-
cal challenge regarding variable lighting conditions that has been present in the
4-legged league for some years now. All 24 teams attempted a solution to this
problem in 2004. However, the result demonstrated not only the difficulty of the
problem but also that current research is far from a solution. While most teams
did well in the period when the lights were close to normal levels, as soon as
the lights were dimmer no team was able to correctly identify both the ball and
the goal, let alone score a goal. Research efforts for uncontrolled illumination
for RoboCup have also been reflected elsewhere [13, 14, 15, 16, 17, 18]. Still the
results have not convincingly produced a working system.

The main problem with previous approaches has been the concern with cre-
ating pixel classifiers for color segmentation of high accuracy and high coverage.
We maintain that under changing illumination conditions, this is in essence an
impossible task and pixel classification must be determined in the context of the
image and, at least partly, by what colour we expect that pixel to be. The human
eye does this unconsciously. For example, tree leaves at sunset still appear green
though in a digital picture very few of the pixels that make up the leaves will be
in any way green.

We introduce an efficient object recognition system that is robust to changes
in colour intensity and temperature because it does not rely solely on colour
classification in order to form blobs. We propose a classifier that is very accurate
but only on pixels that are at the core of each color class and essentially refuses to
make a decision for most other pixels labeling them as unknown. Our approach
works while providing a color label for less than 10% of the pixels in each frame.
Instead of using the colour of each pixel to form blobs, we first form the blobs and
then use the colours of each pixel within it to tell us the colour of the blob. We
can now use the context of the entire image rather than a simple pixel-by-pixel
analysis in our object recognition process. Our process then is:

Edge detection: Detect efficiently the edges within the image.
Sparse classification: Classify each pixel that is not determined to be an edge

according to the sparse classifier.
Object recognition: Detect the blobs within the image and use the classified

pixels within them to determine colour.

We now show details that make each step very efficient. Thus, the entire process
has insignificant overhead compared to previous object recognition systems.

There have been other attempts at combining edge detection and colour seg-
mentation to improve object recognition [19] however these have been done with
the aim of improving vision system performance and accuracy, not with the aim
of overcoming problems associated with variable illumination.
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Table 1. Comparison of our edge detection algorithm with well-known Sobel edge
detection. The average runtime for the algorithm improves more than 75% for a window
size of five. The pixels labeled incorrectly are less than 7% overall. The times in the
table are measured in AVW2 profile clicks. AVW2 is our vision testbed program [20].

Min Max Avg False False Total

Runtime Runtime Runtime Positives Negatives Incorrect

Sobel 75 129 84.2 - - -
Our Algorithm 14 21 20.9 4.1% 2.3% 6.4%

2 Our Fast Edge Detection

While we are confident that a robust edge detection algorithm would be suffi-
cient for the first step in our process, it must also be very fast. We found that the
standard edge detection routines (such as Sobel, Robert’s Cross and Canny [21])
are simply too slow to be useful in our real-time processing environment. There-
fore, we introduce here a new edge detection routine that executes much faster
than traditional edge detection algorithms.

Edge detection routines slide a regular “window” over pixels and determine
if the colour between the pixels at the centre of the window varies significantly
from the average colour difference over such window. There are variations on
this, e.g., Sobel tests hypothesis of edges that could exist within the window,
checking each of them.

Our edge detection uses a similar idea however we only consider pixels in
the row and column of the centre, thus the window we use is not a square but
a cross. The difference in pixels at the centre of the window is computed and
compared to the average difference between other pixels in both the row and
column respectively. If the difference is much higher (either compared to the
horizontal difference, or the vertical one), then that this pixel lies on an edge.

Although both our routine and the traditional edge detection algorithms are
linear time under Big-O notation1, there is a big difference in the order of the
hidden cost. In traditional edge detection algorithms, each pixel in the window
must be compared to each of its neighbors. For a window size w the constant in
such algorithms is 2w(w − 1) = O(w2). Thus, quadratic on w, and usually very
large. For example, a window size of five leads to 40 colour comparisons for each
window evaluation and therefore 40 colour comparisons per pixel in the image.
Contrast this to our technique where, with size w, the constant is 2w = O(w),
i.e. linear in w. This means that in the above example, our algorithm will only
do 10 colour comparisons per pixel, thus running in a quarter of the time of a
traditional edge detection algorithm. There is a very minor trade off in terms of
the algorithm quality. Table 1 compares the runtime cost of our algorithm with

1 Big-O notation expresses the number of operations an algorithm performs, t(n), as
a function of the number, n, of input data items. An algorithm is O(f(n)) if there
is c > 0 and n1 > 0 such that t(n) < cf(n), ∀n > n1. Thus, t(n) is O(ct(n)),∀c > 0
and the constant cost, c, is hidden.
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Fig. 1. (a) Our edge detection routines are very robust to varying illumination con-
ditions. Edge detection remains of high quality. (b) Our experimental setting. Three
rows of independently controllable fluorescent lights.

that of a traditional algorithm (Sobel’s) a set of 100 images with a (reasonable)
window size of five. It also compares the quality of our algorithm against Sobel’s
by comparing the output of the two algorithms and measuring the percentage
of false positives and false negatives.

Despite the use of a smaller window, our edge detection algorithm is very
robust (less than 7% error) and remains a solid foundation for the rest of the
process as it is particularly resistant to changing lighting conditions. Fig. 1 (a)
illustrates the stability. Under the changing illumination conditions of each sub-
sequent image the edge analysis remains remarkably stable. The lighting con-
ditions are described in Fig. 1 (b). Our lab lighting consists of three rows of
independently controlled fluorescent lights. The row of lights labeled A runs
across the middle of the field. Rows B and C are positioned at the yellow and
blue ends of the field respectively. When only row A is on, the field has an in-
consistent illumination ranging from 250 to 430 lux. With rows B and C there is
a slightly better illumination ranging from 450 to 700 lux. RoboCup conditions
are approached only with all three rows of lights on (700 to 900 lux).

Any choice of edge detection algorithm must be implemented carefully to make
it feasible to run in real-time on an Aibo. We emphasize an important optimi-
sation that must be performed to make even our improved algorithm suitable.
As the window slides over the image, we store and re-use color differences that
will occur in comparisons more than once (in fact, proportional to the window
size). Consider the pixels at (10, 10) and (11, 10). The difference in colour be-
tween these two pixels is calculated for the first time when the window (of size
five) is centred on (5, 10) and used in the average to contrast with the difference
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between pixels at (5, 10) and (6, 10). As the window moves along the tenth row,
this difference must be used 10 times. The cost of each comparison is expensive
because it involves a three dimensional distance calculation (with a square root).
We minimise this cost by keeping a circular buffer of the calculated differences
between both the last five pixels and, looking ahead, the next five. Since we iter-
ate across rows first, and then columns, it is also necessary to maintain a circular
buffer for each column in the image, in addition to the one for the current row.
By using this technique the difference between each two pixels is only calculated
once per pixel.

3 Our Sparse Classification

We overcome the problems associated with illumination independence by shifting
the focus from colour-based segmentation to edge detection. Colour segmenta-
tion in the legged league consists of labeling with one of the environment’s colour
classes each pixel in the image. We represent this as a colour-segmentation func-
tion c class : Y × U × V → C that given a triplet (y, u, v) produces the colour
class. For the last few years, as many as 10 colours are used for objects of inter-
est in the field (including, the field itself, beacons, goals, opponents, teammates,
markings and of course the ball). A representation of the function c class as a
complete colour-lookup table that maps every possible YUV triplet to a partic-
ular colour class would be extremely large (224 bits). RoboCup researchers have
used many techniques to learn the c class function and to represent it. Among
these, machine learning and statistical discrimination techniques like linear dis-
criminant, decision trees [22], Artificial Neural Networks [23], Support Vector
Machines [24] and instance-based classifiers (k-nearest neighbors and other non-
parametric statistics [22]) have been used. However, the state of the art (in terms
of accuracy vs speed) for this environment remains a look-up table of charac-
teristic vectors for each of the 3 dimensions [1]. Look-up tables are faster than
machine learning artifacts by several orders of magnitude [25].

While all of these methods can learn and represent the 224 bit colour table
off-line (colour calibration), they have trouble adapting smoothly and reliably
on-line. The problem is that a change in illumination conditions implies a change
in the colour table in a non-simple way [24]. Thus, all of these approaches will
eventually fail as the colour table increasingly becomes inaccurate in changing
illumination conditions.

Whatever the machine learning techniques used and representation of the
segmentation function c class : Y ×U×V → C is, the aim had been to have high
accuracy on the entire space of (y, u, v) values and then segment an entire image.
Thus, classifiers were built with the requirement to label all pixels which are
perceived from a known colour. But, under another set of illumination conditions,
the function c class : Y ×U×V → C is rather different. In fact, one could say the
c classIC depends on the illumination conditions IC. One approach is to detect
what IC is frequently during play and switch the colour-segmentation function
on board of the robot dynamically [9]. This assumes that one can reliably identify
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Fig. 2. Sparse classification. The image on the left is segmented by a colour classifier
under known lighting conditions. The sparse classified image on the right only labels
pixels that are in the same color class in a variety of illumination conditions.

IC and have a reasonable rich set of pre-loaded segmentation functions. However,
the possible universe of values for IC implies a second stage of classification,
namely the reliable identification of the suitable function c classIC .

In contrast to previous work, we create a classifier that is as sparse as possible.
That is, we only want to classify a pixel belonging to a colour class if we are sure
that it will remain in that class in a wide range of illumination conditions. Our
approach is to consider identifying first that region of the YUV space for which
given a colour class (say blue) c classIC remains constant and equal to blue for
most values of IC. That is, our experience suggests that there is core region
in YUV space where most illumination conditions will regard this as blue. We
want our classifier to provide no label for those values where a (y, u, v) triplet
fluctuates between green and blue along many illumination conditions.

Fig 2 illustrates this difference. The left segmented image shows the result of
a traditional classifier trained with corresponding lighting conditions. The right
segmented image results from our idea of a sparse classifier that is trained to
classify only those pixels that it can surely labeled correctly across a variety of
illumination conditions. We call this “sparse colour segmentation”. Standard ob-
ject recognition systems would find a sparse colour segmentation useless because
large blobs of a common colour are non-existent within the image. Our system
will not use the colour-labeled pixels for that purpose so, as we will see in the
Section 4, a sparse classification is actually preferable.

In supervised learning, a training and test sets are used to produce a classifier.
Namely, the function c class : Y × U × V → C can be learned from many pairs
of the form [(y, u, v), c class]. Earlier work [25] has shown how to learn a very
efficient and succinct representation encodes the classifier as a decision list to
take advantage of the parallelism of bytes. This representation decomposes the
function c class into simpler functions and observes that the corresponding fast
C++ implementation essentially tests conditions as decision lists [26]. The learn-
ing algorithm PART [27] as implemented in WEKA [26] has been very successful
in learning a representation of c class that is no longer than 256×4bytes = 1 KB.
The accuracy is above 98% for operating on the same illumination conditions as
where the training and test sets were collected.

We describe how to obtain a new classifier that would produce a class label
for those regions of the YUV space where c classIC remains constant across a
large number of values for IC. We use a training set TIC to learn a classifier
decision listIC. We repeat this process for 5 different illumination conditions
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of the same field (additional base classifiers are required if we are moving the
field into a different room). We call the resulting classifiers decision listICi, for
i = 1, . . . , 5. We then process all source training sets TICi used to learn the
base-classifiers. For each example [(y, u, v), c class] we test if all 5 classifiers
decision listICi agree on a classification (and if that classification is c class).
If that is the case, this example is appended into a new global training set T .
Otherwise, the example is placed in the training set with the label replaced
by the value unknown. Once all training examples for the case classifiers have
been processed, the new training set T is used to learn the sparse classifier. All
learning stages use the PART algorithm and are represented as decision lists.
We should indicate that we were able to obtain a sparse classifiers that required
256× 14 bits (that is, 448 bytes) and had a precision of 99%.

4 Our Blob Forming

The final step before object recognition is blob forming. We take advantage of the
edges we have found in the first step. The edges of our blobs result from a border-
following algorithm that creates a list of pixels that represents the boundary of
each region of interest in the image. This avoids the need for complex union-
find methods to build blobs from colour labeled pixels. Union-find algorithms
are quadratic in complexity on the average diameter of the blob because they
must inspect every pixel in the blob. Border tracing is a linear operation on the
average diameter of the blob so is clearly a preferable method.

The edges themselves contain insufficient information to locate regions of the
image which are interesting so we use the sparse colour information we have
obtained by classification. We are fairly sure that anything labeled as, say, blue,
is actually blue in any lighting condition. Therefore a blob that contains many
more blue pixels than any other colour is likely to be a blue object. We use our
colour labeled pixels as a set of sample points and use Algorithm 1 to establish
the blob that each sample point lies in. As we build the list of pixels describing
the blob in Line 4, it is trivial to compute other properties of the blob such as
its bounding box or relation to the horizon of the image. A frequency histogram
of colour classes found within the blob is also built by Line 7.

In a naive implementation of this algorithm, the test in Line 3 could be
computationally time consuming. Since there will be many blobs, and each blob
will contain many pixels, there will be very large list of pixels to search to
test if our current pixel is already assigned to a blob. We recommend several
optimisations that make this algorithm much more efficient. Instead of searching
the existing boundary lists, we label (on the segmented image) each pixel in the
boundary of a blob with the blob ID of that pixel. This process is performed in
Line 4 of the algorithm as the boundary list is being constructed. Since we have
8-bits per pixel in a segmented image, and only 15 or so colour labels, we are
free to use the other 240 values as identifiers for blobs. In this way the test in
Line 3 is a single memory access to determine a blob ID.
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Algorithm 1. Blob Form
Input: A set, P , of seed points. An image where pixels on edges have been identified.
Output: A set, B, of blobs where each blob is represented by the pixel list that forms

its boundary.
1: for all Points, p ∈ P do
2: Find the pixel, e, in the edge above p.
3: if e is not in a blob b ∈ B then
4: Trace boundary to find pixel list describing a new blob b′.
5: Insert b′ into B.
6: else
7: Update colour information on b.
8: end if
9: end for

5 Our Object Recognition

Fig. 3 illustrates how our object recognition system, based on fast edge detec-
tion, is preferable in changing illumination conditions to a traditional object
recognition system based on colour segmentation. The images in the left column
are the source images in several illumination conditions. Refer again to Fig. 1 for
a description of the illumination conditions. We illustrate our illumination inde-
pendent object recognition by a series of images that represents different stages
in our vision processing pipeline. Even though the pixel classification changes
in each image (column two), the blob forming stage (column three) remains
fairly stable because it is based on our fast edge detection routine. Therefore
the objects on the field (a blue/pink beacon, the blue goal and a pink2 ball) are
recognised correctly in each image despite the illumination changes.

The task of object recognition is very similar to traditional systems because
the blobs are recognised accurately in a wide variety of lighting conditions. We
have several interesting blobs that require further investigation to determine if
they are actual objects such as the goals, beacons or the ball. One advantage
of our particular system is that blobs inherently are composed of a list of edge
pixels. In prior work we have demonstrated a linear time algorithm for straight
edge vectorisation [28]. This means that it requires very little processing over-
head to vectorise the blob’s boundary. This is especially useful when processing
the field blobs as it allows us to identify field edges and corners. There are several
other situations where having the boundary of the blob already identified is very
helpful. For example the centre of the ball is often found by using the mathe-
matical technique of perpendicular bisectors [29]. This relies on knowledge of the
boundary of the ball. There are methods now for linear time detection of circles
which also require the boundary to be identified [30]. Aside from these, there

2 The ball is pink in these images rather than the league standard of orange because
at the time of writing there was a proposed rule change to use a pink ball. This rule
change has since been rejected.
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Fig. 3. Illustration of our object recognition process under a variety of illumination
conditions. Source images are shown before their sparse classification. The result of
edge detection can be seen in Fig. 1. The third column shows the result of our blob
forming algorithm and the final column illustrates all objects properly identified.

are many techniques in both RoboCup and other literature about mechanisms
for analysing blobs to determine the real-world objects properties [31, 32, 3].

We have made available on our website3 a video that demonstrates our ability
to track a standard RoboCup ball in variable lighting conditions. There are four
test cases illustrated on the video:
Standard Illumination: Light rows A, B, and C (refer again to Fig. 1 (a)).
Medium Illumination: Light rows A and C.
Low Illumination: Light row B.
Dynamic Shadows in Low Illumination: A solid sheet is passed between

the light source and the field in random motion.
The same sparse classifier is used in each of the test cases and all four cases were
filmed without rebooting the Aibo. The automatic camera setting on the Aibo
(auto white balance) is off and the camera is fixed to medium gain, medium
shutter speed and fluorescent lighting mode.

This video demonstrates that Aibo tracking the ball in each lighting environ-
ment. The lights on the head of the Aibo are indicative of how well it is tracking
the ball - bright white lights indicate that it sees the ball clearly and red lights
indicate that it is unsure of the ball but it has not lost it completely4. No lights
3 http://www.griffith.edu.au/mipal
4 This can happen, for example, when the edge detection contains a flaw which allows

the border trace algorithm to “escape” the ball at some point around it’s border. In
this case we end up with a very large, unlikely ball and we wait until the next vision
frame to confirm its location.
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Table 2. Comparing our old object recognition system to our new one. The old system
had no edge detection component and edge detection and classification are merged in
the new algorithm. All times are measured in AVW2 profiling clicks described in [20].

Edge Detection Classification Blob Forming Object Recognition Total

Standard Algorithm - 4.2 21.8 12.9 38.9
Our Algorithm 20.9 18.6 12.9 52.4

would indicate a complete loss of the ball although this does not happen in this
video. Notice that our object recognition system copes with all of the lighting
conditions sufficiently well. Although we see some minor degradation of perfor-
mance in the final test case, even in this extremely complex lighting environment
we illustrate sufficient competence to track a ball. Notice also that our object
recognition system does not confuse skin colour with the ball, even in the final
test case with low light and dynamic shadows.

Finally, we compare the overall performance of our object recognition algo-
rithm with the performance of our prior one ([25, 31, 29]). Table 2 shows the
running time of each stage of the two object recognition algorithms. The tests
were done on a set of 100 images. Our new object recognition process is approx-
imately 35% slower than our old one. This is mostly due to the time required for
the edge detection step. The algorithm is, however, still well within the perfor-
mance requirements for running as a real-time vision system on a SONY Aibo.

6 Conclusion

We have been able to overcome the problems associated with illumination in-
dependent object recognition by shifting the focus in the process from the step
of colour segmentation to that of edge detection. We have developed a very fast
edge detection algorithm to make this feasible even on platforms, such as the
SONY Aibo, with limited computational capacity. By relying on edges in the
real image to form blobs, rather than boundaries in classified images, we have
removed the problem of requiring a highly accurate classification. We instead
label only those pixels that we are fairly certain will be classified correctly over
a range of various lighting conditions.

Traditional colour segmentation algorithms, by nature, do not work in dy-
namic illumination conditions. They are specifically trained for one particular
condition and they become increasingly inaccurate as they are moved further
from their initial training condition. Thus the traditional approach of forming
blobs based on the results of colour segmentation is severely hampered in any
dynamic lighting condition. On the other hand, a suitable classifier can be built
for a wide range of lighting conditions provided it is freed from the restriction
of being as complete as possible. Thus it is possible to use the colour of pixels,
even in highly variable lighting conditions, once the blob is identified in some
other way.
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We have presented a fast enough edge-detection algorithm to run on the Aibo
in RoboCup game conditions. We have used this algorithm as a basis for a
new object recognition system that uses colour information but does not rely
on training a classifier in a way specific to any single lighting condition. We
have been able to produce good results in object recognition over a variety of
illumination conditions using this technique.
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Abstract. In this paper we propose an approach to color classification
and image segmentation in non-stationary environments. Our goal is to
cope with changing illumination condition by on-line adapting both the
parametric color model and its structure/complexity. Other authors used
parametric statistics to model color distribution in segmentation and
tracking problems, but with a fixed complexity model. Our approach is
able to on-line adapt also the complexity of the model, to cope with large
variations in the scene illumination and color temperature.

1 Introduction

Color is a strong clue for object recognition, and for this reason it is used in
many industrial and research applications. The real-robot leagues of Robocup,
one of which is the mid-size league, are challenging applications conceived to use
information about color. Here we have color codes for each relevant object in the
robot world, altogether to changing lightning conditions in a dynamic scene with
many objects to recognize. These varying conditions represent a non-stationarity
in the environment and they are the main issues that prevents a reliable object
recognition in natural light conditions, as clearly stated in [1].

The literature in this field is huge, we just mention here some works from
Robocup literature. Cameron and Barnes [2] approach the problem relying on
the a priori known scene geometry for identifying some regions of the image
as corresponding to some features of the environment; this is done without the
use of color-classification, but on domain-specific knowledge instead. Then the
color information of such regions is used for building the color classifier(s); in
order to track the dynamics of the lightning they associate the would-be-current
classifier(s) with the previous, so to keep them tied to the symbolic label(s).

In Jüngel et al. [3] colors are defined by simple partitions parallel to the color
space axes; in order to attain adaptation the colors are defined relative to a
reference color which, in the Robocup legged league, the example application of
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the paper, is the green. No explanation is given about this choice. Our opinion is
that the reason is the (domain-specific) observation of its nearly-granted presence
in the image (as mentioned e.g., by [4]). The setup for the classification of each
color is executed off-line, and then a domain-specific heuristic is used to track
the reference color, while other colors are classified by displacing their region
in the color space by the same amount the reference color has moved. This is
risky, as noticed by [1], because distances in the color space can be stretched by
changes in the illumination.

Color constancy [5] approaches have been also used to reconstruct the incident
light and adjust perceived colors for automatic color calibration [6]. However
these approaches have unpractical computational requirements and thus cannot
be applied on-line for real-time tracking of color changes. Different issues prevent
the effective use of histogram based approaches [7]; they require a large number
of data-points (pixels) and a coarsely quantized color space. In the absence of an
accurate model for the apparent color, which changes over time, these models for
density estimation cannot be obtained and a different approach is required. The
subsequent sections briefly presents the parametric approach to color modeling
which is at the basis of our contribution and the algorithm used for adaptation;
experimental results on real images and conclusions are presented in the final
sections.

2 Mixture of Gaussians for Classification and Modeling

In order to attain adaptivity, we use a generative approach, which implements a
probabilistic color modeling and classification scheme based on mixture models.
This approach has been originally proposed to implement object tracking under
non-stationary illuminating conditions [8, 9]. In this context, the color of each
pixel is supposed being determined according to a given probability distribution,
which depends on the colors in the observed object and is characterized by some
parameters.

Let us begin by temporary forgetting the color labels and limiting to model
the probability distribution of color values in the color space. This distribution
will be multi-modal not only because we expect more than one color, but also
because more than one tone will be present for some color; this can be due, e.g.,
to different lightning conditions, in different places, for the same object. This
probability distribution allows a probabilistic classification of the image pixels
and in our case is approximated by the use of a parametric model, i.e., a mixture
probability distribution.

In the scheme introduced by McKenna in [9], we have pixel values x in a color
space of D dimensions (i.e., 2 dimensions in McKenna’s word), an object O, and
j = 1, ..., m components, which live in the color space too. The model is trained
on the pixels known to belong to the object; the whole object is represented
with a mixture of Gaussians, i.e., components. Our problem requires to deviate
a little from this object-based scheme, because our aim is color modeling and
not direct object recognition. We still have pixel values in the color space (who’s
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dimensions are also called color components, but we shall not use this term
component with this semantic any more, to avoid confusion with mixture model
components), but we have not a single object to recognize. We have many, i.e.
much more than one, color labels which we would like to recognize. Each color
label could require more than one component in the color space, for an adequate
modeling. This trained model will be used for classification of online data.

To gain a better understanding of the parametric model involved by such a
mixture distribution, suppose we have J different colors in the scene and let x
be the vector of numbers representing the pixel values in the color space (e.g.,
the RGB or HSV coordinates for that pixel). The probability of observing this
vector depends on the probability of the vector of features given the real color
label of the object in the scene Cj . However, suppose we do not know in advance
the real color of the observed object, but only the probability of the observed
object being of a certain color p(Cj), by the total probability theorem, we can
write the probability of each pixel observed as

p(x|Θ) =
J∑

j=1

p(x|θj , Cj)p(Cj) (1)

where
∑J

j=1 p(Cj) = 1, p(Cj) is the so called mixing probability and corresponds
to the prior probability that x was generated by the jth component; p(x|θj , Cj)
is the conditional density for the pixel color features given that this pixel belongs
to color component Cj (i.e., our generative model). The term Θ, in Equation 1,
represents the set of all parameters describing the pixel probability distribution
including conditional probability parameters θjs and color label probabilities
p(Cj)s. We can extend this mixture model to have more components than the J
colors in the scene since we can associate two or more components to the same
color label. Moreover, if we suppose to have M components and the conditional
probability of the feature color vector being a Gaussian density, the probability
of a pixel feature vector becomes a Gaussian mixture model [10, 9]

p(x|Θ) =
M∑

k=1

1
(2π)D/2|Σk|1/2

e−
1
2 [x−μk]T Σ−1

k [x−μk] · p(Ck) (2)

In this model, each mixture component is modeled by a Gaussian distribu-
tion with mean μk and covariance matrix Σk. This generative model is some-
how independent from the logical color label associated to each component and
its parameters can be obtained by a maximum likelihood estimation of mix-
ing probabilities p(Cj)s and Gaussians parameters θjs. The association between
each mixture component and the appropriate color label can be obtained by
a (human) supervised labeling of components. Actually, in our method, this is
implemented in a different way by using a (human) labeled dataset to initial-
ize mixture parameters (i.e., initial number of components, mixing probabilities,
and Gaussian parameters) and associate from the very beginning the appropriate
labels to the components of the mixture.
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(a) (b)

Fig. 1. An example of color density model obtained using a mixture of Gaussians, on
the left the original image, on the right the probability distribution of image pixels;
the lines represent the curve where the cumulative probability reaches the 0.9 value

Modeling the color distribution with a mixture of Gaussians can be easily ex-
plained: in Figure 1(b) patches of colors from image in Figure 1(a) are modeled
by a mixture of 2D Gaussian in the Hue-Saturation (HS) color space. Black and
white pixels are also projected on the V = 255 plane just for easing the visualiza-
tion; please notice how the white pixel of the image have a greenish hue as well as
the presence of two different green components due to spatial variation of color.

At classification time, each pixel is classified according to the conditional prob-
ability of being generated by a certain color component to which is associated
a label. This is implemented by the maximum a-posteriori criterion for the se-
lection of the color component, and label, by attributing to the pixel the color
component, and label, of the component which is the most likely:

C(x) = argmax
Cj

p(Cj |x, Θ) = argmax
Cj

p(x|θj , Cj)p(Cj). (3)

In really dynamic environments, the mixing probability might change almost
at any frame due to occlusions and changes in the field of view. This would
interfere with the maximum a-posteriori criterion since the prior probability for
each class p(Cj) would change with the observed scene. For instance, suppose
we miss the red ball for a few frames because of occlusions, using a null mixing
probability as prior will prevent to detect it as it will come back in the field
of view. This can be faced by adopting, at classification time, an improper uni-
form prior for color labels (i.e., p(Cj) = 1/J) turning the maximum a-posteriori
approach into maximum likelihood classification:

C(x) = argmax
Cj

p(Cj |x, Θ) = argmax
Cj

p(x|θj , Cj). (4)

3 On-Line Adaptation with Expectation-Maximization

We can now come to the main issue of the work, i.e. adaptation of the model
to changing light conditions. To overcome issues due to non stationarity, we use
Expectation-Maximization (EM) algorithm [11] to adapt model parameters over
time. EM is an iterative algorithm that computes maximum likelihood estima-
tion, in a very efficient and fast way, by optimally coping with missing data
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(i.e., we do not know mixing probabilities in future frames). Let N be the num-
ber of data-points in the data-set. The Estimation step of EM computes the
“expected” classes at time t for all data points xn using the current Gaussian
parameters:

p(Cj |xn, θ
(t)
j ) =

p(xn|Cj , μ
(t)
j , Σ

(t)
j )p(Cj)(t)∑M

i=1 p(xn|Ci, μ
(t)
i , Σ

(t)
i )p(Ci)(t)

(5)

The Maximization step of EM computes the maximum likelihood estimates
of the mixture distribution given the data class membership distributions [12]:

μ
(t+1)
j =

∑
n p(Cj |xn, θ

(t)
j )xn∑

n p(Cj |xn, θ
(t)
j )

(6)

Σ
(t+1)
j =

∑
n p(Cj |xn, θ

(t)
j )[xn − μ

(t+1)
j ][xn − μ

(t+1)
j ]T∑

n p(Cj |xn, θ
(t)
j )

(7)

p(Cj)(t+1) =

∑
n p(Cj |xn, θ

(t)
j )

N
(8)

EM is proved to reach a local maximum, and the optimality of the extremum
depends on the initial estimate of mixture parameters, especially when these
parameters are randomly selected. In our application, the components means
and variances are initialized by using hand-classified sets of pixels from the first
frame; the mixing probability is taken proportional to the density of the corre-
sponding subset of data used in the initialization and the number of components
is initializated to the number of classified sets.

From each subsequent frame, a new set of pixels is sampled and inserted in the
data-set without a label. One step of EM is computed on this augmented data to
provide model adaptation. A soft and stable adaptation is granted by weighting
data points, increasingly from the older to the newer, by using a forgetting factor.
To avoid excessive computations with reduced marginal gains, data points older
than a fixed threshold are removed from the data-set.

To understand how EM is able to track non-stationary distributions and thus
adapt the color model to illumination changes, refer to Figure 2. In this case
we present a (simulated) data-set where a cloud of points, referring to the same
color, moves in the color space during time because of non-stationary light con-
ditions. From the image sequence it can be noticed how the algorithm performs

Fig. 2. Distribution tracking using EM (upper part of HS diagram reported)
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an unsupervised probabilistic clustering of the data while adapting to the dis-
tribution changes.

4 Adaptation of Model Complexity

In modeling with mixture of Gaussians, the main problem is to choose the right
structure for the model, i.e, the right number of components of the Gaussian mix-
ture. A common approach in stationary situation (e.g., data mining) is to try
every possible structure (up to a given threshold) and select the best one. How-
ever, this method cannot be used in real-time dynamic contexts because of both
non-stationarity and excessive computational cost. In the following subsections
we extend the mixture of Gaussian model previously described by introducing
an automated procedures to on-line adapt the model complexity.

4.1 Reducing Mixture Components

Since data distribution varies over time, the number of Gaussian mixtures could
become higher than the optimal value. This strongly affects the performances
of the algorithm and could lead to overfitting the noise in the data. This unre-
quired complexity of the model can be reduced by merging clusters that could
be represented by only one Gaussian without losing precision in the model and
preserving the correct classification with respect to color labels. This situation
happens quite often when the scene become darker (e.g., clouds in natural light
context or light bulbs switched off in offices) and the color distribution, as rep-
resented in the HSV space, concentrates on the bottom of the cone.

To perform cluster merging we use the greedy approach; at every frame, before
computing EM, the two nearest components, for every label, are selected as
candidate for the merging. In our current implementation we use the Euclidean
distance although better and more sound results could be obtained using the
Mahalanobis distance, given that our components are Gaussian. To decide if
they have to be merged or not, a new Gaussian component is created with mean
and variance computed using all the points belonging to the two candidate-to-
the-merge components.

In order to estimate which of the two models (i.e. the merged single compo-
nent or the original two separate components) is the best model, the Bayesian
Information Criterion (BIC) [13] is used. Assuming we are given the data D and
a family of alternative models Mj, this criterion uses the posterior probabilities
p(Mj|D) to give a score to the models, using the following formula, from Kass
and Wasserman [14]:

BIC(Mj) = L̂j(D) − Pj

2
log R (9)

where L̂j(D) is the log-likelihood of the data according to the j-th model, taken
at its maximum-likelihood point, Pj is the number of free parameters in Mj and
R is the number of data used to fit the model. In order to increase the speed
only two components are examined at a time. The algorithm iterates until no
more components can be merged, according to the BIC scoring.
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Fig. 3. An example of merging of components, in the HS plane. The components can
merge only if they have the same label. This is a synthetic example, built after real
cases, which, for an easier understanding, presents components referring to just one
label. This behaviour usually shows up when the intensity of the light on the scene
decreases.

4.2 Increasing Mixture Components

In this section we present our proposal for overriding the opposite problem of
merging components, i.e. when one cluster of pixel values in the color space
divides in two. If this situation goes undetected the model will loose one of the
two, by classifying it as noise; or, alternatively, the two clusters of pixel values
will be modeled as a single component with large variance. This situation usually
occurs when the observed scene becomes brighter and the different tones of the
same color begin to separate in the color space.

We propose a very simple, but effective, approach in order to detect potential
splitting cases based on a measure of data-points density. Let N(p) denote the
number of data-points contained in a given confidence interval V (p), i.e., the
hyper-ellipsoid centered on the Gaussian mean and containing in its volume a
probability mass p. The average density D(p), as a function of the confidence p,
can be computed as: D(p) = N(p)/V (p).

The approach is based on the observation that when we would like to split,
we have a much lower density around the mean of the component than the
average values across the component. D(0.95) could be considered a reasonable
approximation of the average density for the whole component while D(0.25)
can be taken as a reasonable approximation of the density about the mean.
Using a K coefficient, empirically we found that a good value for K is between
1.5 and 1.8, if D(0.95) > K · D(0.25) we decide the current model does not fit
the data distribution well enough. We then split the cluster along the direction
of maximum variance. The two resulting components will be initialized with
mean at 1

4σ and 3
4σ respectively, and a diagonal covariance matrix with diagonal

elements set to 1
4σ2. The subsequent EM steps will fine tune the parameters of

the components, Figure 4.
It is quite easy to find counter-examples, e.g. in data-mining, where this heuris-

tic does not work properly, but we found in our experiments that in the color
domain, it is highly reliable. Moreover, it involves a small amount of computa-
tion and does not slow-down the algorithm significantly. Another solution could
be to split all the clusters, calculate BIC and then decide which model is the
best as we do for merging. The different approaches used in increasing and
reducing model complexity are due to the cost of computing the parameters
of the Gaussians. In a merging operation calculating the parameters of the new
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Fig. 4. An example of splitting of components, in the HS plane (left to right). Note in
the third frame that the two new components are initialized to symmetrical Gaussians;
in the next frame the EM algorithm adjusts their parameters.

cluster is easy and fast; in the opposite operation, finding the two new centroids
is more difficult and expensive because some EM steps are needed.

4.3 Stopping the Adaptation

Although adapting the model structure and its parameters seems to be the
definitive solution to color model tracking, using an adaptive color model could
cause different problems, first of all due to the lack of ground-truth. Citing
from [8]: “any color-based tracker can loose the object it is tracking, due, for
example, to occlusion or object disappearing from the field of view”.

As an object disappears its color component(s) are removed from the color
space. The color model, i.e. its component(s), will try thus to fit image regions
which do not correspond to the object. A method to detect such data associations
problem and then to stop the adaptation of that component is therefore needed.
This idea of stopping adaptation is adapted from the selective adaptation of
McKenna et al. [8] (the pun is intentional). Moreover, it will not suffice to stop
adaptation at all, but it will be necessary to detect this situation, and eventually
to stop adaptation, selectively for each component.

Our proposal to circumvent this problem is based on the observed log-
likelihood measurements. The EM algorithm maximizes the log-likelihood of
the color data over time. Let Li be the normalized log-likelihood for the ith

component, and X(t) be the data-set at frame t we have:

L(t)
i =

1
N (t)

∑
x∈X(t)

log p(x|θi) (10)

At each frame t, L(t)
i is evaluated, and this is done for each component. If the

tracker looses the object(s) connected to the ith-component, a large drop in the
L(t)

i will occur. The component adaptation is then suspended until the model
gains again a sufficient support from the data. In practice we have a threshold
T

(t)
i and adaptation is performed only if L(t)

i > T
(t)
i . The mean, ν

(t)
i , and stan-

dard deviation, σ
(t)
i , of L(t)

i are computed, in our experiments, for the n most
recent above-threshold frames. The threshold is T

(t)
i = ν

(t)
i − kσ

(t)
i , where k is a

constant whose value has been experimentally set at about 1.5. The whole set of
components, under online adaptation or not, are used for classification purposes
instead.
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5 Experiments on Real Data-Sets

In the following we present some experiments in order to validate our proposal.
These are on real data-sets, one source is the set of images1 provided by the
authors of [1], and the other source are video sequences grabbed in our labora-
tory. In some cases we use 2D plots to explain the results, but notice that the
adaptation always took place in the 3D HSV color space. In this color space,
data-points can translate or rotate. Translations are usually due to changes of
the intensity of light, while rotations are due to changes in the color temperature.
In all the experiments, the algorithm has been initialized by selecting a certain
number of patches from the first frame in the sequence; the initial number of
compents has been set to the number of patches selected and the initial mixture
parameters has been estimated from the pixel patches.

Fig. 5. The different color distribution obtained by adapting to the two images on
the left, treated like they were consecutive. The upper image has been grabbed during
natural day lights, the one underneath has been taken during evening with neon lights.

The first example describes how the algorithm works with respect to changes
of light conditions. Normally this is due to day/night cycle. Assuming slowly
varying conditions, the model adapts and the variance of the components grows
if the scene becomes brighter and decreases if becomes darker. Components with
different labels will not be merged, so the real data distribution is well described.
Hereafter we present the results obtained in a really extreme situation: an abrupt
change of the light on the scene, from natural day light in one image, to artificial
(neon) light at night in the other; the two were put in sequence and the results
show the capability of the algorithm to adapt, see Figure 5. We think that such
an abrupt change is a realistic estimate of what can be perceived by a generic
indoor mobile robot. Therefore this confirms the capabilities of our system to
make really more robust the perception system.
1 Available at http://smart.informatik.uni-ulm.de/DataSets/RoboCup/natLight/
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Fig. 6. The algorithm adapts the components to Hue variations, see in the central
row how the color distribution rotates in HS plane, and how the image classification
remains good. The images have been concatenated as if they were a sequence.

The second experiments validates the adaptation of the algorithm with respect
to changes of the color temperature. We hand-manipulated some images, taken
from the web-site mentioned before, changing the hue channel, see Figure 6,
in order to mimic situations of natural light in outdoor environments. In such
situations the light is not always white and changes with time; for example, in
the morning it usually tends to move toward the blue, while in the evening tends
to move toward the red. In such situations adaptation on the Hue component
is really relevant. As it can be checked in the pictures, the algorithm allows a
correct and robust image classification over time by adjusting the components
to the real data distribution, rotating in the HS plane.

The last experiment presents a bright scene that becomes dark. The model
adapts over time diminishing the number of cluster during the darkening phase,
when the data-points concentrate in the bottom of the HSV cone. The exper-
iment demonstrate a very good performance and only very few errors are due
to mis-classification of noise, moreover this happened in very difficult, i.e. dark,
conditions (Figure 7). When the scene will be bright again the split algorithm
will divide the components to keep-up with the number of clusters.

The algorithm for on-line color calibration presented has been developed to
work in parallel with a complete 15fps color tracking system. The color look-up
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Fig. 7. From top to bottom: original images, HSV space, classified image. Images are
taken from a 45 frames sequence grabbed in our lab.

table used for classification is updated by the current (unoptimized) algorithm
at 5-8 Hz being the only thread on a P4 at 2.4Ghz using a subsample (80× 60)
of the original image.

6 Conclusions

Soccer robots must be able to play under natural illumination that can change
over time both in intensity and color temperature. To obtain good color clas-
sifications, two approaches are available: to adapt the color model or to use
algorithms enforcing color constancy. The first approach is today the only one
allowing performances compatible with an on-line real-time use. We started with
a known approach to color modeling, based on EM maximum-likelihood itera-
tive estimation. This known algorithm includes the possibility of stopping the
EM-based adaptation; we adapted this algorithm to the multi-target domain re-
quired by Robocup real-robots league, especially for what concerns the stopping
adaptation functionality; more important is the addition of on-line model order
adaptation. This is a relevant issue in color modeling, especially for enabling its
use in dynamical and difficult domains like the real-robots Robocup as well as
indoor robotics. Our proposal produced quite good results, and results in quite
extreme experiments validate such claim.
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Abstract. This paper describes a novel approach to detecting orienta-
tion and identity of robots without color segmentation. The continuous
DP matching calculates the similarity between the reference pattern and
the input pattern by matching the intensity changes of the robot mark-
ers. After the continuous DP matching, a similarity value is used for
object identification. Correspondences of the optimal route obtained by
back tracing are used for estimating the robot’s orientation. This method
archives orientation estimations of less than 1 degree and robustness with
respect to varying light conditions.

1 Introduction

To give optimal visual-feedback, in order to control a robot, it is important
to raise the robustness and accuracy of the vision system. Especially, in the
RoboCup Small Sized League(F180), a global vision system that is robust to
unknown and varying lighting condition, is needed. The vision system which
has been generally used, processes an image to identify and locate robots and
the ball. For low-level vision, the color segmentation library, called CMVision
[1], has been used to perform color segmentation and to connect components
analysis to return colored regions in real time without special hardware. After
the color segmentation, the process of object identification is employed based on
the results of the color segmentation which is then followed by the process of
the pose estimation of the robot. To raise the robustness with respect to varying
light condition, color calibration [2] need to be done in advance, but requires
minimal set up time.

In this paper, we propose a robust and accurate pattern matching method
for identifying robots and estimating their orientations simultaneously without
color segmentation. Our approach uses continuous DP matching to search for
similar pattern, which is obtained by scanning at a constant radius from the cen-
ter of the robot. The DP similarity value is used for object identification, and for
obtaining the optimal route by back tracing to estimate its orientation. We real-
ized robustness of object identification with respect to varying light conditions
by taking advantage of the changes in intensity only.

In the following, the related work and our approach are described in section 2.
Section 3 describes the method for robust and accurate object identification.
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The experimental results are shown in section 4. Section 5 discusses some of the
advantages of the proposed method. Lastly, section 6 concludes the paper.

2 Related Work

In the Small Size League, one team must have a 50 mm blue colored circle
centered on the top of its robot while the other team must have a 50 mm yellow
patch. To detect the robot’s orientation and to identify it, teams are allowed to
add extra patches using up to three colors. Figure 1 shows examples of patterns
found on the top of the robot.

Fig. 1. Example of general identification patterns

Type (a), called “white bar”, is used to calculate the pose of robot precisely.
The robot’s orientation is calculated using a white stripe and the least-squares
method [3] or second-moment [4]. For identification, other sub patches are used.

Type (b), called “butterfly”, has been reported in [5]. Geometric asymmetry
can be used to find the rotational correspondence for orientation estimation.

Type (c), called “pie slice-based”, is unique and is described in [6]. This
method scans the circular pattern from markers on the robot. The angle res-
olution is not sufficient (8 degree) due to low resolution.

These methods use information from color segmentation to determine a robot’s
identity. Such colors have problems with brightness changes and non-uniform color
intensity over the field, including sharp shadows.

2.1 Proposed Patch Pattern

Our approach uses only the changes in intensity obtained by scanning at a con-
stant radius from the center of the robot and not by using the results of color
segmentation. Therefore, we can paste suitably-colored patches on the top of the
robot as shown in Figure 2. This makes a large number of different patterns for
identification, and it’s easy to modify patch patterns. Moreover, preparing the
rule-based reference table by user for object identification is no longer necessary.

3 Object Identification

The DP matching calculates the similarity between reference pattern and input
pattern by matching the intensity changes of the robot markers. After the DP



410 S. Shimizu, T. Nagahashi, and H. Fujiyoshi

Fig. 2. Example of our ID plate

matching, a similarity value is used for identification. Correspondence of optimal
route obtained by back tracing is used for estimating its orientation. The flow
of the proposed method is as follows and shown in Figure 3:

1. Color conversion(RGB to YUV)
2. Detection of the center of blue/yellow colored circles
3. Converting to 1-dimensional signal by scanning at some constant radius from

the center of the robot
4. Identifying our robots by continuous DP matching
5. Finding the robot’s orientation by back tracing.

Fig. 3. Overview of our vision system

3.1 Detection of the Center of Blue/Yellow Colored Circle

It is important to detect the center of the blue/yellow colored circle because our
approach uses this center position to convert to 1-dimensional signals for the
object identification. The followings describe an algorithm for determining the
center position of a circle given three points on a plane.

The three points determine a unique circle if, and only if, they are not on the
same line. The relationship of these three points is expressed as:
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(xc − xi)2 + (yc − yi)2 = (xc − xj)2 + (yc − yj)2 = (xc − xk)2 + (yc − yk)2.(1)

where (xc, yc) is a center coordinate, three points on image are (xi, yi) (xj , yj)
(xk, yk). Equation (1) is a linear simultaneous equation. Thus, (xc, yc) is deter-
mined by Gaussian elimination using the following steps:

Step1. Detect blue/yellow colored circle.
Step2. Extract contour points of the circle.
Step3. Select three points from contour points randomly, calculate center po-

sition (xc, yc) by equation (1).
Step4. Increment a count in the accumulator at point (xc, yc).
Step5. Step 3 and 4 are repeated 100 times.

Finally, the maximum number of votes is determined as the center of the main
marker.

3.2 Converting to 1-Dimensional Signal

The intensity values of YUV on the top of the robot are obtained by scanning
at a constant radius (r=10 pixel) from the detected center of the circle as shown
in Figure 4. It is impossible to obtain the 359 points (1 degree each) on the
circle’s perimeter because of the low resolution image. To solve this problem, we
apply the bilinear interpolation to estimate the robot’s orientation with sub-pixel
accuracy.

Image coordinate (x, y) for an angle θ is obtained by

x = r cos θ + xc, y = r sin θ + yc (2)

where (xc, yc) is the center position on the image coordinate. Since the val-
ues of (x, y) are real numbers, the intensity value I(x, y) is interpolated by the
bilinear interpolation method used for 2-dimensional operations, for instance

 

Fig. 4. Converting to 1-dimensional signal
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Fig. 5. Bilinear interpolation

magnifying an image. The interpolated value in intensity is calculated as shown
in Figure 5(a)

I(x, y) = (1 − n)((1−m)I(0, 0) + mI(1, 0))
+ n((1 −m)I(0, 1) + mI(1, 1)) (3)

Figure 5(b) shows the interpolated intensity values of Y. This can be useful
to estimate the orientation angle with sub-pixel accuracy. Finally, the intensity
values of Y normalized to 0∼255, U and V are obtained as a 1-dimensional signal
from the circle patches on the robot as shown in Figure 4(b), and these values
are expressed as:

I(θj) = I(r cos θj , r sin θj) j = 0, · · · , 359. (4)

3.3 Identifying Our Robots by the Continuous DP Matching

To uniquely distinguish a robot, the intensity values I(θj) as a reference pattern
for each robots are registered initially by clicking with the mouse of points in
the direction of the robot’s front help to assign an ID to each robot. The contin-
uous DP matching is performed to calculate a similarity between the reference
patterns and the input pattern of the current image.

Continuous DP matching. The DP matching has been used in various area
such as speech-recognition [7]. DP matching is a pattern matching algorithm
with a nonlinear time-normalization effect. Timing differences between two sig-
nal patterns are eliminated by warping the axis of one, so that the maximum
coincidence is attached as the minimized residual distance between them. A
starting point of input pattern provided by scanning described in section 3.2
is not at the same position as the reference pattern. Therefore, continuous DP
matching can be useful in computing the similarity distance by considering the
lag of each starting point. The input pattern is repeated twice as (1 < i < 2I)
and this handling is shown in Figure 6.

In this implementation, the symmetrical DP path, shown in Figure 7(a), is
used. Minimum accumulated distance is calculated by the following equations.
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Fig. 6. Example of back tracing

Fig. 7. Symmetrical DP path

Let the vertical axis represents reference pattern frame j, and the horizontal axis
as input pattern frame i. Initial conditions are given as:

{
g(i, 0) = 0 (i = 0, 1, . . . , I)
g(0, j) = ∞ (j = 1, 2 . . . , J) (5)

where I and J are length of each patterns. The minimum accumulated distance
g(i, j) on the i frame and j frame are calculated by:

g(i, j) = min

⎧⎨
⎩

g(i− 1, j − 2) + 2 · ld(i, j − 1) : (a)
g(i− 1, j − 1) + ld(i, j) : (b)
g(i− 2, j − 1) + 2 · ld(i− 1, j) : (c)

⎫⎬
⎭ + ld(i, j). (6)
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Local distance ld(i, j) on the point of (i, j) is computed as:

ld(i, j) = (It(θi)− It−1(θj))2. (7)

The length for the optimal route:

c(i, j) =

⎧⎨
⎩

c(i− 1, j − 2) + 3 if(a)
c(i− 1, j − 1) + 2 if(b)
c(i− 2, j − 1) + 3 if(c)

(8)

is used to obtain the normalized accumulated distance by:

G(i) =
g(i, J)
c(i, J)

. (9)

Object ID recognition. The continuous DP matching is performed to calcu-
late similarity distances for each reference pattern, when a blue/yellow circle of
the robot is detected. The identity of the robot is determined by selecting the
reference pattern which is given the minimum value of G.

3.4 Object Orientation Estimation by Back Tracing

To detect the robot’s orientation, back tracing, which computes local correspond-
ing points of input and reference patterns by referring the selected DP path, is
performed as follows:

1. DP matching and labeling of the selected DP path
While computing the minimum accumulated distance, the path selected by
equation (6) is memorized with label a/b/c as shown in Figure 7(b).

2. Back tracing
After normalizing minimum accumulated distance, the minimum value of
G(i, J) is selected as a starting point for the back tracing.

i′ = argmin(J/2≤i≤2I)G(i, J) (10)

The optimum route is tracked by referring to the label, either ’a’, ’b’, or ’c’
at each node. The DP path labeled ’a’ means insert, and ’c’ means delete.
The path ’b’ means that frame i and j are a pair of corresponding point.
When path ’b’ appears on the optimum route, the orientation of the current
robot θ is estimated by:

θ = θi − θj (11)

where θi is the orientation angle of input pattern, and θj is reference pattern.
This process is finished when the route, by back tracing, reaches the end
point(j = 0), and then the average of the angle θ points at the robot’s
orientation(front direction).

As we mentioned above, object orientation and ID are determined by the con-
tinuous DP matching and not color segmentation.
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Fig. 8. Back tracing

4 Experimental Results

The performance of their proposed method was computed in simulation as well
as real experiments with regard to robustness and accuracy in varying light
conditions.

4.1 Experimental Results of Orientation Estimation

Results in simulation experiments. To determine the accuracy of the orien-
tation estimation, the estimated angle using the proposed method is compared
to ground truth. Table 1 shows the results in simulation experiments evaluat-
ing 360 patterns (1 degree each). In comparison to the performance of general
methods based on the least-squares method [3] and the second-moment method
[4] using “white bar” ID plate, our method has better accuracy in orientation
estimation.

The accurate center position of the blue/yellow colored circle for main marker
can not be obtained, when the circle’s perimeter has noise. In this case, we
evaluate the robustness of our method using the pattern in which the center
position of the circle translate to its neighbors. The noise 1 in Table 1 is an
area of 3x3 pixels except for the center. The noise 2 is an area of 5x5 pixels
except for the center and the noise 1. Five pixels represent 25 millimeters. The
SSD in Table 1 means linear matching using the sum of squared difference to
estimate the orientation. The SSD is better than proposed method when a very
accurate center position (noise 0) is obtained. However, our method is effective
with respect to errors in the center position of the circle because the DP warping
function can obtain the optimum correspondence against the gap.

Results in real experiments. Table 2 shows results in experiments using
the real vision system, in which a camera is mounted at a height of 4,000 mm.
We can see that our method has almost the same performance as the general
method, and it works well with respect to the “white bar”. This shows that our
method can obtain the direction of opponent robot’s front, and this information
is useful to intercept the passing ball.
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Table 1. Average of absolute errors of orientation estimation in simulation experiments
[degree]

proposed method general method
noise SSD DP least-squares method second-moment

0 0.30 0.76 0.85 1.08
1 1.71 1.10 - -
2 4.20 1.75 - -

Table 2. Average of absolute errors of orientation estimation in real experiments [de-
gree]

proposed method least-squares method second-moment
white bar 0.85 1.17 0.96

patch pattern 0.95 - -

Fig. 9. Result of ID recognition in simulation experiments

4.2 Experimental Results of Object Identity

Results in simulation experiments. To determine the robustness with re-
spect to varying the light condition. A model of illuminant and the marker are
created by CG, the pixel intensity of the input image is created by changing the
illuminant. Figure 9 shows ID patterns under illuminant changes in the simu-
lation and identification performance against the 11 unique robots. Our system
is performance is stable against the change in lighting conditions. However, the
recognition ratio decreases at the noise 2. When the error of the center is two
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Fig. 10. Images captured under the illuminance of ranging from 100 to 2,900 lux

Fig. 11. Result of ID recognition in real experiments

pixels, the center is near the edge of the main marker. Therefore, it is difficult
to calculate the 1-dimensional signal, and the recognition ratio decreases.

Results in real experiments. Figure 10 shows images captured under the
illuminance ranging from 100-to-2,900 lux. In the experiment, we evaluate 330
images for 11 unique IDs with varing light condition(100∼3,000 lux). Figure 11
shows object identification ratios for 330 images. Note that the general method
means color segmentation based object identification adjusting the threshold to
obtain high performance for lighting condition between 600 to 1,000 lux. On



418 S. Shimizu, T. Nagahashi, and H. Fujiyoshi

the other hand, for reference patterns of our method, only the images captured
under the light of 1,000 lux are registered. It is clear that our method has a better
performance with respect to varying light conditions, because our approach is
not based on color segmentation rather it is based on matching using changes in
intensity obtained by scanning at a constant radius from the center of the robot.

5 Discussion

This section describes some of the benefits of the proposed method.

– Easy handling for set up
In order to register reference patterns for each robot’s ID, the orientation
is obtained by clicking the front of the robot to assign an ID for each of
our robots. There is no need for making rule-based reference table for object
identification.

– Easy to modify the patches
Since the white bar is used to estimate the robot’s orientation in general
method, the area for pasting more patches of sub-markers is restricted. How-
ever, our method allows for more space on the top of the robot. Moreover,
it is very easy to modify the patch pattern because of its easy set up.

– Robustness with respect to varying light conditions
There is no perfect color segmentation. Even if the lighting conditions are
changed by meteorological effects, our method can work well because the
changes in intensity are used for detecting a robot’s orientation and identity.

– Obtaining direction of opponent robot
Our method for estimating the robot’s orientation works well to any shaped-
patch patterns such as “white bar”. Therefore, it is possible to know the
direction of the opponent robot’s front. This means our robot can intercept
the ball passing between the opponent robots.

The demerit of the proposed method is as follows. Our method is converted
to a 1-dimensional signal. Therefore, if the center of circle can’t be calculate
accurately, it is difficult to convert to it to a 1-dimensional signal accurately. To
calculate accurately, the object identity and orientation is necessary to suppress
the error of the center position within two pixels. Moreover, in the case of esti-
mating the ID, it is necessary to compare between input pattern and all reference
patterns. Therefore, as the number of robots increase the computational cost is
increases.

6 Conclusion

This paper describes a novel approach for detecting orientation and identity of
robots without color segmentations. We show that the proposed method achieves
accurate performance in orientation estimation, in comparison to the general
method, as well as its robustness with respect to varying light conditions. The
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system using the proposed method runs in real time on a Xeon 3.0GHz, PC, as
such the system can be completely setup in a short amount of time by a single
operator.

Future works will focus on more automation in the registration procedure of
reference patterns.
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Hatice Köse and H. Levent Akın
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Abstract. In this work, a novel method called Fuzzy Reverse Monte
Carlo Localization (Fuzzy R-MCL) for global localization of autonomous
mobile agents in the robotic soccer domain is proposed to overcome the
uncertainty in the sensors, environment and the motion model. R-MCL
is a hybrid method based on both Markov Localization(ML) and Monte
Carlo Localization(MCL) where the ML module finds the region where
the robot should be and MCL predicts the geometrical location with high
precision by selecting samples in this region. In this work, a fuzzy ap-
proach is embedded in this method, to improve flexibility, accuracy and
robustness. In addition to using Fuzzy membership functions in mod-
eling the uncertainty of the grid cells and samples, different heuristics
are used to enable the adaptation of the method to different levels of
noise and sparsity. The method is very robust and fast and requires less
computational power and memory compared to similar approaches and
is accurate enough for high level decision making which is vital for robot
soccer.

Keywords: Global localization, ML, MCL, Fuzzy logic, Robot soccer.

1 Introduction

The localization problem is the estimation of the position of a robot relative to
the environment, using its actions and sensor readings. Unfortunately the sen-
sors and the environment are uncertain, so the results are typically erroneous
and inaccurate. From the simplest geometric calculations which do not consider
uncertainty at all, to statistical solutions which cope with uncertainty by apply-
ing sophisticated models, many solutions have been proposed [1, 2, 3]. Although
some of these approaches produce remarkable results, due to the nature of the
typical environments they are not satisfactory. Generally, solutions producing
precise results suffer from slowness, and high memory usage. Whereas a fast so-
lution in practice typically produces only coarse results. Even when they produce
precise local results, some approaches like Kalman filters, fail to find the global
position. Consequently, localization still remains as a nontrivial and challenging
problem.

In robot soccer, a robot is typically expected to find its own location using
the distinguishable unique landmarks in the field, and then use this information
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c© Springer-Verlag Berlin Heidelberg 2006



A Fuzzy Touch to R-MCL Localization Algorithm 421

to find the location of the ball and goal. For such a real-time application with
robots limited by on board computational resources, fast solutions with less
memory and computational resources are especially demanded. Consequently,
localization is a vital problem for robot soccer. This work is a part of the Cerberus
Team Robot soccer project [4], and aims to localize the legged robots in the
soccer field globally, while solving the above mentioned problems. There are
a several limitations and assumptions related to the rules of the Four Legged
League of Robocup [5]. In this work, the previously developed hybrid approach
called Reverse Monte Carlo Localization(R-MCL) [6, 7] combining the ML
and MCL methods is extended by using fuzzy sets to improve success in case of
high sparsity and noise.

The organization of the paper is as follows: In the second section, a brief survey
of localization methods is presented. In the third section detailed information
R-MCL algorithm can be found. In the fourth section, the fuzzy extension to
R-MCL is presented. The results of the application of proposed approach are
given in section five. In the sixth section, conclusions and suggestions for future
work are given.

2 Localization Methods

The simplest localization method depending on the range and bearing data is
triangulation, which uses geometry to compute a single point that is closest
to the current location. But in real world applications a robot can never know
where it is exactly because of the uncertainty in its sensors, and the environment.
Consequently, several different approaches which estimate the position of robot
probabilistically were introduced to integrate this uncertainty into the solutions.

Kalman filter (Kalman-Bucy filter) is a well-known approach for this problem.
This filter integrates uncertainty into computations by making the assumption
of Gaussian distributions to represent all densities including positions, odometric
and sensory measurements. Since only one pose hypothesis can be represented,
the method is unable to make global localization, and can not recover from total
localization failures [8, 9, 3].

Many works consider Markov localization (ML) [1, 10]. ML is similar to the
Kalman filter approach, but it does not make a Gaussian distribution assumption
and allows any kind of distribution to be used. Although this feature makes this
approach flexible, it adds a computational overhead.

Monte Carlo Localization (MCL) is a version of Markov localization that re-
lies on sample-based representation and the sampling/importance re-sampling
algorithm for belief propagation [2, 11]. Odometric and sensory updates are sim-
ilar to ML. Most of the MCL based works suffer from the kidnapping problem,
since this approach collapses when the current estimate does not fit observa-
tions. There are several extensions to MCL that solve this problem by adding
random samples at each iteration. Some of these methods are Sensor Resetting
Localization (SRL), Mixture MCL (Mix-MCL), and Adaptive MCL (A-MCL).
In SRL, when the likelihood of the current observation is below a threshold,
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a small fraction of uniformly distributed random samples is added [12]. Mix-
MCL additionally weights these samples with current probability density. This
method has been developed for extremely accurate sensor information [3]. Adap-
tive MCL only adds samples when the difference between short-term estimate
(slow changing noise level in the environment and the sensors) and the long-term
estimate (rapid changes in the likelihood due to a position failure) is above a
threshold. [3].The MHL method discussed in [13] aims to avoid caused by using
a single Gaussian, by using a mixture of Gaussians enabling the representation
of any given probability distribution of the robot pose.

ML-EKF method is a hybrid method aiming to make use of the advantages
of both methods, taking into consideration the fact that ML is more robust and
EKF is more accurate [3].

Although there have been only a few fuzzy logic based approaches, they ap-
pear to be promising [14, 15]. In these approaches, the uncertainty in sensor
readings (distance and heading to beacons) is represented by fuzzy sets.

3 R-MCL Method

As mentioned in section 2, ML is robust and converges fast, but is coarse and
computationally complex. On the other hand, sample based MCL is not as com-
putationally complex as ML, and gives accurate results. However, it can not
converge to a position as fast as ML, especially in the case of an external impact
on the position of the robot (such as kidnapping). In addition, the number of
samples to be used is generally kept very high to cover all the space and converge
to the right position. Several extensions have been made for adaptive sample size
usage, but these still do not solve the slow coverage problem. The Reverse Monte
Carlo Localization algorithm [6, 7] was developed to benefit from the advantages
of these two methods while avoiding their disadvantages. The idea is to converge
to several cells by ML or another grid based method, then produce a limited
number of samples inside these bulk of grids to find the final position. The av-
erage of these samples would give the final position and the standard deviation
might give the uncertainty of the final position as in the MCL based methods.
In the original MCL, the number of samples is increased to decrease the bias
in the result. In R-MCL since we converge by selecting the cells with maximum
probability, so the bias is already decreased. The R-MCL algorithm is given in
Figure 1.

In this work, some improvements were done on the R-MCL method and in
particular the ML module. In the modified ML, not only the distance but also
the bearing information is used to find the best grids, so the number of chosen
grids decrease and confidence increases. When the samples are drawn, also the
best samples are selected using distance and the bearing from these very good
cells, and their average is returned as the current pose. Note that samples are
taken into consideration only when the position is above a certainty level, in
other words the number of chosen cells are below a limit(e. g. 50), and there
is at least one very good cell which is below or equal to the minimum error in
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Fig. 1. The R-MCL flowchart

both distance and bearing limitations. Also if there are no samples which satisfy
the minimum bearing and distance error condition then the results of ML are
used instead. The bearing of the new pose is found by the ML module inside the
R-MCL because it is more accurate and robust.

4 Fuzzy R-MCL

In this work, after improving R-MCL, a fuzzy approach was embedded in it,
to improve flexibility, accuracy and robustness. Fuzzy membership functions
are used in modeling the uncertainty of the grid cells and samples. Here, the
uncertainty model μ1 which is used in both ML and R-MCL is replaced by the
fuzzy model μ2 represented by the fuzzy membership function given in Figure
2(b). The previous model was simple and fast but it was not flexible enough to
improve success when sparsity and noise is high. Especially if the cell size is kept
high (30 cm) as in [6, 7] compared to 5 cm used in [3] a more flexible model
is needed to weight the probability of being in that cell. It is not preferable to
give the same weight to every point when the cells sizes are so big, and to the
samples inside these cells.

In both of the models given in Figure 2, di represents the difference between
the observed relative distance from robot to the currently observed landmark,
and the calculated distance from the current cell center to the currently observed
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Fig. 2. Fuzzy membership functions used

 

Fig. 3. The test field

landmark. This enables us to weight the samples according to their fitness to
the observation and odometry.

5 Tests and Results

In the testing phase, a standard set of test data is used. These data are based
on the records of the test runs of Sony’s ERS 210 quadruped robots (AIBO)
on the Robocup soccer field, used in [3] for comparison of several well-known
localization methods in literature. These are produced by running the robot on
the field as shown in Figure 3 on an eight like path for almost an hour, stopping
the robot on several predefined points called markers, and recording the observa-
tions and odometry readings during this run. The tests aim to analyze accuracy
and robustness in case of noisy and sparse data, and the ability to handle kid-
napping problem. In the noisy data tests, randomly chosen data are replaced by
noisy ones. The number of noisy samples is increased to see the robustness and
accuracy of observed methods in case of high noise levels. In sparse data tests,
samples are deleted from the tests, in a predefined sequence, (beyond the robots
awareness). As the frequency increases, the behavior of the selected methods is
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Fig. 4. The results for the sparse data case

 

Fig. 5. The results for the noisy data case

observed. Lastly, the kidnapping problem is tested, by changing the position of
the robot (beyond the robots awareness), and the time for recovery is recorded.

Several different kinds of membership functions (e. g. trapezoidal) and differ-
ent sizes (e. g. twice the cell size) were tested and the best model found is the
model μ2 presented in the Figure 2(b). In Figure 4 and Figure 5, the accuracy of
Fuzzy-RMCL and other proposed methods are presented, in case of sparse and
noisy data, respectively. The results of the previous versions of the proposed
methods can be found in [6, 7]. The error rates of the tests are calculated from
the expected location of robot, when it reaches a marker, and its exact location.
Note that, there are also unavoidable errors in the exact locations of robot due
to experimental problems reported by the data providers. When the results of
the tests are compared to the similar tests in [3, 13], the R-MCL method shows
similar performance in the sparse and noisy data tests. The cell size is chosen
as 5 cm in the referenced works, but it is taken as 30 cm in the current work,
to increase the speed, and triangulation method which is used in the case of
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observing two or more landmarks are not used in the implementations. These
facts would decrease the error rate very much, but the current case is more re-
alistic and similar to real world case. The parameter set is chosen after detailed
tests and comparisons.

Note that in the case of sparse data, Fuzzy R-MCL outperforms ML especially
when sparsity is more since it is logical to gain more information to locate the
robot by throwing more samples as the sparsity increases. However, as the noise
increases it is not logical to throw more samples, but to keep the number of cells
as small as possible to cope with noise.

During the tests, it was realized that choosing the cell size very big decreases
the effect of odometry, and can cause a temporary kidnapping effect when the
robot moves from one cell to other, which also decreases the success rate.

6 Conclusions

Localization in a totally unknown area is a very hard task for autonomous mobile
robots. This work aims to propose a fast, reliable, computationally and resource
efficient solution to the global localization problem. The solution should be suc-
cessful in environments like the Robocup Games and the challenges which require
very high accuracy and speed. For this reason previously a hybrid method called
R-MCL method was developed. In this work, a fuzzy approach is embedded in
this method, to improve flexibility, accuracy and robustness. In addition to using
Fuzzy membership functions in modeling the uncertainty of the grid cells and
samples, different heuristics are used to enable the adaptation of the method to
different levels of noise and sparsity. The method is very robust and fast and
requires less computational power and memory compared to similar approaches
and is accurate enough for high level decision making which is vital for robot
soccer. There is an ongoing research for improving the success by solving the
temporary kidnapping problem due to large cell size.
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1 Introduction

Contemporary engineers need to have the ability not only to freely make use of
their professional knowledge and skills, but also to integrate and combine a wide
range of knowledge and skills and to build a complex system to solve a problem.
But the current educational programs of individual departments (mechanical
engineering, electrical engineering, electronic engineering, computer science) are
usually designed and performed independently. Therefore it is hard for students
to understand how knowledge and technologies of each field are integrated and
combined in the objects of the real world. In order to increase student under-
standing in this area, we propose a new practice course dealing with a completely
functional object: a robot.

There are several experiments and practice courses dealing with robots as edu-
cational materials. LEGO MINDSTORMS is sometimes used for an introductory
course and is acknowledged as efficient educational material [1],[2]. There are also
some trials to introduce RoboCup based robots to education in practice [3]–[7],
and RoboCup soccer simulation [8],[9]. The first steps in the process of building
a robot are more difficult for students than using LEGO MINDSTORMS, be-
cause students need to master such tasks as the mechanical process, soldering,
and programming. But once they have mastered such tasks, they are better able
to try more advanced tasks like adding different type of sensors later.

The Owaribito-CU robot soccer team has competed in RoboCup since 1999.
Along the competitions, robots for RoboCup small size league have been devel-
oped in one of the extracurricular activities. This year faculty of the team have
introduced the construction of a simplified robot to the regular curriculum of
the Chubu University college of engineering.

This paper describes the outline of a newly designed practice course for under-
graduate engineering students, especially for freshmen. The process and review
of the course, which was carried out as five day intensive class in summer va-
cation, and the analysis of the questionnaire survey for the students after the
course are mentioned. Our new course is close to Baltes [4], Anderson [5], and

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 428–435, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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DME project in MIT [7] in previous trials. Distinctive features of our course
are the realization of inter-departmental education for freshmen without prior
knowledge and skills, and compact course work for a short term intensive class.

The course was open to all undergraduate students. It covers not only themes
dealing with hardware and software, but also topics in system engineering and
the wide range of knowledge and technologies related to several fields. By in-
troducing such a course into the early stages of undergraduate education, we
hope to stimulate students to become interested in other fields besides their own
specialized fields.

2 A Basic Robot for the Course

Currently we Owaribito-CU team have three wheeled omni directional robots,
ball handling devices, and a multi camera vision system. Fig 1 (left) shows our
omni-directional robot for the 2004 competition.

Fig. 1. 2004 omni-directional moving robot for competition (left), prototype of simpli-
fied robot (center) and main board (right)

This robot contains expensive motors and a wireless communication board.
And it is therefore not suitable for the practice course. The robot which will be
constructed by students in the course is a simplified robot. Fig 1 (center) shows
the trial piece of the simplified robot. It is easy to construct, even for beginners.
Another merit of the basic robot is that it can be constructed at low cost. Already
there is a trial to introduce a low cost robot to education in CMU [10].

Our simplified robot for educational use can be constructed for about 330
US dollars per robot including wireless communication function. Required parts
(and their cost) are the main board (30 US dollars), wireless communication
(90), H8 micro computer (30), motor drive circuit parts (30), DC motor (60),
chassis parts (20), tire and wheel (30), battery pack (30), other miscellaneous
parts (10). We think total cost is an important factor as educational material,
because 30 or more robots are constructed in a course. Keeping costs as low as
possible is important in order to continue offering the course in the future.

All parts except the main board are ready-made. Only the main board was
newly designed for the course. Fig 1(right) shows the main board. It includes
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the power supply circuit, motor driver IC, interface to H8 MPU board, switches
and LEDs.

Since the construction work is carefully chosen and combined, the robot can
be constructed easily within 30 hours by an undergraduate student without any
prior knowledge of the robot design and architecture. Once the students experi-
ence constructing the robot by themselves, they will have a sense of achievement
through the process.

3 A New Practice Course Using RoboCup Based Small
Robots

3.1 Aims and Merits of the Course

The aim of the new course is to introduce the fundamental technologies of various
engineering fields to freshmen. The course will be a typical example to show how
the knowledge and the technologies of many fields are actually applied to build
a complex system like a robot. It is expected that students are encouraged to
be interested in their field and even non-specialized fields. As another feature
of the course, inter-departmental education is realized. Teams are organized by
the students from different departments. Making such team produces the chance
to communicate with those from other departments, and encourages students’
interest in other fields.

Some of the achievements of this course are as follows.

(1) Students can understand the basics, such as the architecture of the robot,
driving mechanism, control circuits and programs.

(2) Students can understand how to use various tools.
(3) Students can devise some part of the robot by themselves with their own

ideas.
(4) Students have fun constructing a robot and develop their interest in topics

in engineering. Students encourage their will to study related subjects.
(5) Students can gain confidence in constructing a robot by themselves.

3.2 Syllabus

Course plan
The course is completed in a five day intensive class with an orientation where
a prior explanation of the syllabus is given. We plan to divide the class into
teams of students belonging to different departments, and each team constructs
its own soccer robot. In order to give an incentive to learn with enjoyment and
to construct the robots with interest and enthusiasm, a competition using pro-
duced soccer robots is held on the last day of the course.

Schedule
The course is carried out as an appropriate combination of lectures and practices.
In order to quickly put into practice the knowledge and information provided
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during lectures, the lecture class is assigned in the first half of the day and the
practice class is assigned in the latter half. Concerning the first 3 days, the order
of contents described below might be re-arranged in rotation for some student
teams, because of the size of a class and the limitation of the work place.

the first day
(lecture) Dynamics of Mechanical parts (such as motors, wheels, gears). Behavior
of the driving part. How to use machine tools.

(practice) Machine design (shape of chassis, position of electric motor). Eval-
uation of driving part (regarding speed or torque). Practice using machine tools
(cutting out chassis, drilling, bending, smoothing). Test run.
the second day
(lecture) Motor driver IC and circuit. PWM method. Wireless communication.
H8 micro processor (A/D converter, D/A converter, peripheral interface). Bat-
tery and power supply. How to use tools. Soldering. How to test the circuit.

(practice) Construction of controller circuit. Test operation.
the third day
(lecture) Control program. Programming for wireless communication. USB com-
munication. Process of software development.

(practice) Understanding and tuning the control program. Improvement of
the user interface (USB controller). Trial operation.
the 4th day
Construction of robots. Preparation of presentation.
the 5th day
Construction of robots. Final tuning. Team presentation. Competition.

Besides the themes of lecture and practice in the course, it will be possible
to include related themes like experiments in logic circuit, how to use an oscil-
loscope, assembler programming, and so on. In those themes, image processing
and AI are especially important research and development themes of RoboCup.
Though these themes should be included in the course, they are omitted at
present due to time limitations.

Evaluation
Students will be evaluated by writing a paper concerning the skills and knowledge
they have learned in the construction process, by completeness and originality
of the robots (body, mechanism, circuits, program, and design) they have con-
structed, by expressiveness of the presentations they have given, and the results
they have achieved at the competition. All points mentioned above are individ-
ually graded, and the total of them will be used for the evaluation. Students’
attitude in the class will be also evaluated in some cases.

3.3 From Preparation to Final Competition

The course textbook was written by faculty and teaching assistants. While the
contents of the textbook were limited to only related topics, it had more than
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120 pages finally. The textbook was printed and bound prior to the beginning
of the course and distributed to participants.

Orientation was held prior to the course to explain the contents of the course
and to invite students to the course. All students in the college of engineering
can participate this course, but the themes of each day listed in the syllabus
are designed mainly for students of the department of mechanical engineering,
electrical engineering, electronics and information engineering, and computer
science. 81 students registered, while upper limit of participants was 90. Only a
few students from outside the above four departments registered.

The course started on August 2nd. To have enough time, the class started
at 9:30 and finished at 18:20 everyday. The final day of the course was also
the University’s “Open Campus” day. Therefore we opened the work room in
the morning and the presentation and the competition in the afternoon to the
public. Many high school students showed up, and we could make an appeal to
them. Fig 2 shows the presentation and competition. Fig 3 shows the examples
of robots which students constructed. The parts they used were the same, but
the appearance of the robots was different for each teams.

There were some minor problems during construction, but finally all con-
structed robots worked well. All participants and robots attended the final com-
petition. After the competition, the members of the champion team received a
commendation and were given “The Dean of College Cup”. They also earned
the right to enter “The President Cup” competition in autumn.

Fig. 2. Presentation and competition

Fig. 3. Examples of robots which students constructed
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3.4 Support for Completed Students

After the course, an opportunity to improve their robots is provided for students
completing the course. In order to motivate their will to study, we also have
“The President Cup” at the university festival in autumn. To the teams who
have achieved excellent results in the President Cup, financial assistance for
competing in the domestic RoboCup game, “The Japan Open”, will be given by
the university. Furthermore, if a team wins the Japan Open championship, they
will be provided financial assistance to participate in the international RoboCup
competition.

4 Questionnaire Survey

We asked course participants to evaluate the course by completing a survey
questionnaire on the final day. 74 students (73 male, 1 female) completed the
whole course. There were 73 freshmen and one junior. All of them answered the
questionnaire. The survey results are found below:

Q1. Part of work in a team: 55 students took charge of work in their own
field; for example, students from the mechanical engineering department mainly
took charge of mechanical work, and so on.
Q2. Interest in other fields: 71 students answered “Yes”. This the result
we had hoped for, and it was good that the participants had interest in other
fields. The team arrangement policy placing students from different departments
on each team may have contributed to the increase in student interest in other
fields.
Q3. Team arrangement: 2 students answered that a team should consist
of the students from a single department. 72 students approved of the inter-
departmental team arrangement. We had hoped that students would make good
use of the chance to communicate with students from other fields. and they
responded positively to this.
Q4. Knowledge and skills you obtained: Answers were mechanical process,
making electronic circuit, software, wireless communication, and so on. Many
students answered that they gained knowledge and skills from other fields other
than their own specialization, something they do not usually experience in their
department course. The confidence which come from such experiences might
have influenced the answers. Actually it is hard to understand and make good
use of the knowledge and skills of other fields in only five days, but having the
confidence based on the experiences will be beneficial for students’ future study.
Q5. Was the course worthwhile?: 65 students answered “Yes”. 41 students
answered “Fully worthwhile”. For some students who already have prior experi-
ence in building robots or electronic circuits, the contents of the course might be
too easy, and they might feel bored. This course is basically designed for fresh-
men who don’t have such experience. For experienced students, a more advanced
course should be offered.
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Q6. Good or Bad points of the course: There were many kinds of answers,
both good and bad. The good points included exchange between students from
different fields, fun building a robot, learning a wide variety of fields, and so on.
These are also our hopes, and it was good to be evaluated positively by students.

On the other hand, many bad points were also pointed out. They are poor
preparation, too busy, classes were too long, end of work of a day was vague,
poor tools, and so on. We can understand most of these. Many problems resulted
from the fact that this was the first year that the course was offered, and we
realize that improvements must be done.

Q7. Work time: 45 students answered “enough”, while 28 answered “not
enough”. We believe the difference in answers is a result of differences in their
experiences.
Q8. Independent activity after course: 38 students expressed their hope
of independent activity after course. Actually 10 students continued to refine
their robots and participated in “The President Cup” competition in autumn.
We must continue to support such hopeful students. The problem is keeping the
work room reserved for independent activity and also providing parts and tools.
Q9. Do you recommend this course to underclassmen?: 66 students an-
swered “Yes”. Many points to improve were pointed out in the previous question,
but this answer indicates that many students evaluated the course as worthwhile
though not quite satisfactorily.
Q10. Achievement: 67 students answered that they had a sense of achieve-
ment.
Q11. What did you make in past?: 60 students answered that they had
experience building a plastic model. 20 participants had built a radio controlled
car, while 12 participants had made robots. Since the participants are all engi-
neering students, these answers are consistent with expectation.
Q12. Soldering skill: 34 students didn’t have ecperience in soldering before
they attended this course. 33 of them answered that they obtained soldering
skills. Actual experiences were valuable for them.
Q13. Programming in C language: 47 students answered that they under-
stood the program used for robot control, while 26 students answered that they
couldn’t understand it. Understanding the concept of computer programming
requires time and training. Furthermore most participants had not yet taken
a class of programming. Therefore if they can’t understand the programs it is
unavoidable, even though the contents were limited to simple concepts.

Summary of questuonnaire survey
Many participants answered positively to most questions. It is concluded from
the answers that the participants evaluated the course as worthwhile though not
quite satisfactorily.

Positive points of the course were the exchange between students from dif-
ferent fields , the fun of making a robot, learning a wide variety of fields, and
so on. But many points to improve were also pointed out by students. They
included poor preparation, too busy, long classes, unclear quitting time, poor
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tools, and so on. These are areas for improvement. Most participants thought
that they obtained knowledge and skills of various fields. They had a sense of
achievement.

5 Conclusion

In this paper we have described the new practice course which introduces simpli-
fied soccer robots to the undergraduate education. We asked course participants
to evaluate the course on the final day. Most participants thought that they
obtained knowledge and skills from various fields and that they had a sense of
achievement.

This trial is expected to increase the number of students who are interested
in the science and technology related to robots. It will be an example of the
effectiveness of the RoboCup activity in education.
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Abstract. Whereas numerous methods are used for vision systems em-
bedded on robots, only a few use colored region segmentation mainly
because of the processing time. In this paper, we propose a real-time
(i.e. video rate) color region segmentation followed by a robust color
classification and region merging dedicated to various applications such
as RoboCup four-legged league or an industrial conveyor wheeled robot.
Performances of this algorithm and confrontation with other existing
methods are provided.

1 Introduction: Motivations and Constraints

Our motivation is to find a segmentation method that is robust to changes of
lighting conditions as well for the RoboCup challenges in the four-legged league,
as for other applications such as the vision system of the wheeled industrial
conveyor robot of the CLÉOPATRE project [1]. RoboCup challenges we want
to deal with are:

– the Vision Challenge,
– the ability to tune vision parameters quickly.

These robotics applications require to get several kinds of information: on the
one hand they need to identify colored areas of the image that are supposed to
be the ball, the goals, the landmarks, the players and the soccer field for the
RoboCup application. On the other hand they have to extract the edges that
are supposed to be the white lines on the field.

The constraints are stringent in term of available computing power. The pro-
posed segmentation will be performed at video rate on AIBO ERS-7 for the

� Thanks to the RNTL. This work is partly supported by the French research office,
grant number 01 K 0742, under the name of CLÉOPATRE project.
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RoboCup Challenge, and on the laptop of the vision system embedded on the
wheeled robot of the CLÉOPATRE project.

As we want the algorithms to be usable for both applications and others, they
must not be dedicated to a specific application.

2 RoboCup Related Works

2.1 Different Directions

As most teams (UNSW [2], CMU [3], UChile [4], etc . . . ), we use since our first
participation in Paris in 1998 [5] a color classification based on a look-up table,
followed by a blob detection as low level vision processes. The look-up table is
generated by taking a large number of color samples from images of the game field.

Unfortunately color labeling is sensitive to changes in illumination, and man-
ual calibration is time consuming. So autonomous and dynamic color calibration
methods have been proposed [6, 7]. The latter paper underlines that the effects of
changing lighting conditions are the displacement of the position of the colors in
the color space, but the relative position of colors to each other does not change.
So the green of the soccer field is taken as a reference color.

Another direction is to use a specific segmentation [8]. Vision processing speed
can be increased by avoiding processing all pixels of the image. Even though this
specific algorithm is very efficient, we do not want to go that way because we
would like to implement a more general purpose segmentation.

2.2 Proposed Direction

Our key idea is to use a color region segmentation on the whole image, step which
is widely independent of lighting conditions, followed by a region color classifi-
cation. Such a classification, based on the average intensity values of the pixels
belonging to the regions, is more robust than color pixel classification. Unlike
[9], the growing procedure must be fast enough to guarantee the independent
whole segmentation of every image.

Outside of the RoboCup framework, many mobile and autonomous robots
integrate vision systems for navigation, obstacle avoidance, and for other robotics
tasks [10, 11, 12]. Vision systems are generally based on edge or optical flow
segmentations, or color classification of pixels, or neural networks. But few are
based on region segmentation [13, 14], even if the pieces of information extracted
by region image features are useful for the accomplishment of the robotic task.
In addition Priese and Rehrmann implemented their algorithm on a dedicated
hardware (Transputer Image Processing System) [14].

3 Region Segmentation Algorithms

Firstly, we adapted two blob detection methods (the A. Rosenfield, JL. Pflaz
algorithm [17], and a run-length algorithm [3]) to color region growing. The per-
formances are slightly better with A. Rosenfield’s algorithm. Temporal results
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(a) Original Image (b) Run-Length (c) A. Rosenfield’s algorithm

(d) Parallel Isotropic Growing (e) Cooperative Segmentation

Fig. 1. Segmentation results with different algorithms

will be given in §. 5. But in both cases the quality of the segmentation and the
processing time are too dependent of the image and of the values of the control
parameters.

Secondly, we adapted our Gray Level Cooperative Segmentation [16] to color
segmentation. The first step is a splitting implementation adapted from the first
step of the Horowicz and Pavlidis’s algorithm. A region is settled if no edge
point is found in it and if an homogeneity criterion is verified. The second step
is a parallel and isotropic growing from embryo regions. The quality of this
segmentation is quite independent of the image, and does not vary in dramatic
proportions with the values of the control parameters. But the processing time
is too long! In removing the cooperation with the edge detection, the quality
of the results decreases without increasing time performances! It can be noticed
from the segmentation results of figure 1 that an isotropic and parallel growing
procedure (see (d) and (e)) gives better quality results than a line scan procedure
(see (b) and (c)).

4 Proposed Segmentation

Our color region segmentation method is composed of three main steps:

– a Hierarchical and Pyramidal Merging, initialized from the pixels,
– a ‘Video Scan’ (or ‘Data Flow’) Merging, adapted for the pyramidal regions,
– a Color Merging, merging step based on a color classification of regions.

Each of these two previous main steps considers the operation of merging of each
kind of regions separately as a sub-step. Regions are 3×3, 9×9 and 27×27 pixels.
Be aware that all the pixels of these regions are not gathered in the square region.
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For the first step, as in [13], we use a hierarchical and pyramidal merging
method which takes advantage of the connexity of the current pixel neighbour-
hood, except that we work with an orthogonal topology, and not an hexagonal
one. This merging is more efficient than using the quad tree structure. The order
of the merging is the following: 3×3 regions from image pixels, then 9×9 regions
from 3×3 and finally 27×27 regions from 9×9. The germ is the central pixel or
the central region. For the initial step of this fusion, each pixel belonging to the
3×3 neighbourhood is merged to the central pixel (germ) if their intensity values
on the three image planes (RGB or YUV) are not too different (see Fig.2 (b)).
This sub-step requires a first control merging parameter based on the difference
of adjacent pixel intensity. Then, successively, 9×9 (see Fig.2 (c)) and 27×27 (see
Fig.2 (d)) regions are obtained in quite a same manner. A neighbour 3×3 region
(resp. 9×9) is merged into the 3×3 (resp 9×9) central region (germ) if they ver-
ify the connexity criterion, and if the intensities of the adjacent 3×3 regions (in
both cases) are not too different. The connexity criterion is the following: the
two adjacent pixels must belong to the regions, one for each.

Since the extraction of edge point information is also needed for the localiza-
tion of the robot, and as shown by the German Team [8] the localization does
not need the computation on each pixel of the high resolution image, we combine
an adaption of Kirsh 4 gradient operator [18] and an edge thinning step with
the initial 3×3 pyramidal gathering. The Kirsh 4 operator is applied on the Y
plane only for a pixel every 3 lines and every 3 columns. The thinning step is
applied simultaneously on the reduced image.

Associated with the initial 3×3 pyramidal gathering, this processing takes
0.11 ms more than the gathering alone. This additional time is only the compu-
tation time. Alone, this edge point detection takes 0.55 ms.

For the second main step, the regions are considered in the opposite order:
27×27, then 9×9 and finally 3×3. The principle of gathering of the 27×27 (see
Fig.2 (e)) regions is exactly the same as those used for the pixels in the A. Rosen-
field & JL. Pflatz’s algorithm, except that it is applied on 27×27 regions rather
than on pixels, and therefore the connexity must be verified. Only the two past
regions (relatively to the video scan) are taken into account: the left and the
upper ones. The gathering of the 9×9 (see Fig.2 (f))and 3×3 (see Fig.2 (g))
region is slightly more complex, because it takes into account the two previous
past regions and two next regions: the right and the bottom ones. The merging
criteria are the same as for the first step: related to the connexity and to the
difference of intensity of 3×3 regions. The information related to the topology
of regions (e.g. gathered points and then 3 × 3 and 9 × 9 regions) is stored in
the data structure of regions. So our algorithm requires only one examination of
each image pixel value during the initial 3×3 gathering. All previous steps are
quite independent of the changes of the lighting conditions.

The third main step is constituted by two sub-steps:

– Color classification of regions
– Region merging based on Color Classification
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For the moment, the color classification of regions consists of finding the best
color classification in the YUV space for each region, and to verify the coherence
of this classification in the UV space. The results seem to be stable, because it is
more robust to classify mean intensity values on a given region rather than pixel
intensity values as for a pixel classification. But we are looking for another color
space as HSV. As for the 9×9 pyramidal gathering, the region merging based on
color classification consists of considering one 3×3 every 3 according to the lines,
and every 3 according to the columns, and to look at its upper, lower, right and
left 3×3 neighbour regions. The regions are merged if they are classified with
the same colour. The good quality of the segmentation results can be noticed.
In fact the pyramidal gathering main step followed by the data flow gathering
procedure simulates a parallel and isotropic growing (see Fig. 2). Two different
kinds of parallelism may be underlined:

– all adjacent regions are simultaneously merged into the growing region,
– several regions are growing simultaneously.

(a) Original Image (b) 3 × 3 Pyramidal Gathering (c)9 × 9 Pyramidal Gathering

(d) 27 × 27 Pyramidal Gathering (e) 27 × 27 Data Flow Gathering (f) 9 × 9 Data
Flow Gathering

(g) 3 × 3 Pyramidal Gathering (h) Color Identification Gathering

Fig. 2. Segmentation Results of the Different Steps of our Algorithm
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Table 1. Detailed processing times of algorithms steps. Processing time column con-
tains duration of each step, whereas total shows the total duration up to this step.
Percentage is the contribution of the step to the whole process duration. Steps are in
bold font, while sub-steps are in normal one. The first sub-step is shown as the more
time consuming, that underlines the efficiency of the following gatherings.

Algorithm Processing Time Total Percentage

Pyramidal Gathering 4.44 ms 4.44 ms 64%
3 × 3 3.95 ms 3.95 ms 57 %
Edge Point Detection 0.11 ms 4.06 ms 1.6 %
9 × 9 0.31 ms 4.37 ms 4.4 %
27 × 27 0.07 ms 4.44 ms 1 %
Data Flow Gathering 1.45 ms 5.89 ms 20.8 %
27 × 27 0.01 ms 4.45 ms 0.15 %
9 × 9 0.31 ms 4.76 ms 4.4 %
3 × 3 1.13 ms 5.89 ms 16.5 %
Color Classification Gathering 1.06 ms 6.95 ms 15.2 %
Color Classification 0.06 ms 5.95 ms 0.9 %
Color Gathering 1.0 ms 6.95 ms 14.3 %

This last property is due to the fact that the merging criterion between two given
regions is based on the mean intensity values (on Y, U and V planes) of the
initial and connected 3×3 regions (one for each given region). These parameters
do not vary during the growing of regions and are independent of the order of
the merging between regions.

5 Results and Comments

The temporal results are obtained with an ultra light notebook DELL X300
(Intel Pentium M 378, 1.4 GHz, 2 MB L2 cache, 400 MHz FSB) dedicated to
the embedded vision system of a robot. Approximately 10 images are used for
testing. The image size is 176×144, with 3 bytes per pixel. The performances of
the Sobel’s and Kirsh4’s operators for edge detection are given for comparison.
The processing time of a given algorithm must be at most twice the one of
Kirsh’s operator to be of interest for the following of our studies. Results are
presented in table 2.

Though the cooperative segmentation extracts edge points also, this algorithm
is faster than its version without the cooperation. In fact, the edge points make
the isotropic and parallel region growing faster. But we are surprised at the bad
performances of the adaptation of the run-length algorithm. The explanation is
that too many segments are generated, and merging them takes a long time. We
are also surprised at the good performances of our method, compared to Kirsh’s
operator and to the adaptation of A. Rosenfield’s algorithm. The explanation is
the reduced number of pixel access: 3 pixels for the adaptation of Rosenfield’s
algorithm, 9 for the Kirsh’s, and 1 for our algorithm and the pyramidal approach.
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Table 2. Comparison between several algorithms duration

Algorithm Processing Time Speed Up

Adapt. of A. Rosenfield’s Algo 13.6 ms 2.3
Adapt. of Run-Length 28 ms 4.75
Cooperative Segmentation 72.5 ms 12.3
Parallel and Isotropic Growing 106 ms 18
Proposed Method 5.89 ms 1 : reference
Color Kirsh 4 operator 12.8 ms 2.17
Color Sobel operator 17.6 ms 2.99
Kirsh 4 on Y plane 4.45 ms 0.755
Color Classification and Blob Extraction 2.57 ms 0.436

All source, binaries and tested images will be available on the web site of
the CLÉOPATRE project. The quality of the resulting segmentation is suitable
for robotics applications. The different regions of the color image are correctly
separated. Some points are missing inside regions. Though this is penalizing for a
nice looking segmentation, all needed region attributes (gravity center, including
boxes etc..) are correct.

Taking into account the processing times of table 2, the proposed segmenta-
tion will run at video rate on the robot of the CLÉOPATRE project. For the
moment, the Color Classification and Blob Extraction (2.57 ms on our test com-
puter) and the Kirsh4 on Y plane (4.45 ms) are still used on the AIBO ERS-7 for
low level vision processing. The processing time of our new segmentation is sim-
ilar (6.95 ms compared with 7.02 ms). During RoboCup 2005 we implemented
the new segmentation algorithm on AIBO ERS-7. It ran at 15 Hz together with
all other modules such as locomotion, localization and behaviours.

6 Conclusion

We have proposed a general-purpose robust real-time region color segmenta-
tion and classification, and shown that this was more efficient than pre-existing
methods.

The swiftness of this algorithm is mainly due to the reduced number of pixel ac-
cess, to the bottom-up and then top-down hierarchical merging. Its robustness is
the consequence of the region color classification based on mean value for the area.
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Abstract. Color constancy is the ability to correctly perceive an object’s color 
regardless of illumination. Within the controlled, color-coded environments in 
which many robots operate (such as RoboCup), engineers have been able to 
avoid the color constancy problem by using straightforward mappings of pixel 
values to symbolic colors. However, for robots to perform color vision tasks 
under natural light the color constancy problem must be addressed. We have 
developed a color vision system which allows for the color space signatures of 
different symbolic colors to overlap. This raises the question: if a specific pixel 
value can be mapped to multiple symbolic colors, how does the robot determine 
which color is the “correct” one? Context plays an important role. We adopt a 
knowledge driven approach which allows the robot to reason about uncertain 
color values. The system is fully implemented on a Sony AIBO. 

1   Introduction 

Within the color-coded world of RoboCup1, most teams use color image segmentation 
techniques to assist with the identification of relevant objects, such as the ball, goals, 
landmarks and other robots. Generally, the vision systems developed for RoboCup 
take advantage of the engineered RoboCup environment – where the lighting is 
bright, evenly dispersed and constant, and the colors of important objects highly 
distinct – by providing a one-to-one mapping between pixel values and symbolic 
colors, i.e. for any given raw pixel value there is a maximum of one corresponding 
symbolic color class. 

Such systems ignore the reality that even within the controlled RoboCup 
environment the colors of important objects do indeed overlap within the color space. 
For example, many teams within the legged-league are familiar with the problem that 
when in shadow or dim light, the orange of the soccer ball can appear to be the same 
color as the red uniforms worn by one team of robots. Such color misclassifications 
can have dire consequences for system performance, as witnessed by many a robot 

                                                           
1 http://www.robocup.org 
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chasing the red uniform worn by a fellow robot, guided by the misconstrued belief 
that the red robot is in fact the orange soccer ball. 

Color constancy is the ability to perceive an object’s color correctly regardless of 
illumination [1]. To help overcome this problem, we have developed a color vision 
system which allows for a pixel’s raw data value to be mapped to a set of many 
possible symbolic color classes. However, introducing such a relationship raises the 
question: if a specific pixel value can belong to multiple symbolic colors, how does 
the robot determine which color is the “correct” one? In this paper we detail our 
approach which allows the robot to reason about uncertain color values. The system is 
completely implemented on a Sony AIBO2, and an initial version was used with great 
success at RoboCup 2004. 

2   Color Constancy and Mobile Robotics 

The appearance of a surface’s color is dependent upon the complex interaction of a 
number of factors, including the reflectance properties of the surface, the camera, and 
the lighting conditions. A change in any of these factors can affect an object’s 
apparent color. Illumination is rarely constant under natural light. Even when lighting 
is relatively constant, the viewing geometry for mobile robots is not. If we consider 
the legged-league of RoboCup, in which teams of Sony AIBOs play soccer, the 
viewing geometry is consistently shifting as the robot’s camera is located in, and 
moves with, the robot’s head. For example, the robot’s own head often casts shadows 
over the ball. 

Mobile robots must also compensate for imperfect and noisy sensors. For example, 
the camera on the AIBO ERS7 has a “fisheye” effect which produces a blue 
discoloration around the edge of the camera. The camera also discriminates dark 
colors poorly, making it difficult to distinguish between colors such as the dark grey 
skin of an AIBO ERS210, the black pants of a referee, field green in shadow, or the 
blue team’s uniform. Also, the fact that a mobile robot is indeed mobile can affect 
camera performance. In robotic soccer robots frequently collide, and for legged robots 
there is an element of “bounce” when the robots walk. Motions such as these can 
cause color distortion and blur within the images captured by the robot’s camera. 
Finally, any solution must be capable of operating in real-time within the limited 
computational resources provided by the robot’s hardware. 

3   Prior Work 

There is an enormous body of literature regarding computational color constancy. 
However, the vast majority of this research focuses on static images, database image 
retrieval, and off-board processing. The general aim of computational color constancy 
is to determine the effect of the unknown illuminant(s) in a scene, and then to correct 
the image by either mapping to an illumination invariant representation, or by 
correcting for the illuminant. 

                                                           
2 http://www.sony.net/Products/aibo/ 
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In terms of color constancy applied to mobile robots there is a much smaller body 
of knowledge. Many approaches use color insensitive algorithms to assist with object 
or color recognition, so that once an object or color is recognized, the robot can 
survey the pixel values within the image, and then use these values to update color 
tables dynamically, e.g. [2], [3], [4], [5]. Another method is to use image statistics, 
either from a single image or a series of images, to determine a global scene 
illuminant - the rationale being if lighting conditions can be accurately classified, then 
an appropriate color mapping between raw pixel values and symbolic colors can be 
selected by the robot, e.g. [6] [7]. Lastly, an alternative approach is to pre-process an 
image to improve the separation of colors within the color space so that symbolic 
classes are more tightly clustered around a central point, e.g. [8]. 

The area of specific concern in this paper is determining symbolic color class 
membership in robotic color vision tasks when the symbolic colors have substantial 
overlap within a color space, even when the lighting conditions are relatively 
constant. Within RoboCup most teams avoid the problem by adding controls to their 
color calibration process which govern overlap and outliers for symbolic colors within 
the color space (e.g. [9], [10]). Mayer et al. [11] reported that when playing middle-
size league soccer under natural light they experienced substantial overlap between 
white and other symbolic colors. Their unsatisfactory solution was to simply give 
“priority” to colors other than white. A common problem within the legged-league is 
that when looking down at the orange ball it can appear red, and one team [12] tried 
to compensate for this by building two color tables – one for when the robot is 
looking down, and one for all other situations. However, they report mixed success, as 
orange tends to merge with red and having two color tables did not solve their 
problems of color misclassification. In the most related approach to our work, [13] 
report on initial attempts to identify overlapping color signatures within the color 
space. They describe pixel values for which no overlap exists as “core” colors, and 
pixel values for which overlap exists as “maybe” colors.  

4   Our Approach 

Rather than focusing on building a color constancy system that can overcome drastic 
lighting changes through mathematical calculations of the scene illuminant, we have 
focused our efforts on developing a vision system which can provide an expressive 
representation for reasoning about the uncertainty of colors. We are motivated by our 
longer term aim of allowing the robots to reason about the color of pixels and objects 
using their knowledge about the environment, such as lighting conditions, camera, 
and prior experiences.  

The first step of our approach to the color constancy problem is to identify the 
pixel values of different symbolic colors that overlap in color space, and instead of 
removing or ignoring these particular pixel values, we provide the robot with the 
complete set of possible candidate colors for any given pixel value. Importantly, this 
reduces the search space for classifying pixel values whose color signatures overlap. 
Secondly, we created a symbolic color class called “dark noise” to capture dark areas 
within the image in which much color overlap occurs, such as shadow. Next, the color 
classification algorithm assigns each pixel a value which indicates the set of possible 
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colors for that pixel. For pixel values with more than one possible color, color 
classification relies upon local image area statistics, the pose of the robot, and other 
heuristic based knowledge. 

4.1   Image Sampling and Training 

We use a color labeling process in which a human trainer labels regions within the 
image that correspond to the objects of interest, such as the ball, field, robot uniforms, 
landmarks, and so forth. A custom built software system, using a relational database, 
stores every unique raw pixel value “p” that the user selects for every symbolic color 
“c”. Thus, given a set of symbolic colors, e.g. C = {white, green, pink, orange …}, it 
is possible for any pixel value to be a member of an arbitrarily assigned subset of C, 
depending upon the pixel to symbolic color relationships identified by the human 
trainer. We call this subset of C the candidate colors for a pixel value. While many 
pixel values will share the same symbolic color relationships, and hence candidate 
colors, e.g. p1 ≡ p2, invariably a large proportion of pixel values will have different 
symbolic color relationships. For example, p1 ∈ {green, robot blue, beacon blue}, p2 
∈ {orange, red}, p3 ∈ {orange}, and so forth. In accordance with the terminology 
used in [18], we call pixel values for which there is only one candidate color “core-
colors” (e.g. p ∈ {orange}), and pixel values for which there are multiple candidate 
colors “maybe-colors” (e.g. p ∈ {orange, red}). In other words, a core color is a pixel 
value for which there exists no overlap within the color space – they have only ever 
been assigned to one symbolic color - while a “maybe-color” is a pixel value which 
has been assigned to two or more symbolic colors.  

At any point during the training process, the user can generate three artifacts that 
are required by the robot’s vision system: 

1. A structured file containing the complete set of unique candidate color 
combinations, with each combination possessing a unique index for the purposes of 
identification. 

2. A color lookup table, which for every possible raw pixel value, provides an index 
to the corresponding set of candidate colors. 

3. A file containing the mean (prototypical) value for each symbolic color in terms of 
raw pixel value. 

4.2   Color Labeling and Image Segmentation 

Our color calibration system has provided our robots with a more detailed level of 
color perception. In previous systems a particular pixel value was either unknown, or 
it belonged to a specific symbolic color. Now, a pixel value can be either unknown, 
belong to one specific symbolic color, or belong to a specific subset of the entire 
spectrum of symbolic colors. Thus, for many pixels within the image we are forced to 
make a new decision: which color is the correct one? To answer this question we 
trialed a variety of simple and efficient computational techniques, all of which can 
operate in real-time on both an ERS7, as well as the older and more computationally 
challenging ERS210. 
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The algorithm which provided best results for varying lighting conditions within 
our research laboratory was surprisingly simple. The algorithm takes advantage of the 
distinction between core colors and maybe-colors, by treating core colors as 
influential local area predictors for maybe-colors. For example, if a maybe color pixel 
could be either red or orange, but is surrounded by more orange core colors than red 
core colors, then it will be assigned the color orange. By only considering candidate 
colors, and not the complete set of colors, we are able to reduce the search space, 
increase the speed of the algorithm, and provide surprisingly natural results. In the 
absence of candidate core colors within a local area of the image (which can occur in 
images in which there are large concentrations of maybe-colors), or when there is an 
equal abundance of different neighboring candidate colors (e.g. 4 red and 4 orange 
neighboring pixels), Manhattan distance metric is used to find the closest candidate 
color. However, our aim is not to present, or find, the most sophisticated algorithm for 
correctly color segmenting an image, but rather to demonstrate how knowledge of 
relationships between pixel values and overlapping symbolic color signatures is a 
powerful alternative for overcoming color constancy issues. Code containing the 
implementation of this algorithm can be obtained from [14]. 

4.3   Results 

Fig. 1 displays a raw image taken from an ERS7, together with images indicating the 
maybe colors within the image and the final segmented image. 

 

Fig. 1. An image from an AIBO ERS7 (left), the overlapping colors in the corresponding image 
are represented in purple (centre), and the processed image in which overlapping colors are 
assigned to symbolic colors (right). In the raw image there is a blue discoloration around the 
edge of the image, and there is little contrast or separation between the robot’s blue uniform, 
shadows on the field, and the darker colors of each robot. The blue uniform consists almost 
entirely of maybe-colors. 

A consistently surprising feature of processed images was the ability to accurately 
classify the regions of the image which corresponded to shadows on the field, and in 
some cases also on the robot. While such features are currently not used by our object 
recognition routines, models of color constancy which involve some level of scene 
understanding will require robots to detect such features. Fig. 2 displays an image in 
which two robots almost collide, and the proximity of the two robots causes a 
decrease in the illumination within the image.  



 A Novel and Practical Approach Towards Color Constancy for Mobile Robots 449 

 

Fig. 2. Raw image from an AIBO ERS7 (left), the overlapping colors in the corresponding 
image are represented in purple (centre), and the processed image in which overlapping colors 
are assigned to symbolic colors (right). The vision system is able to correctly segment the blue 
of the robot’s uniform, and the area of shadow underneath the robot. 

To demonstrate our results we have displayed images that we feel are indicative of the 
vision system’s general performance. It is interesting to note that evaluating the 
performance of a color constancy system empirically is challenging. For any color 
constancy system there exists no automated method for recording the number or 
percentage of pixels within each image that are classified “correctly”. Such notions of 
correctness or ground truth must be specified manually by a human tester. In much of the 
robotic research relating to color constancy systems are evaluated through behavioral 
performance tests. However, the performance of behaviors is also related to the 
performance of higher level routines (e.g. object recognition). Evaluating the performance 
of perception systems is an area of increasing significance for robotics [15]. 

One method adopted to evaluate the system’s robustness was to vary the lighting 
conditions, and to also change the camera settings of the system. We were able to 
create color calibration tables that could function over a range of camera settings and 
lighting conditions. Fig. 3 displays an image in which the camera shutter speed was 
set at “fast”, but the calibration tables used were created when using the “medium” 
shutter speed (effectively decreasing the brightness within the image). 

 

Fig. 3. Raw image from an AIBO ERS7 taken at fast shutter speed (left). The color tables used 
to segment the image were created at medium shutter speed. Due to the darker conditions an 
increased amount of overlap colors were present in the image (centre). Large parts of the ball 
overlap with robot red. The processed image effectively segments the ball and most of the 
robot’s uniform (right). 
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5   Discussion 

We have implemented a novel approach to deal with color constancy. Rather than 
avoiding or removing overlapping color space signatures, we have developed a 
system which uses the relationships between pixel values and overlapping symbolic 
color signatures to segment color images. 

Our approach offered several immediate benefits. Color calibration can be 
undertaken more quickly, as the calibration method encourages the human trainer to 
identify all possible pixel values for each color of interest, rather than avoiding those 
that may cause misclassification (e.g. those that occur in shadow or on the borders of 
different objects within the image). Image segmentation has improved due to richer 
and more expressive color tables. Lastly, object recognition has also improved, due to 
not only image segmentation performance, but because object recognition routines 
can reason about the different levels of color uncertainty indicated by core colors, 
maybe colors, and unknown colors. For example, object recognition routines can 
exploit simple statistics, such as the percentage of maybe-colors within a blob, to 
reason about the likelihood of false identification of an object. 

Future research will involve developing mechanisms for automatically generating 
the rules for determining the color membership of overlapping pixel values. When a 
human trainer labels the colors of pixels within an image, a wealth of contextual 
knowledge and scene understanding affects our interpretation of a pixel’s color. A 
longer term aim is to investigate color training mechanisms that can embed this 
knowledge within the robot. For example, the human trainer compensates for the blue 
discoloration around the edge of the ERS7’s image without conscious effort. Thus we 
are recording features such as the pixel’s location in the image which allow us to 
calculate probabilistic rules for color membership which consider constant distortions 
of the camera. 
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Abstract. Stereo vision for mobile robots is challenging, particularly
when employing embedded systems with limited processing power. Ob-
jects in the field of vision must be extracted and represented in a fashion
useful to the observer, while at the same time, methods must be in place
for dealing with the large volume of data that stereo vision necessitates,
in order that a practical frame rate may be obtained. We are working
with stereo vision as the sole form of perception for Urban Search and
Rescue (USAR) vehicles. This paper describes our procedure for extract-
ing and matching object data using a stereo vision system. Initial results
are provided to demonstrate the potential of this system for USAR and
other challenging domains.

1 Introduction

This paper describes our current research into practical stereo vision for au-
tonomous and teleoperated robots. Stereo vision as a form of perception has
many benefits for autonomous intelligent systems: in ego motion detection and
simultaneous localization and mapping (SLAM) for example. For a teleoperated
vehicle, stereo vision can be used to assist a human operator in judging distances,
marking landmarks for localization purposes, and identifying desired objects in
the environment.

The domain with which we employ stereo vision is that of Urban Search and
Rescue (USAR). The goal of USAR is to allow robotic vehicles to explore urban
areas following a disaster, locating human victims as well as dangerous situations
(e.g. gas leaks). Robotic vehicles have the advantage of being able to traverse
narrow voids that would be difficult for humans to reach, and also alleviate the
need to place human rescue workers in dangerous situations. While this is a ex-
tremely useful application for robotic, computer vision, and artificial intelligence
technologies, it is also a important challenge problem for these areas. NIST, for
example, provides a standard challenge domain at a number of locations around
the world each year, allowing a practical testbed for researchers to compare
approaches to various aspects of this problem.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 452–463, 2006.
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Our own primary interests lie in artificial intelligence and computer vision.
We design autonomous robots that use vision as the sole sensor to support ego-
motion detection, localization, and mapping. Recognizing that it will be some
time before embedded systems become powerful enough and AI technology so-
phisticated enough for an autonomous system to perform well in such a challeng-
ing domain, we also work to provide vision-based solutions to enhance human
teleoperation.

In order to deal with the unpredictability of the USAR domain, we follow two
main principles in our work. First, all solutions must make as few assumptions
regarding the nature of the domain as possible. For the purposes of vision, this
means that we cannot assume that any camera calibration will remain perfect
throughout a run, or that we can make assumptions about the nature of lighting.
Secondly, our vehicles must be considered disposable, since damage and loss can
occur. We thus attempt to provide solutions using commonly available equip-
ment. This in turn supports the principle of generality: cheaper vehicles with less
specialized hardware force us to deal with problems using intelligent software.
For example, using visual ego-motion detection as opposed to relying heavily on
shaft encoders for localization [2].

This paper describes the process by which we provide stereo vision for au-
tonomous and teleoperated robotic vehicles under the conditions typical of
USAR. We outline a novel algorithm for matching stereo images based on regions
extracted from a stereo pair, and detail the steps taken at various points in the
overall vision process to adhere to the twin goals of basic hardware and general
solutions. We begin by reviewing other recent efforts to use vision as a primary
perceptual mechanism, and follow by describing the phases involved in visual
interpretation using our approach. Initial results of employing this approach in
practice are then provided.

2 Related Work

Stereo vision is attractive because it generates a depth map of the environment.
There are two basic approaches to the matching of stereo images: pixel-based and
region-based approaches. Pixel-based approaches use feature points to match be-
tween images. Matching pixels between images is typically made more efficient
through the use of epipolar constraints: if the cameras are perfectly calibrated,
only one row in the image needs to be examined to find the same pixel in both
images. While this is a reasonable approach from a computational standpoint,
this method suffers from the problem of mismatching feature points. A single
pixel, on the whole, provides very little evidence to support a match. Calibrating
the cameras in order to support this is also non-trivial, and in domains such as
USAR, the expectation that a fine calibration will remain accurate over time
is an unreasonable one. Matching regions rather than pixels is an alternative
intended to decrease mismatching, because much larger areas are matched to
one another. However, these larger regions require correspondingly greater com-
putational resources for a match to be performed. The approach we detail in
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Section 3 improves on standard region-based matching through the simplifica-
tion of regions, requiring fewer computational resources for matching while still
maintaining robust matching.

The two most important steps in region-based matching are the identification
and representation of features in the image. Research is active in this area,
since current approaches often encounter environments that cause failure rates
to become unmanageable. Examples of approaches currently being advocated
include those of Lowe [9], Carson et al., [5] and Ishikawa and Jermyn[7].

Lowe’s work [9] introduces an object recognition system known as Scale In-
variant Feature Extraction (SIFT). This approach uses a feature representation
that is invariant to scaling, translation, and rotation, as well as partially invari-
ant to changes in illumination. Scale invariance is achieved through the use of
the Gaussian kernel as described in [8]. For rotational invariance and efficiency,
key locations are selected at the maxima and minima from the difference of
the Gaussian function applied in scale space. Once a set of keys are defined for
a given object, live images are scanned and objects are selected using a best-
bin-first search method. Bins containing at least three entries for an object are
matched to known objects using a least square regression. Experimental results
show that the system is effective at detecting known objects, even in the presence
of occlusion, since only three keys are necessary for a match to occur. Lowe and
others have employed this method to implement a localization for reasonably
structured environments [11], but nothing as unstructured as USAR.

In Carson et al.’s [5] Blobworld representation, pixels in an image are assigned
to a vector containing their color, texture, and position. Colors are smoothed
to prevent incorrect segmentation due to textures, and are stored using the
L*a*b* color format. Texture features employed for categorization include con-
trast, anisotropy (direction of texture), and polarity (uniformity of texture ori-
entation). Regions are grouped spatially if they belong to the same color and
texture cluster. A gradient is generated in the x and y directions, containing
the histogram value of pixels in that region. For matching, the user must begin
by selecting blobs from the image that will be used for comparison against a
database. Regions are matched to the database by the quadratic distance be-
tween their histograms’ x and y values, in addition to the Euclidean distance
for the contrast and anisotropy texture. This method was used as a basis for
an optimal region match in [4]. It is unclear, however, how robustly the method
handles translation of the blobs. In addition, this system is not directly usable
for an autonomous system, since the user must select the candidate blobs.

Wavelet-based Indexing of Images using Region Fragmentation (WINDSURF)
[1] is another recent approach to region extraction. In this approach the wavelet
transform is employed to extract color and texture information from an im-
age. A clustering algorithm is used on the output coefficients from the wavelet
transform, producing regions that contain similar color and texture waves. By
using only the coefficients, regions are clustered without considering spatial in-
formation. This means that images cannot be compared based on the location
of the regions. However, it allows matching that is invariant to position and
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orientation differences. One limitation in this approach is that the region count
must be defined, so clustering of dissimilar regions can occur in the presence of
images that contain more features than expected.

3 Pragmatic Stereo Vision for USAR

The aim of our overall approach is to identify useful regions and match them be-
tween stereo images, with limited computational resources and under conditions
typical of the USAR domain. In fully autonomous systems, stereo-matched re-
gions are intended as input to routines for ego-motion detection, localization, and
map-building (as employed originally in [3, 2] using a single camera). In teleoper-
ated systems, this is intended to enhance the remote perception of the teleoper-
ator by providing information about the distance and movement of objects.

We divide the process of performing region matching in stereo vision into
six stages: Color Correction, Image Blur, Edge Detection, Region Extraction,
Region Simplification, and Stereo Matching. Each of these stages performs a
specific function in terms of allowing a visual scene to be matched using stereo
vision. We examine the role and implementation of each of these phases in turn.

3.1 Color Correction

Under the varied conditions of Urban Search and Rescue, we cannot assume
uniform lighting. Thus, there will be situations where imbalances exist in the
color response of the two cameras capturing the stereo image.

We have found that in general extracting stereo matches can proceed with
little inaccuracy due to color differences between the two stereo images (which
can easily be seen in many stereo image pairs, such as the raw image pair shown
at the top of Figure 1). We have also found, however, that normalization is
useful in supporting human teleoperation in situations where ambient lighting
is low. For those purposes, we perform color correction by normalizing the color
channels.

Our method for normalization involves using the mean and standard deviation
of the color channels. While the naive computation methods for these would
require two passes through the data with a third to normalize, we do this in
a single pass. This is done by relying on the assumption that the mean and
standard deviation over a sequence of images are relatively stable, which will
generally be the case in a reasonably slow-moving vehicle in a USAR scenario.
Thus, at time t we use the mean of the image from time t− 2 and the standard
deviation of the image at time t−1 as approximations to the current values, and
normalization can ensue at the same time future standard deviation and mean
values are calculated.

Normalization is performed by defining a range of two standard deviations
on either side of the mean as the entire range for the color channel. This allows
outliers to be discarded, resulting in a more accurate representation of the color
range in the image.
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3.2 Image Blurring

Raw images obtained under the conditions typical of a USAR domain are ex-
tremely prone to noise. In addition to texture and lighting variations in the do-
main itself, noise is exacerbated by the approach we take to the USAR problem.
Given current technology, any equipment that can be viewed as cheap enough
to minimize the loss of a robot will have to include inexpensive video capture
devices, which are highly prone to noise. This noise makes the detection of edges,
and ultimately regions and objects, extremely difficult, and thus inconsistencies
introduced by noise must be minimized through some form of image smoothing,
such as blurring.

We employ Gaussian blurring in this process for a number of reasons. First,
Gaussian blurring provides circular symmetry [12] - that is, lines and edges in
different directions are treated in a similar fashion.

More importantly, a Gaussian blur can deliver this and remain efficient. In or-
der to perform a Gaussian blur, a bell curve is approximated with integer values,
typically binomial coefficients selected from Pascal’s Triangle. These particular
numbers have a useful principle that allows for an efficient implementation: to
apply a blur of N = k, the coefficients of i and j, such that i + j = k can be
convoluted. For example, to apply a 3x4 blur, k =5 is selected, but rather than
having to use the coefficients of 5 (the set {1 5 10 10 5 1}), the coefficients of 2
(the set {1 2 1}) and 3 (the set {1 3 3 1}) can be used - the first horizontally,
and the second vertically to the result of the first. The result for each pixel is
then normalized by dividing by the sum of the two coefficients. The practical
result of this is that a small area of blur is repeated to generate large areas,
rather than requiring the additional computational expense of blurring with a
larger set of coefficients. The middle element of Figure 1 illustrates the result of
a such a blur on a sample stereo image pair.

3.3 Edge Detection

Preprocessing via color correction and smoothing leaves the image in a state
where we can begin to identify objects in the image with the expectation of
some degree of accuracy. The first step in this process is to determine rough
boundaries through edge detection.

We employ Sobel edge detection in our implementation, because it is com-
putationally simple and proves robust under a variety of conditions. Sobel edge
detection involves the application of convolution masks across the image. We
employ two masks, for the horizontal and vertical dimensions respectively:⎛

⎝−1 0 1
−2 0 2
−1 0 1

⎞
⎠

⎛
⎝−1 −2 −1

0 0 0
1 2 1

⎞
⎠

After applying each mask, normalization is performed by dividing each pixel
value by four. The resulting pixels are examined against a threshold value, where
values larger than the threshold indicate an edge, as shown in the bottom element
of Figure 1.
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Fig. 1. The product of applying a Gaussian blur (middle) on the raw image pair (top).
The blurred image is then subjected to Sobel edge detection (bottom).

3.4 Region Growing

Having obtained a set of strong edges from a smoothed image, we employ this
along with the original smoothed image to determine a set of regions in each
individual image.

Our approach to region segmentation involves growing regions from individ-
ual pixels using a stack-based approach. At any point, the pixels on the stack
represent those from which future expansion of the region will take place. We
begin by marking each pixel in the smoothed image as unexamined, and mark-
ing a single unexamined pixel as examined and placing it on the stack. We then
repeatedly pop the topmost entry off the stack, and attempt to grow the region
around it by examining the pixels immediately above and below, and to the left
and right of that pixel. Each of these is tested to see if it is an edge pixel in the
edge map, in which case it is ignored (allowing edges to form a strong boundary
for regions). Each is also tested to see if it is a color match to the region being
built, by summing the squares of the differences across all color channels. If this
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value falls below a defined threshold for error, the pixel is considered to be a
part of the current region, and that pixel is placed on the stack to further extend
the region; if not, the pixel is ignored. The threshold for color error is the mean
color value of all pixels currently in the region, allowing the threshold to adapt
as the region is grown. The algorithm terminates with a completed region once
the stack is empty. A threshold is set on the acceptable size of a grown region,
and if the region size falls below this level, the region is discarded.

To extend this algorithm to grow a set of regions, we must recognize two
things: first, it should be possible for an area to be part of more than one
region in initial stages, since an image will generally be factorable into regions
in a number of different ways. Thus, the algorithm must allow any pixel to be
potentially claimed by more than one grown region. Second, once we throw a
region away as being too small, we do not wish to start growing other regions
within this same area, as this has already proved unfruitful. Similarly, once we
have defined a region, it will be more useful to start new regions outside that
defined area.

Our initial approach was to begin searching the image for a non-visited pixel,
growing a region using the algorithm described above (while marking each pixel
as examined when it is placed on the stack), and then starting the next re-
gion by searching for an unexamined pixel. This approach is functional, but
in practice, linear scanning wastes resources because many unsuccessful regions
are attempted. We have found it more fruitful to begin with randomly selected
points (20 for a 320 x 240 image), selecting the location of each after regions
have been grown from all previous points.

We also attempt to merge regions based on degree of pixel overlap. Each
region is examined with others that it abuts or overlaps, and regions are merged
if one of two thresholds are exceeded. The first of these is the percentage of pixels
that overlap - this value requires a significant overall similarity, and is generally
most useful in merging small regions. For merging larger regions, the likelihood
of a large percentage overlap is small, and so the threshold used is a total pixel
overlap. By using overlap rather than color separation as a basis for merging,
shadows can be properly joined to the objects that cast them, for example, or
glare to the objects the glare is placed upon, without having to set an excessively
high color threshold.

At this point, we have a collection of strong regions in each of the two images
(the top stereo pair in Figure 2). Each region is represented by a map between
the original image and the region (a set of boolean pixels where each 1 indicates
a pixel present in the image), as well as a set of region attributes: its size, mean
colour value, centroid, and a bounding box.

3.5 Region Simplification

The next step in providing useful visual information to a robotic rescue agent
is the matching of regions between a pair of stereo images. This, however, is a
complex process that can easily consume a great deal of the limited computa-
tional resources available. Our initial stereo matching process involved examining
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Fig. 2. Segmented regions (top), with convex hulls plotted and distance lines from the
centroid added (middle). Stereo-matched regions (bottom) are bounded by a colored
box, with a line emanating from the centroid of the image.

all pixels that could possibly represent the same region across the stereo pair,
requiring checking for a match between hundreds of pixels for each potential
match. We have considerably simplified this process by simplifying the structure
of the regions themselves, allowing us to match a much smaller set of data. This
process is analogous to smoothing noise out of an image before looking for edges.

We simplify regions by generating a convex hull for each, allowing us to replace
the set of points outlining the region with a simpler set describing a polygon P ,
where every point in the original point set is either on the boundary of P or
inside it. We begin with the boolean grid depicting each image. The exterior
points along the vertical edges (the start and end points of each row) are used
to generate a convex hull approximating the region using Graham’s Scan [6].
We form a representation for the convex hull by drawing radial lines at 5 degree
intervals, with each line originating at the centroid of the region and extending
to the hull boundary. The length of each such line is stored, allowing an array of
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72 integers to describe each region. The middle stereo pair in Figure 2 illustrates
the result of this simplification process.

3.6 Stereo Matching

Once an image has been segmented into regions and simplified, regions must be
matched across stereo images. Before simplifying regions, our original approach
was limited in that it required superimposing region centroids and matching pix-
els. This was particularly troublesome for large regions. With convex hull simpli-
fication, however, the efficiency of matching can be greatly improved. With each
convex hull, the very first stored value represents the distance from the centroid
to the hull boundary at the 0-degree mark. A comparison of the similarity of two
regions can then be easily performed by summing the squares of the differences
of the values in the 72 corresponding positions in the two arrays (implicitly su-
perimposing the centroids). Beyond greatly decreasing the number of individual
points to match, this representation allows time required to make a comparison
independent of region size. There is no particular threshold to a match - each
region is matched to its strongest partner in the corresponding stereo image.
We do, however, constrain matches for the purposes of maintaining accuracy by
forcing a match to be considered only after its appearance in three successive
video frames. This is particularly useful for noisy and poorly lit environments
such as USAR. The bottom stereo pair in Figure 2 illustrates the matching of
three regions between the raw stereo sample pair. The lines in each region are
used as an indication to a teleoperator the angle that one would region have to be
oriented to match the orientation of the other. That is, straight horizontal lines
require no reorientation. The use of these lines will be explained momentarily.

Since we are matching regions without regard to the location in the visual
frame, similar regions can be matched despite unreasonable spatial displacement.
This is equally true without employing convex hulls, and is part of the nature of
this domain. Because the robot is moving over very uneven terrain, cameras are
likely poorly calibrated, and as the domain is unpredictable, we cannot make
strong assumptions about the position of a region in each of a pair of stereo
images. If this were employed in a domain where such assumptions could be
made, the process could be made more accurate by strongly constraining the
distance between potential matches in regions in a stereo pair, thereby lowering
the number of potential matches that would have to be considered.

4 Performance

This system has been implemented and tested using an unmodified area in the
Computer Science department at the University of Manitoba. Spike, the robot
used in this project, is a one-sixth scale model radio-controlled toy car with rear
wheel drive (See Figure 3). The radio controller has been modified to allow the
vehicle to be controlled through the parallel port of any PC. The PC used, a
533MHz C3 Eden VIA Mini-ITX, with a 256Mb flash card, is carried in the
interior of the vehicle. For this hardware configuration, we developed our own
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Fig. 3. Spike, the mobile robot used for this experiment

miniaturized version of the Debian Linux distribution, refined for use on systems
with reduced hard drive space. The vision hardware consists of two USB web
cameras capable of capturing 320 by 240 pixel images. The cameras are mounted
on a servo that allows the stereo rig to pan in a range of plus or minus 45 degrees.

Figures 2 and 4 illustrate the matching abilities of this system. The raw image
shown previously results in 40 regions for the right image and 42 regions for the
left (including regions carried forward from previous frames). For applications
in teleautonomous vehicle control, we currently display to the operator only the
three strongest stereo matches present, in order to provide useful information
without cluttering the camera view. In the first sample match (the bottom image
pair in Figure 2), the three strongest image matches (as indicated by the colored
boxes surrounding the matched pairs) are all correct, despite the offset in images
due to the camera angle. Lighting in the area varies over time, resulting in
changes in the matched pairs. The second sample match (the top image pair in
Figure 4) illustrates a mismatch between two similarly shaped hulls. The line
emanating from the image on the right hand side indicates the angle by which
the right camera would have to be rotated for these shapes to match with a
similar orientation, allowing a teleoperator or autonomous system to judge the
likelihood of such an occurrence. The third image set (the bottom image pair in
Figure 4) illustrates a similar correct match, but with one different stereo pair
forming one of the three strongest matches.

We have observed very good improvement through the use of region simpli-
fications with no decrease in match accuracy. With all vision processing turned
off using the computational resources described above (that is, running only the
other control functions), we achieve a capture rate of 2.5-2.9 frames per second.
Activating region matching (including all phases described above) using convex
hulls as the basis for a match results in a frame rate of 2.3-2.5 fps, while not
employing convex hulls results in a frame rate of only 1.5-1.8 fps. We are cur-
rently investigating methods for speeding up this process further. In particular,
the matching of regions is computationally expensive because the stereo system
is entirely uncalibrated at the moment. Therefore, each region must be compared
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Fig. 4. Demonstration of matching in an unknown environment. The top pair shows a
spatially incorrect match, while the bottom pair shows a different match than Figure 2.

against all other regions. By adding at least a rough calibration, some of these
comparisons can be avoided: for example, matching regions with extremely large
of spatial disparities are unlikely even in a USAR environment.

5 Conclusion

This paper has described our approach to stereo vision matching, which forms
the basis of visual perception for both autonomous and teleoperated robots.
With the region-based object extraction and stereo matching implemented, the
ground work is laid for the use of higher level facilities employing stereo vision.
These include 3D scene interpretation, mapping, localization, and autonomous
control, some of which we have already employed in systems that use single-
camera vision [3, 2].

The next step in this ongoing development is to include elements of camera
calibration suitable for the USAR domain. The goal is to design a self-calibrating
system that can produce the Fundamental Matrix without human interaction
[10]. The Fundamental Matrix allows the object matching search to be con-
strained to a single line, rather than the entire image. This will improve the
running time and accuracy of the stereo pair matching process. Parallel to this,
we intend to replace the elements of vision based sensing in our autonomous sys-
tems with stereo vision using this approach. This will involve taking the matched
stereo pairs and calculating the distance to each object found in the images by
measuring the disparity observed in each image. Once the set of objects have a
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distance associated with them, these will serve as the basis for map generation
(which is currently performed by using ego-motion detection across the entire
image), which in turn will support better localization and path planning.

The research presented in this paper represents a core component in the devel-
opment of vision to support autonomous and teleoperated processing in complex
domains such as USAR. It is also applicable to many other domains, and indeed,
will be even more efficient in domains where assumptions about lighting, color
calibration, and predictability in the environment can be made.
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Abstract. UCHILSIM is a robot simulator recently introduced in the RoboCup 
Four Legged League. A main attractive of the simulator is the possibility of re-
producing with accuracy the dynamical behavior of AIBO1 robots as well as 
providing good graphical representations of their surroundings on a soccer sce-
nario. Learning over virtual environments can be performed with successful 
transfers of resulting behaviors to real environments. Previous version of the 
simulator had a major drawback: Only the UChile1 team could make use of it 
since the developed system had high dependency on the team code. In this pa-
per we present results of a development work which was envisioned on the first 
presentation of UCHILSIM; an application interface for allowing any OPEN-R 
software code to be directly used over the UCHILSIM simulator. The possibil-
ity of having this kind of tool opens a great field of developments and chal-
lenges since more people will develop OPEN-R software, even without having 
the robotic hardware but the simulator. Other recent improvements on our simu-
lator are briefly presented here as well. 

1   Introduction 

Simulation is becoming a hot topic on robotics. An increase in the number of simula-
tion related publications can be observed over the main journals of the field. New 
robotics simulators are emerging into the field either for research or commercial ap-
plications, ranging from general purpose simulators to specifics to certain robotic 
task, such as grasping or arm soldering trajectory design. New developments on ro-
botic simulators are being recognized by the research community, examples of these 
are the robotic grasping simulator GraspIt! [7] that won the NASA Space Telerobotics 
Cool Robot of the week prize on February 2002, the general purpose robotic simulator 
WebBots [6] that recently won the second place on of EURON2 Technology Transfer 
Award, and a publication related to our UCHILSIM simulator won the RoboCup En-
gineering Challenge Award on RoboCup 20043.  

                                                           
1 AIBO and OPEN-R is a trademark or registered trademark of Sony Corporation. 
2 EURON is the European Robotics Research Network, http://www.euron.org 
3 The robot soccer world federation http://www.robocup.org 
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Under our perspective the main attractive of simulation in robotics is to enhance 
learning, although this doesn’t seems to be the main reason for its current expansion 
on the field. Industrial robots on the automotive industry for example offer simulators 
of their products which allow users to get familiar with them by practicing their kine-
matics before running the real hardware. Researchers use simulators for testing new 
approaches on arbitrary scenarios and to use multiple robot agents without having the 
actual hardware. Applications of simulation on this field are very broad, and the gen-
eration of good simulators is being enforced by the increase on computer power as 
Moore’s law establish [8], as well as the exponential improvements on graphics 
hardware power [4]. Main criticism to robot development under simulation given by 
Brooks [2] several years ago cannot still be defended while facing the current 
achievements of computer simulations. But overall a main justification to fight to-
wards simulation on robotics is given by the emerging supporting theories such as the 
Theory of Mind [9]. The authors have also proposed some theoretical basis such as 
Back to Reality [14].  

Towards Improving Our Simulator 

UCHILSIM [12] is a dynamics robotic simulator introduced for the RoboCup Four 
Legged League; the simulator reproduces with high accuracy the dynamics of AIBO 
motions and its interactions within a soccer scenario. The simulator has shown to be a 
useful tool for learning into virtual environments with successful behavioral transfers 
to reality. In  [13] experiments are shown on the generation of dynamics AIBO gaits 
form simulation to reality, in [14] experiments are presented about learning to kick 
the ball using the Back to Reality approach and the UCHILSIM simulator.  

We believe that this is a relevant kind of tool to promote on future developments of 
RoboCup. Aiming at improving further our simulator such that it can become a gen-
eral use platform for the four legged league, we have generated a list of main re-
quirements to fulfill by a simulator: (1) Use a generic and flexible definition of robots, 
(2) allow to incorporate other user defined objects into the simulation, (3) allow mul-
tiple robots to share a common virtual environment, (4) use of different robotics plat-
forms, (5) use a fast and realistic dynamics engine, (6) provide good graphics and 
visualization methods for the desired task, (7) use a fast and robust collision detection 
system, (8) provide good programmatic interfaces in order for anybody to use the 
system, and (9) run over multiple host platforms. Prior to this publication UCHILSIM 
satisfied points 1 to 7, however there was no programmatic interface for allowing any 
generic OPEN-R software to run over UCHILSIM.  This paper deals precisely with 
this point. Here we present an application interface for the UCHILSIM simulator 
which will allow spreading the use of this tool.  

The reminder of this paper is as follows, section 2 present the implemented inter-
face for UCHILSIM, section 3 present examples of using and testing this interface, 
section 4 discuss possible applications of this tool, on section 5 we describe briefly 
some recent improvements on the simulator and finally on section 6 we present con-
clusions and envision future challenges for this system. 
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2   An Application Interface for UCHILSIM 

The UCHILSIM simulator has been restricted to the use of the UChile1 RoboCup 
four legged team. This restriction was expressed on the form of several code depend-
encies among the simulator and the team source code. In order for any OPEN-R de-
veloper to make use of the simulator it would have involved rewriting a large amount 
of code for each particular application. 

The idea of building an interface for the simulator was announced on the first 
UCHILSIM publication [12], however there were just some ideas at that time. Among 
these ideas we considered first to construct a simulator programmatic interface by 
writing a large number of primitive functions for accessing the simulated hardware 
similarly as one does when using the OPEN-R Sony Software Development Kit [10]. 
Writing such programmatic interface would have been almost equivalent to generate a 
complete SDK for our simulator. A main drawback of this approach is that it would 
involve for any user to rewrite its particular application using the set of functions 
provided by a parallel SDK.  Fortunately we found another alternative at a lower 
level, before going into its details we should describe briefly the OPEN-R SDK for 
which it was implemented. 

 

Fig. 1. Diagram showing how the OUChilSimComm and the UChilSimComm interface objects 
exchange command, sensor and image data trough the network 

2.1   Description of the Target SDK 

The OPEN-R SDK is an interface proposed by Sony in order to promote the devel-
opments of robots software and hardware, refer to [10]. The interface enhances the 
development of modularized pieces of software which are called OPEN-R objects. 
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The objects are implemented as independent processes which run concurrently and 
intercommunicate by means of messages. The connections among objects are de-
scribed by communication services described on a boot time readable file. This is a 
very important characteristic since it allows objects to be replaceable components at 
an operative level.  

Under OPEN-R the interface to the system layer is also implemented by means of 
inter object communication. There is a specific object provided on OPEN-R called 
OVirtualRobotComm which is in charge of providing a low level driver interface of 
data with the robot hardware by means of exchanging command, sensor and image 
data with other objects, this relation is established trough the same configurable 
communication service file.  

2.2   Description of the New Interface 

The idea is to replace the low level object interface OVirtualRobotComm provided 
under OPEN-R by another OPEN-R object designed for interfacing data with a simu-
lated robot under UCHILSIM instead of a real robot. The interface object that we 
have developed is called OUChilSimComm. This object is designed to run either over 
an AIBO robot or on a host computer by using OPEN-R Remote Processing [10]. 
Although this object runs embedded in the space of OPEN-R objects, it should inter-
change data with the UCHILSIM simulator which runs on a host computer. This 
communication is performed by network TCP/IP connection among OUChilSim-
Comm and an interface developed at the simulator side. We call this interface as 
UChilSimComm. Figure 1 shows a diagram of the relations among these interface 
modules. Command data is collected at the OUChilSimComm module and then dis-
patched to the simulator across the network; similarly sensor data and image data are 
packed by the UChilSimComm interface at the simulator side using fixed sized data 
structures. Then data is exchanged using TCP/IP connections either across platforms 
or over the same host machine (using the local host IP). There are many choices for 
implementing that since OUChilSimComm runs over the robot or on a host computer 
as well as the other OPEN-R modules. 

 
Data Structures and Packets: The interface between the module and the simulator 
uses two different and independent network connections, one for the sensor and image 
data and another for the command data. Data packets used for image and sensor data 
are of fixed length while packets used for transmitting command data are of variable 
length. OUChilSimComm maintains a buffer of sensor and image data which is con-
stantly updated with data coming from the simulator. This data is dispatched to the 
calling objects as requested. The command data which is received from the objects is 
immediately dispatched to the simulator. The following is a description of each data 
flow and how the structures are arranged. This structures slightly differ depending on 
the robot model being used (ERS7/ERS210). 
 
Sensor Data: The digital sensor data is generated at UCHILSIM with a similar rate as 
the existing on the real robot. After each dynamic integration step, the actual joint 
sensor values are collected from the virtual robot joints. Simplistic values are given to 
the acceleration sensors, as well as for the switch sensors. A data transmission packet 
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is filled with all these values containing a header with timestamps related to the data. 
When the packet is received by the OUChilSimComm object a OSensorFrameVec-
torData OPEN-R structure [10] is constructed by calling the corresponding data con-
structor provided with OPEN-R, and then filling the corresponding fields with the 
incoming data. If this data structure is requested by other objects then it is dispatched, 
otherwise the data is stored into a limited size buffer.  
 
Image Data: The digital image data is generated at UCHILSIM with a similar rate as 
the existing on the robot camera. After each new YUV image frame is acquired from 
the simulator a data structure equal to OFbkImage [10] is generated, and then the data 
is split into three packets for the simplicity of network transmission, each packet con-
tains their corresponding time stamps and sequence identifiers. When the packet is 
received by the OUChilSimComm object the OFbkImage structure is reconstructed 
and then the OFbkImageVectorData [10] structure is updated by directly incorporat-
ing OFbkImage data. The OFbkImageVectorData is constructed by using an existing 
OPEN-R constructor.  

 
Command Data: The commands are generated by any running OPEN-R object and 
then transmitted to the OUChilSimComm module. The OPEN-R data structure which 
contains these data is OCommandVectorData [10]. Once this structure is received the 
task of OUChilSimComm is to extract the joint command reference values and timing 
data, disregarding any LED command. Then a transmission packet is generated con-
taining a header which indicates command type, number of data frames and timing 
data. When the packet arrives UCHILSIM (trough UChilSimComm interface), the 
corresponding joint commands are executed as position references for the motors 
located at each joint, these reference values are taken by the corresponding PID con-
troller located at each simulated joint.  

3   Using and Testing the Interface  

As it can be seen the interface is implemented at the system level rather than at the 
programmatic level, and therefore the developers don’t need to perform modifications 
on their code, just to re define the communication services and to recompile their own 
code to the host computer in case this is desired to be used. The user should modify 
the stub.cfg file replacing the OVirtualRobotComm service connections with the 
OUChilSimComm service. Then on the target directory it should make sure that 
CONECT.CFG file contains the right connections.   

From the interface side, a configuration file should be updated indicating the corre-
sponding network connections where the robot and UCHILSIM process are located. It 
should also be specified the corresponding robot model.  

The presented interface has been successfully tested with the simple source code 
examples provided with OPEN-R, such as MovingLegs7 [10]. The test was performed 
running all processes on a single host computer (2.5 GHz processor, 512 Mb ram, no 
graphics accelerator).  We have also tested our own source code by applying simple 
vision related tasks such as ball following behaviors.  
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4   Possible Applications of This Tool 

We believe that one of the major applications of this type of tool is that it will allow 
more developers to enter RoboCup and in general to program software for robots by 
directly using OPEN-R without having to access directly the robot. Another main 
advantage of this tool is to accelerate developments into the four legged league by 
providing a standard test bed for new ideas. Certainly with this simulator it is no 
longer necessary to worry about destroying the hardware or even about the long time 
required for specific experiments. Since any OPEN-R code can be used, with this 
application interface team code can be evaluated using more statistically proven 
strategies  such like making two teams to compete for very long trials, this kind of 
tool can be established as a standard way of testing code prior to real competitions for 
example. It is also important to test and to compare specific parts of team code espe-
cially given the trend of the league on the modularization and specialization on the 
functions of vision, localization and strategy. Since the interface is based on the idea 
of modular objects which can communicate along a network it is possible to have 
extensive distributed systems which share a common dynamical environment. This 
can be even extended to the use of Internet. The idea of parallelism can be exploited 
further and we can use parallel computing for example for evolving team behaviors.  

5   Other Recent Improvements on UCHILSIM 

Multitasking and Task Scheduling: An important limitation of the simulator was 
the high processor consumption due to graphics. Therefore we have implemented 
separated processing threads on the simulator, one is specific for the graphics and the 
other is specific for the dynamical computations. This allows us to have always fast 
dynamics while having just a best effort result over the graphical representation. A 
consequence of this is that the graphics seen by the user might appear blinking when 
the window size is too large; however there is always good speed for the dynamics.  
Eventually the graphic representation can be totally disconnected from the simulation; 
this might be useful for experiments on which there is no need of having the robot 
camera, such as offline locomotion learning tasks. Another implemented alternative is 
to have hard control of the different tasks such as graphics and dynamics computa-
tions which should be executed. In this respect we have implemented a task scheduler 
which allows us to control specific timings for the different tasks.  

 
Graphics and Mesh Improvements: We have incorporated the computer graphics 
technique of Shadow Volumes [11]. The attractive of this technique is that it allows 
producing precise shadows on real time. Since overlapping shadows generate areas of 
varying intensities this allows to reproduce the effect that can be observed when we 
have strong sources of light over the soccer scenario; the robot produce shadows in 
the directions opposite to the different sources of light. Figure 2 shows some exam-
ples of using this technique. Other improvements that we have introduced, proposed 
in [1], are CMOS filters and introduction of camera aberration over the AIBO lenses. 
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We have implemented an tested also a set of offline tools for optimizing the robot 
meshes which are provided by Sony. In particular the interest for the simulator is to 
have representative and simple shapes for collision detection. By using the quick hull 
algorithm4 in conjunction with the GLOD library [3] we are able to considerably 
reduce the amount of points which are used for describing a given shape. Figure 2 
shows result of applying this tool, a given limb segment originally consist of 178 
vertex, after applying convex hull we get a model of  84 vertex, finally after applying 
GLOD tools we get just 68 vertex on our model. 

  
(a) (b) (c) 

  

(d) (e) (f) 

Fig. 2. Mesh improvements on a portion of the ERS-7 robot leg, on (a) the original mesh is 
presented, (b) is the result of computing the convex hull of the mesh and finally (c) shows the 
result of reducing the level of detail by using GLOD library tools. On (d) and (e) examples are 
shown of the implementation of the Shadow Volumes CG technique. On (f) a screenshot of the 
new website of UCHILSIM is shown.  

6   Conclusions and Further Challenges 

It was presented an application interface for the UCHILSIM simulator. We envision 
the arrival of new challenges related to the optimization of this tool and the use that 
other teams might give to it. From our team perspective there are still some tasks to 
fulfill; these are the development of a networking interface, improvement of sensor 
models and probably a sound interface. People at our group for example is currently 
quite motivated on performing experiments with distributed simulation using parallel 
computing for producing behavioral learning over  large search spaces.  

                                                           
4 please refer to http://www.qhull.org 
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Abstract. This research presents the design and implementation of the 
intelligent autonomous parking controller (APC) and accomplishes it in a car-
like mobile robot (CLMR). This car possesses the function to accept and 
estimate the environment by integration of infrared and ultrasonic sensors. We 
propose five parking modes including parallel-parking mode, a narrow path 
parallel-parking mode, garage-parking mode, a narrow path garage-parking 
mode, and none parking mode. And the CLMR can autonomously determine 
which mode to use and park itself into the parking lot. Finally, it is perceived 
that our intelligent APC is feasible from the practical experiments. 

1   Introduction 

In recent years, an increasing amount of the CLMR researches has focused on the 
problem of autonomously parking and avoidable collision. The parking problem of 
the car-like mobile robot consists of finding the parking lot and planning the 
trajectory for parking. Basically, the parking problems can be classified into two 
categories: garage-parking problem and parallel-parking problem [1-20]. In this 
research, we propose an autonomously parking control base on the fuzzy logic control 
(FLC). In this control we fuse the measurements of infrared sensor and ultrasonic 
sensor as the inputs of the FLC. 

To solve the problem of the path-planning from the usage of sensor point of view, 
An et al. [8] develop an online path-planning algorithm that guides an autonomous 
mobile robot to a goal with avoiding obstacles in an uncertain world with a CCD 
camera, and Han et al. [21] use the ultrasonic sensor to build the environment about 
the car, follow a moving object and avoid the collision. 

For parking control, [18] utilizes the CCD camera to detect the global vision of the 
parking lot, [19] adopts six infrared sensors to measure the relative distance among 
the CLMR and the surroundings, and [20] uses the sensor fusion techniques to 
combine the ultrasonic sensors, encoders, and gyroscopes with a differential GPS 
system to detect and estimate the dimensions of the parking lot. In this paper, we want 
to integrate the information of the ultrasonic and infrared sensors to measure the 
parking environment. 

Fuzzy set theory is arisen from the desire of linguistic description for complex 
system and it can be utilized to formulate and translate the human experience. This 
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kind of human intelligence is easily represented by the fuzzy logic control structure. 
Most advanced control algorithms in autonomous mobile robots can benefit from 
fuzzy logic control. In this paper, the CLMR equips with infrared and ultrasonic 
sensors. We fuse the measurements of the two kinds of sensors on the car to obtain 
the information in an unknown environment, and utilize this information to determine 
the velocity and the steering angle of the car by the proposed FLC. 

This paper is organized as follows. In Section 2, parking lot measurement, 
kinematic equations, and the FLC for garage parking and parallel parking are derived. 
The parking lot measurement can help to decide the trajectory of the CLMR. Section 3 
addresses the hardware architecture of the CLMR that consists of the following four 
parts, CLMR mechanism, FPGA module, sensor module, and electronic driver 
module. Experimental results about the intelligent APC in different modes are given 
in Section 4. Section 5 concludes this paper. 

2   Design of APC 

The main advantage of the study is that the developed APC can park the car 
successfully, though the absolute coordinates of the car and parking lot are unknown. 
Fig.1 presents the appearance of the CLMR and the top view and the sensor 
arrangement of the CLMR. 

In the beginning, we address the fuzzy wall following control (FWFC) problem. 
By the FWFC in [19], the dX  and eX  are the inputs and φ  is the output of the FLC. 

dX is the distance between the CLMR and the wall that is defined in equation (1), and 

eX  is the sloping angle of CLMR that is described in equation (2). In this paper, we 

introduce a new variable X, which is the sum of dX  and eX , to reduce the number of 

fuzzy if-then rules. The corresponding rule table is listed in Table 1. Fig. 2 indicates 
the member functions of the input and output of the FLC.  

1dX Right dis= − (1)

1 2eX Right Right= − (2)

d eX X X= + (3)

Fig. 1. (a) The appearance of the CLMR (b)Top view and the sensor arrangement of the CLMR 
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where 1Right  is the information of the right front infrared sensor, dis  presents the 

safety distance of the CLMR, and 2Right  is the information from the right rear 

infrared sensor. 

 
(a)                                  (b) 

Fig. 2. (a) Fuzzy membership function for the CLMR in put X (b) Fuzzy membership function 
for the CLMR output φ  

Table 1. Fuzzy rule table of the steering angle 

Antecedent part Consequence part 
NB NB 
NS NS 
ZE ZE 
PS PS 

If X is 

PB 

then φ  is 

PB 

 
Fig. 3. Flow chart of mode detection 

In order to autonomously park the CLMR, the parking lot detection is an important 
issue. In this paper, we consider five parking modes for the CLMR. The flow chart of 
mode detection is shown in Fig. 3, where the WR is the width of the CLMR and LR is 
the length of the CLMR. In fact, three parking conditions are included and will be 
examined as follows.  
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Case 1: Parallel-parking condition  
The basic constraints are 
(WR<Right 1<1.5WR) and (1.2LR< URF<1.5LR). 

In this case, there are two modes should be considered. One is parallel-parking mode 
and the other is a narrow path parallel-parking mode. At first, we explain the parallel-
parking mode, which is showing Fig. 4(a). For backward parking, the CLMR passes 
though the parking lot a little distance once the sensors have detected the parallel-
parking lot. Then we turn the steering wheel to the right end and drive the car 
backwards. If the rear and Right 2 infrared sensors detect the CLMR is entering the 
lot then the CLMR will turn the steering wheel to straight until the front infrared 
sensor detect the wall. Then we make the steering wheel turn left until the rear sensor 
detect the wall is close to the safety distance or the car is parallel to the wall. Now, we 
discuss how to execute a narrow path parallel-parking mode. In this mode, we not 
only use the same parallel-parking mode but also consider the left sensors’ 
information to avoid colliding with the wall. If both the left 1 and 2 sensors measure 
the distance between the left wall and the car is less than 0.7 WR, which means that 
there is not enough distance for the CLMR to turn round, and then we terminate the 
parking mission.  

Case2: Garage-parking condition  
The primary conditions are  
(WR<Right 1<1.5WR) and (1.2LR< URM<1.5LR) and (1.5WR<Right 2) 

In this situation we also consider two modes. One is the garage-parking mode, which 
is depicted in Fig. 5(a), and the other is the narrow path garage-parking mode. The 
detection of the garage-parking condition is accomplished by combining three 
sensors. At first, Right 1 sensor can detect whether a parking lot exists or not. And if 
both the measurements of the ultrasonic sensor URM and the infrared sensor Right 2 
satisfy the constraint 1.2LR< URM<1.5L and 1.5WR<Right 2, then one can conclude 
that the parking lot is deep enough to execute the garage parking and there is not any 
obstacle or car in the parking lot. For garage-parking control, we turn the steering 
wheel left and move forward a little distance as the Right 2 sensor detects that the 
CLMR passes the parking lot. Then, we turn the steering wheel right and move 
backward to the garage. As the Right 2 and Left 2 detect the CLMR enters the garage 
then the CLMR turn the steering wheel to straight and move backward until the rear 
sensor detects the CLMR is close to the safety distance. If it is not in the center 
position then goes forwards and backwards by using the FWFC. For narrow path 
garage-parking control, the basic concept is the same as that of the narrow path  

Fig. 4. (a) Parallel- parking mode. (b) None parking mode. 
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Fig. 5. (a) Garage- parking mode. (b) None parking mode. 

parallel-parking control. That is, suppose the Left 1 and 2 sensors find that the 
distance between the left wall and the CLMR is less than 0.7 WR, then we stop the 
parking command. 

Case 3: None parking condition  
It is seen in Fig. 4(b) and Fig. 5(b) that the CLMR notice there is a car in the parking 
lot. In these cases, we call the CLMR is in none parking condition. We stop the car 
once it passes though the parking lot. 

3   Hardware Architecture 

The CLMR consists of the following four parts, CLMR mechanism, FPGA module, 
sensor module, and electronic driver module. The CLMR mechanism includes car 
body, driving motor, and steering motor. The car body is a 1/10th scale four-wheeled 
mobile robot vehicle with rear wheel drive system and front steering wheels. The 
robot carries FPGA board, daughter board and battery. 

The FPGA module is the Altera FLEX 6000 family. The Altera FLEX 6000 
programmable logic device (PLD) family provides a low-cost alternative to high-
volume gate array designs. The FPGA utilizes these information come from the 
sensor module to determine the velocity and the steering angle of the car. 

The sensor module contains six infrared sensors and four ultrasonic sensors. All of 
them are reflection sensors, so we need the reflective object. The specifications of the 
infrared sensor (UF55MG) are: measurement range 50~500mm, input volt 20~30V, 
output volt 0~10V, response time 10ms, and opening angle 12 .

Because the measurement rang of the infrared sensor is only 50mm~500mm, we 
can not measure obstacle out of this range. For this reason, the ultrasonic sensors 
(6500 Sonar Module) are adopted in the CLMR. The 6500 Series is an economical 
sonar ranging module, with a simple interface, is able to measure distances from 6 
inches to 35 feet. 

The electronic driver module consists of a STL293D DC motor driver IC and a 
FPGA. The STL293D IC is assembled in a PCB board to drive the DC motor to 
change the speed of the rear wheels. We employ the FPGA to generate PWM 
signal to drive the DC servomotor to control the steering angle of the front 
wheels. 
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4   Experiment 

Fig. 6 shows that the developed CLMR can detect there is a parallel-parking place and 
perform the parallel-parking control successfully. Fig. 7 illustrates the CLMR can  

1 2 3 4

5 6 7 8

Fig. 6. Experimental results of the parallel-parking control 

1 2 3 4

5 6 7 8

Fig. 7. Experimental results of the garage-parking control 

(a)

(b)

1 2 3 4

1 2 3 4

Fig. 8. None parking case: (a) Obstacle in parallel-parking lot, (b) Obstacle in garage-parking lot 
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detect the existence of a garage-parking place and successfully execute the garage-
parking control. Experimental results depicted in Fig. 8 demonstrate that there are 
obstacles in the parking lot, and then the CLMR can just pass the parking lot and stop. 

5   Conclusion 

In this paper, we have succeeded in solving the parking problems by the proposed 
intelligent APC on the basis of the infrared and ultrasonic sensors. Five parking 
modes have been developed in the APC and realized in the FPGA chip. The 
developed scheme can be also applied to a real car if it equips with these sensors and 
the FPGA or micro processors. For future study, we want to set up the CMOS sensor 
on the CLMR. The CMOS sensor does not need the reflective object and can get more 
information about the environment. 
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Abstract. In this paper the architecture of a 4 legged soccer robot is divided 
into a hierarchy of behaviors, where each behavior represents an independent 
sense-think-act loop. Based on this view we have implemented a behavior-
based vision system, improving performance due to object-specific image  
processing, behavior-specific image processing and behavior-specific self local-
ization. The system was tested under various lighting conditions, off-line using 
sets of images, and on-line in real tests for a robot in the role of goalkeeper. It 
appeared hat the performance of the goalie doubled, that it could play under a 
wider range of lighting and environmental conditions and used less CPU power.  

1   Introduction 

Soccer playing robots are the playground to gain experience with embodied intelli-
gence. The software architectures of those robots can serve as an example for more 
complex embedded systems. Those designs are often built around a single sense-
think-act cycle, as presented in Fig. 1a. Here, e.g. an image processing group solves 
the sense task, the control theory group solves the act task, an AI group solves the 
think task, whereas software and mechanical engineers take the responsibility over the 
overall software and mechanical hardware design and maintainability. After an initial 
architecture phase, interfaces are quickly established and all groups retract to their 
own lab to solve their part of the problem, thereby often making assumptions what is 
or should be done by the others. Data is “thrown over the wall” to the others who 
have to cope with it. As those embedded systems increase in complexity over the 
years, the software and hardware complexity grows, and all groups start to make their 
system part versatile and robust and hence complex. Then, to cope with that, they start 
to locally optimize their parts, making sources even more obscure. From 1991 onward 
it was suggested [1,2,3] that a different layered modular architecture should be fol-
lowed in the sense that higher layers control the lower layers, by invocation actions 
from the lower layers or by promoting or suppressing behaviors from the lower lay-
ers, i.e., on the lowest level on the hardware devices. To program all behaviors of a 
system that - without tedious recalibration - functions under al circumstances on any 
setting, is like maintaining a house of cards. One cannot foresee all possible states in 
which the system might end up in the future. 

With growing complexity of the modules and the limited time students have for 
their graduation, RoboCup students mostly do not understand the full complexity of  
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Fig. 1.  Architecture based on: a) scientific disciplines b) required behaviors 

the existing modules; so often their new software ruins or hinders good functionality 
elsewhere in the code, they start anew from scratch forgetting past lessons, or they 
build extra features from which the impact on the total system is not and cannot be 
overseen. In industrial embedded system projects, this is often not different! To cope 
with this, we have set-up a new software architecture for the Dutch AIBO Team 
(DAT) based on a hierarchy of modules in which each module is a separate relatively 
simple sense-think-act loop. See Fig. 1b. In the end we aim for a pluggable architec-
ture in which it is relatively simple for students to understand the modules, to replace 
them with better ones or to add functionality by adding modules. The drawback of 
this approach is that we need students that need to understand the principles of image 
processing; mechanical engineering, control theory, AI and software engineering. 

2   Behavior Based Vision 

2.1   Advantages and Expected Performance Improvements 

In this paper we show that a hierarchy of simple sense-think-act modules (Fig. 1b) 
performs better than an architecture based on monolithic modules (Fig1.a). To prove 
this, we changed the software of the goalkeeper of the Dutch AIBO team 2004 
(DT2004) [10] and measured the differences with the NEW software for our goalie. 
As benefits we expect: 

1. That each (sense-think-act) module is simpler and hence can be better un-
derstood and used to design new behaviors (copy-past-modify). 

2. That effectively less and less complicated code is running in the new situa-
tion. We proved that this is true and that we made CPU cycles free. 

3. That our goalkeeper performs better and more robust. The new software 
prevented more goals then the old software and, moreover, under a variation 
of lighting conditions. This was due to the capability of the goalie to localize 
itself better and more robust. And this was due to: 

a. Behavior specific self localization. 
b. Behavior specific image processing, or: 

i. Only search objects that you need to see for your task 
ii. Only search for objects at the place you expect them to see 
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c. Object specific image processing, or: 
i. process them using the shape knowledge over that object  

ii. process them using the color knowledge over that object. 

2.2   Behavior Specific Processing Tools 

To prove hypotheses 3 we used behavior-based vision to realize a goalie that can 
perform better and more robust. Fig. 2 is an implementation of Fig. 1b applied to the 
goalkeeper.  For this role we can identify its basic behaviors. These are controlled by 
a meta-behavior that may invoke them. We will call this the governing behavior. 

Fig. 2. Cut-out of the hierarchy of behaviors of a soccer AIBO, with emphasis on the goal-
keeper role. Each behavior (e.g. go to goal) is an independently written sense-think-act loop. 

Fig. 2 also shows that the cognition system of the robot is split into a vision system 
using grids and color tables [5] and a Monte Carlo self locator [6, 7] or particle filter. 
We have implemented our behavior-based vision on a Sony AIBO ERS-7 of the 
Dutch AIBO Team (DT2004) [4].We have implemented a behavior based architecture 
[8] by adding the following features: 

• Behavior-specific self localization 
    When a robot is positioning (e.g. a goalie standing in the goal, or a field player 

walking around), the sensor input is qualitatively high and accurate localization is 
our aim; hence we use a fast update of the particles. When a robot is handling a 
ball, the sensor input is qualitatively low and the updating of the robot’s pose is 
less urgent; hence we use a slow update of the particles. 

• Behavior-specific image processing 
    Per behavior we only execute the image processing algorithms for detecting objects 

that are most likely to be seen, or that can be measured with high accuracy. A 
goalie guarding its goal, can most accurately and likely detect the lines of the goal 
area and its own corner flags. These objects are near and it is likely that they will 
not be occluded by opponents, which is the case for the opponent's goal and flags. 
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The drawback of this is that the robot can get stuck in a local loop, when making a 
wrong assumption about its position. A background process (at a lower pace) must 
detect this. 

• Object-specific image processing  
    We use the type of objects, (goals, flags), color of objects (blue/yellow goal), and 

size of objects (far/near flag). For each type of object we define a specific grid,
color-table and specific size. For each object we use a specific color look-up table 
(CLUT). CLUTs have to be calibrated [9]. Here we only calibrated the CLUT for 
the 2 or 3 colors necessary for segmentation. This greatly reduces the problem of 
overlapping colors. For each object we know its preferred size in order to be of in-
terest. E.g., we might in some circumstances not be interested in a corner flag far 
away. 

       a)                 b)                                                c)  

Fig. 3. Object-specific image processing: a) for line detection we scan the image below the 
horizon, using a green-white color table; b) for yellow flag detection we scan above the horizon 
using a yellow-white-pink color table; c) 2 lines and 1 flag detected in the image 

2.3   The Basic Behaviors of a Goal Keeper and Its Behavior Based Processing 

For the goalkeeper role we can identify 3 basic behaviors. They are: 

    - Goalie-return-to-goal. When the goalie is not in his goal area, he has to return to 
it. The goalie walks around scanning the horizon. When he has determined his own 
position on the field, the goalie tries to walk straight back to goal - avoiding obsta-
cles - keeping an eye on his own goal. The localization relies on the detection of 
the own goal, detected line-points and detected border-points (no Hough-transform 
is used). The two own corner flags are also used for localization. All sensor input is 
used in a particle filter in which a detected own goal is used twice when updating 
the particles. 

    - Goalie- position. The goalie is in the centre of its goal when no ball is near. It 
sees the field-lines of the goal area often and at least one of the two nearest corner 
flags regularly. Hough transforms on detected line-points are used to calculate the 
distance and angle to the field lines. Detection of the own flags is based on a grid 
above the horizon, a 3-color LUT, and rejecting candidates that are too small. An 
orange/white/green color table was used for ball- and line detection. A particle fil-
ter was used that localized only on the detected lines and flags. A background 
process verifies the “in goal” assumption on the average number of detected lines 
and flags.
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 a) b) c) 

Fig. 4. Basic goalie behaviors: a) Goalie-return-to goal, b) Goalie-position, c) Goalie-clear 
ball. For each behavior a different vision system is used and a different particle filter setting. 

    - Goalie-clear-ball. When the ball comes near, the goalie-clear-ball behavior is 
switched on, meaning that the goalie is defending the line between ball and the 
center of the goal. The closer the ball comes to the goal area, the less time there is 
for the goalie to verify with the vision system where the center of the goal is. The 
goalie will gradually rely more on odometry than on vision. If the ball enters the 
goal area, the goalie will clear the ball. Walking to and controlling the ball, the 
quality of the vision input is very low. Although the same image processing is used 
as in goalie-position-behavior, the particles in the self-locater are updated much 
slower. Flags and lines detected at far off angles or distances are ignored. 

3   Performance Measurements 

3.1   General Setup of the Measurements 

To prove our hypothesis 3, we have performed measurements on the behavior of our 
new goalie. Our test is twofold:

1. How fast can the new goalie find back his position in the middle of the goal on 
a crowded field in comparison with the old goalie 

2. How many goals can the new goalie prevent on a crowded field within a cer-
tain time slot in comparison with the old goalie 

As our improvements are due to three measures we have taken, we would like to 
know the contribution of each of the measures to the final result, i.e.; 

a. Object-specific image processing 
b. Behavior-specific image processing 
c. Behavior-specific self localization.  

3.2   Influence of Object-Specific Image Processing 

We compared the DT2004 code with a general version of our NEW code. The latter 
does not (yet) use behavior specific image processing nor self-localization. However, 
it does use object specific grids and color tables. The tests consisted of searching for  
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the goals, the flags, and all possible line- and border-points. The images were  
captured with the robot’s camera, under a large variety of lighting conditions. For the 
DT2004 code, a single general CLUT was calibrated for all colors that are meaningful 
in the scene (blue, yellow, white, green, orange and pink) taking 3 hours. For the 
NEW image processing code we calibrated five 3-color CLUTs (white- 
green lines, blue-goal, blue-flag, yellow-goal, yellow-flag). This took 1 hour for all 
tables. 

For all image sequences we counted the number of objects detected correctly (N
true) and falsely (N false). We calculated the correctly accepted rate (CAR), being the 
number of objects that were correctly detected divided by the number of objects that 
were in principle visible. Table 1 shows the results on detecting flags and lines. It 
shows that the performance of the image processing largely increased. The correctly 
accepted rate (CAR) goes up from about 45 % to about 75%, while the number of 
false positives is reduced. The correctly accepted rate of the line detection even goes 
up to over 90%, also when a very limited amount of light is available. 

Table 1. The influence of object-specific algorithms for goal, flag and line detection 

Goals and flags DT200
4

  NEW   DT2004 NE
W

 N true  CAR 
(%) 

N false N true CAR  
(%) 

N false Lines 
 (%) 

Lines 
(%) 

1 flood light 23 19 0 65 54 0 18 94 
Tube light 54 45  9 83 83 1 58 103 
4 flood lights 86 72  0 99 99 0 42 97 
Tube +flood lights 41 34 1 110 92 0 24 91 
Tube,flood+natural 39 33  0 82 68 0 42 91 
Natural light 47 39  0 68 57 0   
Non calibration set 131 44 28 218 73 16   

3.3   Influence of Behavior Based Vision 

Below we show the performance improvement due to behavior based switching of the 
vision system and the self localization algorithm. We used the following scenarios: 

• Localize in the penalty area. The robot is put into the penalty area and has to return 
to a predefined spot as many times as possible within 2 minutes. 

• Return to goal. The robot is manually put onto a predefined spot outside the pen-
alty area and has to return to the return-spot as often as possible within 3 minutes. 

• Clear ball. The robot starts in the return spot. The ball is put in the penalty area 
each time the robot returns. It has to clear the ball as often as possible in 2 minutes. 

• Clear ball with obstacles on the field. As above but with many strange objects and 
robots placed in the playing field, to simulate a more natural playing environment.  

To distinguish between the performance increase due to object-specific grids and 
color-tables, and the performance increase due to behavior-dependent image process-
ing and self localization, we used 3 different configurations, resulting in Figs 5 and 6: 
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− DT2004: The old image processing code with the old general particle filter. 
− Striker: The new object-specific image processing used in combination with the 

old general particle filter of which the settings are not altered during the test. 
− Goalie: The new object-specific image processing used in combination with ob-

ject-specific algorithms as well as with a particle filter of which the settings are al-
tered during the test, depending on the behavior that is executed. 

Fig. 5. Left. Results for localization in the penalty area. The number of times the robot can re-
localize in the penalty area within 2 minutes. The old DT2004 vision system cannot localize 
when there is little light (TL). The performance of the object specific image processing is 
shown by the “flags and lines” bars. In contrast with the DT2004 code, the striker uses object 
specific image processing. The goalie uses both object specific image processing and behavior 
based vision processing and behavior based self localization. Right. Results of the return to 
goal test. The robot has to return to its own goal as many times as possible within 3 minutes. 
The striker vision systems works significantly better than the DT2004 vision system. There is 
not a very significant difference in overall performance between the striker (no behavior-
dependence) and the goalie (behavior dependence).  

Fig. 6. Left. Results of the clear ball test. The robot has to clear the ball from the goal area as 
often as he can in 2 minutes. Both the striker and the goalie vision systems are more robust in a 
larger variety of lighting conditions than the DT2004 vision system (that uses a single color 
table). The goalie’s self locator, using detected lines and the yellow flags, works up to 50 % 
better than the striker self locator, which locates on all line-points, all flags and goals. Right.
Results of the clear ball with obstacles on the field test. The goalie vision system, which uses 
location information to disregard blue flags/goals and only detects large yellow flags, is very 
robust when many unexpected obstacles are visible in or around the playing field. 
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4   Conclusions 

• With object-specific grids and color-tables, the performance of the image process-
ing (reliability) under variable lighting conditions has increased with 75-100%, 
while the color calibrating time was reduced to 30%. 

• The impact of behavior-specific image processing and self localization can be seen 
from the localization test in the penalty area. The vision system of the goalie, with 
behavior based vision and self-localization, performs 50 % better on the same task 
as a striker robot with a vision system without behavior based vision and self local-
ization. Note that both do use object specific image processing in this case. 

• The impact of behavior-specific image processing on the reliability of the system 
can clearly be seen from the clear ball behavior test with obstacles on the field. 
With 1 flood light, where none of the robots can detect flags, the goalie can still 
clear a number of balls before being lost. 

• Using object specific image processing reduced the CPU load with 50%. Using 
only specific algorithms as is done in behavior based vision and localization, then 
it is possible to decrease the load to about 10% of that in the old DT2004 code. 

• Due to the new architecture, the code is more clean and understandable; hence 
better maintainable and extendable. The price is that one has to educate system en-
gineers instead of sole image processing, software, AI, and mechanical experts. 

References 

1. R.A. Brooks. Intelligence without Representation. Artificial Intelligence, Vol.47, 1991, 
pp.139-159. 

2. R.C. Arkin. Behavior based robotics, MIT press 19989, ISBN 0-262-01165-4 
3. Parker, L. E. (1996). On the design of behavior-based multi-robot teams. Journal of Ad-

vanced Robotics, 10(6).  
4. Stijn Oomes, P.P. Jonker, Mannes Poel, Arnoud Visser, and Marco Wiering, The Dutch 

AIBO Team 2004, Proc. Robocup 2004 Symposium (July 4-5, Lisboa, Portugal, Instituto 
Superior Tecnico, 2004, 1-5. see also  http://aibo.cs.uu.nl 

5. J. Bruce, T.Balch, and M. Veloso. Fast and inexpensive color image segmentation for inter-
active robots. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS '00), volume 3, pages 2061-2066, 2000.  

6. S.Thrun, D.Fox, W. Burgard, and F. Dellaert, Robust monte carlo localization for mobile 
robots. Journal of Artificial Intelligence, Vol. 128, nr 1-2, page 99-141, 2001, ISSN:0004-
3702 

7. T. Rofer and M. Jungel. Vision-based fast and reactive monte-carlo localization. In The 
IEEE International Conference on Robotics and Automation. In The IEEE International 
Conference on Robotics and Automation, pages 856-861, Taipei, Taiwan, 2003.  

8. Scott Lenser, James Bruce, Manuela Veloso, A Modular Hierarchical Behavior-Based Ar-
chitecture, in A. Birk, S. Coradeschi, and S. Tadokoro, editors, RoboCup-2001: The Fifth 
RoboCup Competitions and Conferences, Springer Verlag, Berlin, 2002.   

9. Jüngel, M. (2005). Using Layered Color Precision for a Self-Calibrating Vision System. In: 
8th International Workshop on RoboCup 2004 (Robot World Cup Soccer Games and Con-
ferences, lecture Notes in Artificial Intelligence. Springer (to appear). 



A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 488 – 495, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Coaching with Expert System Towards RoboCup Soccer 
Coach Simulation 

Ramin Fathzadeh1, Vahid Mokhtari1, Morteza Mousakhani1,  
and Alireza Mohammad Shahri2 

1 Young Researchers Club, Mechatronics Research Laboratory 
Department of Computer Engineering, Islamic Azad University 

Qazvin Branch, Qazvin, Iran  
{fathzadeh, mokhtari, mousakhani}@mrl.ir 

http://www.mechatronics.ws, 
http://www.yrc-ir.org  

2 Electrical Engineering Department 
Iran University of Science and Technology, Tehran, Iran  

shahri@iust.ac.ir 

Abstract. In this paper we will describe our research in case of using Expert 
System as a decision-making system. We made our attempt to expose a base 
strategy from past log files and implement an online learning system which 
receives information from the environment. In developing the coach, the main 
research effort comprises two complementary parts: (a) Design a rule-based 
expert system in which its task is to analyze the game (b) Employing the 
decision-making trees for generating advice. Considering these two methods, 
coach learns to predict agent behavior and automatically generates advice to 
improve team's performance. This structure is tested previously in RoboCup 
Soccer Coach Simulation League. Using this approach, the MRLCoach2004 
took first place in the competition held in 2004. 

1   Introduction 

In soccer coach simulation league, the coach is one autonomous agent providing 
advice to another autonomous agent about how to act. This advice is in format of 
standard coach language called CLang, [1], [2]. The goal of the coach agent is 
designing intelligent systems to control and observe multiple robots and provide the 
robots with the suitable methods to enhance their performance, [3]. In accordance 
with the coach specifications, we have recruited Expert System as a decision 
management system. 

An expert system is a program which attempts to mimic human expertise by 
applying inference methods to a specific body of knowledge. In this system the 
information is consistently sensed from the environment, and using a forward-
chaining method, system that compares data in the working memory against the 
conditions of the rules and determines which rules to fire, then the suitable advice is 
generated and sent to players, [4], [5]. 

In developing the coach, the main research is concentrated on designing an online 
learning system. For this purpose, before starting the match log analyzer analyzes the 
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provided fixed opponent log files and gathers data consist ball position, players’ 
positions, game score, play modes and generates an initial strategy based on these 
data against the opponent team, then puts it in the shared library for use in online 
coach. Online coach uses this strategy exposed by log analyzer to begin the match 
against fixed opponent. During the match coach calculates capabilities of the 
opponent and receives the information such as match time, result of the match, etc. 
from the field. At first, using expert system with predefined rules, coach models an 
appropriate strategy against the opponent team. Then by receiving statistical data 
(such as player position, the players' activity area, etc.) from the environment and 
using decision-making trees in message generation phase, coach generates suitable 
advice conforming the CLang structure, afterward sends the messages to the players. 

The remainder of this paper is organized as follows: Section 2 comprises log 
analyzer and online coach. Log analyzer is to provide strategy for online coach. 
Online coach includes sense phase, expert system, message generation and act phase 
which its aim is to detect behavior of opponent team and providing a suitable strategy 
toward opponent team. Section 3 presents the results of our detailed experiments and 
finally discusses future work and conclusion. 

2   Architecture of Coach Agent 

This part presents the behavior of coach agent that involves log analyzer and online 
coach. In Figure 1 this structure is shown: 

Pattern & Strategy 
Library 

Strategy Detection 

Log Files 

RoboCup Soccer Server 
Environment

Positioning Data 
&

Skill Detected 

Analysis 
&

Advice Giving 

Pattern Detection 
&

Comparing 

Decision-Making 
System 

Sense Phase Message Generation 

Activate Pattern Expert System

Sense 
Information 

Send to 
Players 

Skill Strategy 

Freeform 
Message 

 

Fig. 1. Agent architecture and its components relation 

2.1   Log Analyzer  

Before starting the match, log analyzer verifies the provided opponent's log files and 
collects information such as ball position, players’ positions, game score, play modes, 
sequence possession and number of shoots to target then with similar algorithms used 
in message generation phase in online coach, creates an initial strategy based on these 
data against the opponent and puts it in the shared library for use in online coach. 
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2.2   On-Line Coach 

Online coach is divided to sense phase, expert system phase, message generation 
phase and act phase. 

Sense Phase. By a set of features in which consist: our score, opponent score, goal 
difference, cycle number, distance from each player to the ball, coordinate of the ball 
and coordinate of each player calculates some skills such as detecting formation, pass 
graph, each player's activity area, ball position, sequence possession and number of 
shoots to target then the results of these skills are used to predict opponent ability and 
generating appropriate advice. 

Expert System. In this phase coach makes its effort to analyze and investigate 
abilities of the opponent team and finally models the state of match in order to 
provide a strategy against the opponent team. This structure is shown in Figure 2.  

Decision TreesFacts & Rules

Skill Detected

Inference EngineKnowledge Base

Sense Phase

Skills & 
Information 

Advice Giving
Message Generation

Expert System

QueryStrategy

Use Plan

New Plan

User Interface

 

Fig. 2. Process of providing a strategy against the opponent team  

To estimate the abilities of the opponent team, information such as ratio of shoots 
to goal (which amounts to number of attacks of either team), successful passes, ball 
possession and compression ratio in triple areas of field is investigated. We define 
some weights for the parameters mentioned above to calculate opponent ability using 
the following formula: 

( )[ ]
=

×+
max

1i
iii

i

i  
(1) 

max: number of parameters 
i: base point for each parameter 
i: difference between the parameters of our team in comparance with the opponent 
i: point scored for each i. 

 



 Coaching with Expert System Towards RoboCup Soccer Coach Simulation 491 

For next step, using a decision-making tree designed on the basis of rule-based 
expert system architecture, the opponent team is modeled. In Figure 3 the decision-
making tree for diagnosing opponent team's performance and giving the strategy 
against opponent team is presented: 

Risk Time 

Score

Assertions:
IF (GoalDifference > 0) assert (Score Win) 
IF (GoalDifference < 0) assert (Score Lose) 
IF (GoalDifference = 0) assert (Score Equal) 
IF (OpponentAbility > 0) assert (OpponentAbility Strong) 
IF (OpponentAbility < 0) assert (OpponentAbility Weak) 

Rules:
IF (Score = Equal AND OpponentAbility = Strong) 
     OR 
     (Score = Win AND RiskTime = No AND OpponentAbility = Strong) 
THEN switch to defensive mode 
IF (Score = Win AND RiskTime = Yes) 
     OR 
     (Score = Lose AND RiskTime = No AND OpponentAbility = Strong) 
THEN switch to absolute defensive mode 
IF (Score = Equal AND OpponentAbility = Weak) 
     OR 
     (Score = Lose AND RiskTime = No AND OpponentAbility = Weak) 
THEN switch to offensive mode 
IF (Score = Lose AND RiskTime = Yes) 
THEN switch to absolute offensive mode 
IF (Score = Win AND RiskTime = No AND OpponentAbility = Weak) 
THEN don’t change strategy

Opponent Ability Opponent AbilityDefensive Offensive Absolute Offensive 

Opponent Ability Risk Time

Yes No Strong Weak No Yes 

Win Lose

Offensive

Equal

Absolute Defensive 

Absolute Defensive 

Weak Strong 

Defensive No Change

Strong Weak

 

Fig. 3. Decision tree learnt and its IF-THEN rules for giving strategy 

Each path from root to leaf analyzes the state of match and opponent team. Finally 
a strategy is resulted in leaf. This strategy is sent to next phase, companying 
information and the needed skills for creating advice. 

For example assuming that our team has scored more goals than the opponent 
team, two cases are considerable: 

If game cycle is subsequent to Risk Time (This particular time is calculated based 
on experience and the environment and during this time there is opportunity for 
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scoring goals for the team), in this case coach suggests absolute defensive strategy to 
keep the result of the game to our side regardless of abilities of opponent team. 

If game cycle is prior to Risk Time, coach calculates abilities of opponent team. If 
the ability is estimated strong, to maintain the attained result, defensive mode is 
suggested otherwise if the opponent team is weak, the formation of team stays 
unchanged. 

Message Generation. After learning strategy, coach attempts to generate proper 
advice. The advice is categorized into the sorts below: 

Formation: The first step is creating a suitable formation. This formation involves 
two offensive and defensive modes in which each of them includes predefined 
templates suiting that state. Each offensive and defensive mode has absolute and 
ordinary modes as two sub modes. 

Let the suggested strategy for team be absolute defensive mode, the arrangement is 
as follows (our recommended idea as a rule): 2 defenders more than the opponent 
offenders, 1 middle player of team more than the opponent middle players and other 
players are put as offenders. 

No (our_defenders) = 2 + No (opp_offenders)  
No (our_middles) = 1 + No (opp_middles)  
No (our_offenders) = 10 – [No (our_defenders) + No (our_middles)] 

(2) 

Or in ordinary offensive mode, we put one player of our team for each player of the 
opponent in triple parts of the field. 

And this process is applied to any other strategies. 
For example assume that the formation of opponent team is detected as 433 and the 

suggested formation from expert system is absolute defensive, i.e. the opponent team 
has more strength than ours. In this case with attention to the predefined templates, 
formation of the team is calculated as follows: 

No (our_defenders) = 2 + 3 = 5 
No (our_middles) = 1 + 3 = 4 
No (our_offenders) = 10 – [5 + 4] = 1 
So the final formation would be 541. 

Positioning: By learning formation of team, the 
positions of players are calculated. Positioning is 
divided into two modes (1) Marking the 
offenders of opponent team by our defenders (2) 
Positioning with ball for rest of the players. The 
following is the way each is calculated: 

1) Mark: To generate the position, the activity 
area of offenders of the opponent team is 
calculated, then for marking (i.e. trapping) each 
offender one defender is summoned. To do this a 
circle with radius 'r' is assumed around the 
offender of opponent team, when each of defen- 
ders must mark this region. Regarding Figure 4 

4

5

6

3

r

r

Fig. 4. Marking opponent 
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For example assume ball owner is one of the opponent players, related CLang rule 
which our player 5 marks offender is shown below: 

(define (definerule Mark5 direc ((and (bowner opp {X}) 
 (bpos (rec (pt -52.5 -34) (pt 0 34)))) 
 (do our {5} (markl (arc (pt opp {$P}) 0 r 0 360)))) )) 

2) Positioning with ball: In accordance with the calculated formation and activity area 
of the opponent players, our players’ activity area is deduced. Now we segment the 
field into distinct areas as shown in Figure 5. We define the positions of our players in 
their activity area, according to the position of ball in the segments. 

 

Fig. 5. Positioning player 9 with ball 

For example the activity area of player number 9 is shown in Figure 5. With 
respect to the position of ball, the position of player would be the dark rectangle. 
 
In CLang: 

(define (definerule Pos4_P9 direc ((and (bowner opp {X}) 
 (bpos (rec(pt -13 -34)(pt -25 34)))) 
 (do our {9} (pos (rec(pt 0 -34)(pt 15 34))))) ))  

Pass Graph: Subsequent to learning the formation, the coach models pass graph of 
team. For each player we have a decision-making tree to create pass rule. The pass 
rule is calculated based on the positions of the other players. For player 'i' the pass 
rule is declared as follow, [6], [7]: 

Pass (k): 
Pass to teammate with uniform number k {X} – {i} 
X is set of players whose x-coordinate is greater than x-coordinate of player ‘i’. 

Assume player number 5 is ball owner and players 6, 7 and 8 are the nearest players 
to it. This is shown in Figure 6. 
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Fig. 6. If there are no opponents in the corresponding passing lane, pass to player k 

Pass rule for player number 5 is generated as follows: 
if (there aren't opponents in lane8) pass (8) 
else if (there aren't opponents in lane7) pass (7) 
else if (there aren't opponents in lane6) pass (6) 
else do another action 
 
In CLang:  

(define (definerule Pass5 direc ((and (bowner our {5}) 
(not (ppos opp {X} 1 11 (tri (pt our 5) 
((pt our 7) + (pt 0 5)) ((pt our 7) + (pt 0 -5)))))) 
(do our {5} (pass {7}))) ))  

“Another action” could be one of the actions shoot, clear, pass to region and 
dribble with respect to the position of player. For instance, in offense lane "shoot", in 
defensive lane "clear", and in the middle of field "pass to region" or "dribble" is 
chosen. 

Act Phase. The act phase contains a queue in which the generated advice of previous 
phase is put in. Then they are sent to the players as commands. 

3   Experimental Result 

The MRL coach came in first place out of 12 entries in the 2004 RoboCup Coach 
competition. The competition consisted of three rounds. In each round, the coached 
team played three ten-minute games against a fixed opponent. Coaches were 
evaluated based on goal difference: the number of goals scored by the coachable team 
minus the number of goals scored by the opponent. 

The fixed opponents were all teams that competed in the main simulator 
competition: Raic2004 in round 1, Hana in round 2, and Kshitij in round 3. 

The score differences and rankings for the top four finishing teams are shown in  
Table 1. Our coach was ranked 1st place in all three rounds. MRL along with FC Portugal, 
Caspian and Sepanta progressed to the final round with MRL coming out on top. 
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Table 1. Total scores and rankings for the top four finishing teams in the 2004 RoboCup coach 
competition. The score consists of the number of goals scored by the coached team followed by 
the number scored by the fixed opponent. 

3rd Round 
(Kshitij) 

2nd Round 
(Hana) 

1st Round 
(RaiC2004) Coach 

1st 1:12 1st 2:6 1st 0:11 MRL 

2nd 0:11 3rd 2:9 2nd 1:13 FC Portugal 

3rd 2:15 2nd 1:7 3rd 1:15 Caspian 

4th 0:18 4th 0:13 4th 0:18 Sepanta 

4   Conclusion and Future Work 

Our prospective effort is to develop a learning system which is able to generate advice 
in online mode with usage of algorithm for modeling the opponent team. We also plan 
and try to improve and develop learning algorithms and find out better solutions for 
generating advice. 
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Abstract. The issue of this paper is bound with the project of building a 
commentary system for a soccer game. We surveyed an example of natural 
commentary in order to examine various sorts of comments used by a human 
reporter to cover the soccer match. The content and function of the messages 
was taken into account. This survey enabled us to create a conceptual 
representation for the RoboCup soccer game, which constitutes the input for our 
commentary generation system. We also give some details about how the 
representation is created from the raw quantitative data. The presented results 
may be interesting for human-machine communication researchers and software 
engineers involved in a similar project. 

1   Introduction 

Multi-agent system is an environment in which several autonomous individuals 
coexist. Such systems provide a rich problem domain and offer new challenges for 
artificial intelligence and robotics. Research effort focuses mainly on various 
interactions between the agents. This includes general topics like cooperation, 
competition and communication between the agents. Both new learning techniques 
and inventive knowledge modelling have to be developed for these problems. The 
issue presented in this paper is oriented more toward the aspect of the communication, 
though the information conveying between the agents is not directly studied. We 
study various forms of the commentary used for describing a situation and events in a 
multi-agent game. Our research is focused on the presentation techniques used by a 
human reporter to comment a soccer match. This research topic has been suggested in 
[7]. The practical purpose of this project is building a soccer commentary generator 
based on empirical information. The methodological steps leading from the system 
design to its evaluation are also our research objectives.   

The number of works on the automatic generation of soccer commentary is limited. 
We are aware of three important projects from this area ([1], [2]) namely Soccer, 
Rocco, and Mike. Two of them are directly connected with the RoboCup 
environment. These projects are oriented toward the various topics like an explanation 
of complex events, description of spatial relations, and dynamic content selection. So 
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far, the commentary forms have been studied only in [6]. The obtained results are 
interesting, but from our point of view they are too general. A more detailed survey of 
a human commentary is necessary for our purposes. The approach proposed in this 
project depends on empirical data. We suggest analysing an example of a commentary 
text1, which is a video recording transcription of the real match. By examining the 
example we can learn how the reporter covers various match events and situations of 
the game. The analysed text had been divided on small coherent blocks of comments. 
These blocks were next surveyed and classified. More details of this part of the 
research can be found in [5]. The analysis enabled us to identify the concepts within 
the domain of soccer game and the various forms of comments appearing in the text. 
Then, we tried to determine a relation between the elements of the conceptual 
representation and the natural language expressions. In this way, we hope to construct 
an automatic generation system, which could potentially achieve more natural and 
cohesive output. Since the inspiration for our work comes from the RoboCup 
program, we started to develop our commentary system for this platform [4]. There 
are some practical advantages using RoboCup. RoboCup offers many ready-to-use 
logs of simulated games. The logs contain the low-level data. On such basis we can 
automatically create a conceptual representation of a game, which is in essence a 
high-level record of the match course. One disadvantage is that many essential 
commentary concepts like a team history, personal information, have a rather limited 
use in the RoboCup competition. That's why we neglected a number of the important 
background concepts. However, we believe that the RoboCup games may be 
successfully utilize to evaluate the accuracy of the generator.    

Next in the other part of this paper we present the part of our project connected 
with building the conceptual representation of a soccer game. First, we show how the 
concepts have been selected on the basis of the example survey. Then we deal with 
some technical details of converting the Soccer Server raw output into conceptual 
elements of the match representation. This problem was an important part of our 
work. Finally, we present a short example of the match representation. 

2   The Conceptual Representation of the Game 

In order to generate a human-like commentary one have to identify the concepts 
contained in the comments of a human reporter. To the best of our knowledge the 
previous projects didn't include a serious investigation of the commentary conceptual 
structure. Although it is difficult to evaluate, it seems that their output text 
incorporated many unnatural elements. For example, the statements of the Mike 
generator seem to contain too much explicit statistical information. The analysis of 
the example commentaries let us select the most suitable conceptual elements and 
surely increases the conceptual coverage of the system. To determine what kind of 
information is important for a commentator we analysed the content of the particular 
messages. In order to illustrate the method of gaining these elements, we present some 
example comments and the attributes, which can be ascribed to them. 

                                                           
1 The analysed test as well as the generated output is in polish language. 
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Comment    Attributes (content) 
 
Ronaldo     actor-of-action 
Immediately on the penalty area  time-of-reaction, region-of-pitch 
But only corner kick   result-of-action, 
Good interception by the French team type-of-action, team-of-action,  
     result-of-action 
There is Leonardo on the penalty area actor-of-action,region-of-pitch 
Dangerous Cafu dribble   type-of-action, chance-for-goal,  
     actor-of-action 
Long pass on the left side   type-of-action, qualitative-distance, 
     region-of-pitch 
Two defenders staying next to him  number-of-opponents-staying-close  
This is his first dribble   type-of-action, order-number-of-action 
 

To compare the distribution and establish the importance of different attributes we 
selected approximately 280 comments from the first 25 minutes of the commentary 
and examined their content. The distribution of the attributes in the comments is as 
follows: 
 
Action information      Distribution in % 
Comments containing actor of action     76 % 
Comments containing type or result of action   31 % 
Comments containing team of action    12 % 

Spatial and temporal information 

Comments containing region of the pitch or direction   5 % 
Comments containing time of player’s reaction expressions   3 % 
Comments containing dynamics or speed of action expressions   3 % 
Comments containing distance expressions     1 % 

Comments containing statistical information    3 % 

Taking into account the result of our survey we have prepared a set of elements 
representing a course of the RoboCup soccer match. In the current version of our 
system the most fundamental elements of the conceptual representation have been 
implemented. First of all, the attributes representing the actions and main game events 
have been included. We also added the most important spatial concepts and some 
team performance measures. We focused on these elements, which seemed to be the 
most appropriate for the RoboCup domain. The current set of the attributes 
encompasses: 
 
1) Attributes representing the individual action of player and match events 
type-of-action   : Pass, Shot, KeepBall, Dribble, Defence, KickOut, etc. 
result-of-action   : Receive, Loss, Out, Goal, Corner, Interception, etc. 
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actor-of-action  : identifier of the player 
type-of-event  : Beginning-of-match, End-of-match, Break, etc. 
state-of-action  : Active, Finished 
 
2) Attributes representing the action of team 
state-of-action    :Beginning, Course, Break, Continuation,   
       End 
type-of-action    : Counter-Attack, Positional-Attack, etc. 
team-of-action    : name of the team  
     
3) Attributes of the individual and team’s action 
region-of-pitch    : Middle, Rival-penalty-area,  
       Left-half, etc. 
distance     : appropriate qualitative value 
direction    : Right, Left, Forward, Back 
time-of-reaction    : Immediately, Normal, Slow  
speed-of-action    : appropriate qualitative value  
dynamics-of-action   : Acceleration, Constant, Slow-Down   
order-number-of-action   : a counter of team actions 
chance-for-goal     : None, Little, High, Very-High  
 
4) Attributes describing player’s situation 
number-of-opponents-staying-close : a number 
number-of-team-mates-staying-close : a number 
player-position    : Free, Marked 
distance-to-enemy-goal   : a value from {Far, Near, Very-Near} 
    
5) Attributes describing team’s performance 
initiative    : a degree of team’s prevail in the match 
ball-possession     : a percent of ball possession in the match  
dangerous-situations   : a counter of team’s dangerous situations 
 
6) Attributes representing the match situation  
time-of-game    : current game time  
result-of-game    : current game score  
 

We hope that after providing some background commentary concepts this represent- 
tation would be rich enough for generating an interesting soccer commentary.  The 
distributions of the particular attributes may be applied to defining the generation rules, 
so as the proportions were comparable with a human text. On the other hand the 
collected data can be used to evaluate quality of the generated output. After having 
selected the main elements of the conceptual representation, we had to cope with the 
problem of extracting these concepts from the Soccer Server low-level data. 
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3   Building the Conceptual Representation 

In this section the way of converting the Soccer Server data into the conceptual 
representation is outlined. The raw input received directly from the Soccer Server or 
loaded from a game log is consisted of the records containing: 

- current location, state, and orientation of the players,  
- current location of the ball, 
- current score, time, and mode of the game.  

This is the low-level quantitative layer, because the data provides us with no 
conceptual information about the events and the situation of the game. Such 
representation can not be directly used for a commentary generating. So, this is the 
starting point for building a higher conceptual layer of a match representation. The 
raw data is processed in order to extract the necessary conceptual information. After 
the conversion, a file which contains the conceptual representation of the match is 
returned as a result. Such file can be used as an input for the generator. The 
conversion of the raw data can be divided into a few successive steps executed for 
each time frame. The main routine of the conversion is as follows:  
 
t = current_time_of_game(); 
calculate_values_of_spatio_temporal_primitives(t);  
new_mode_event_search(t);  //a new mode event search 
new_state_event_search(t); //a new state event search  
if (lastKickEvent->type-of-action == KeepBall) || 
   (lastKickEvent >type-of-action == Dibble)  
{ 
  check_player_properties(currentKickEvent->actor-of-action,t); 
  report_player_properties(currentKickEvent->actor-of action); 
} 
update_team_action(LeftTeam); 
update_team_action(RightTeam); 

 
1. First, we calculate the basic geometrical primitives of the representation. They 
represent basic properties of the objects and different spatial relations which occur 
between them. This includes: 

- Velocity and acceleration of the movable objects. 
- Finding a player who is nearest the ball. 
- Tracking the ball movement (velocity change and direction change). 
- Region of the pitch where player is located. 

 
2. Then, we check for new events. The events can be divided into: 

1) Signalised by the change in the game mode (newModeEvent). 
2) Signalised by the change in the player’s state (newKickEvent). 

 
Every state event is in essence a player’s action represented by a separate object of 

SingleKickEvent type. The system stores the information about every three successive 
events: newKickEvent, currentKickEvent, and previousKickEvent, because they can be 
utilized for recognizing the type (i.e. pass or dribble), and the result (i.e. goal) of the 
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action. If a new event is detected then an appropriate action is being taken depending 
on the event's sort.  For example when a new kick action is detected then the 
following code is executed: 
 
newKickEvent = new SingleKickEvent(time, actor-of-action);  

//a new object is being created 
if (currentKickEvent != NULL) 
{ 
  currentKickEvent->setFinishEvent(newKickEvent); 
 //the new kick event finishes the current one 
  currentKickEvent->recognize(); 
 //the type of current event is being determined 
  currentKickEvent->setActionResult();  
 //the result of the current event is being determined  
  currentKickEvent->report(); 
 //this call reports the type and the result 
}; 
 

If a new kick action has been detected then a type of the current one is determined. 
We experimented with using the recognition automata [2] to model the basic actions 
like pass, dribble, shot, and etc. An interesting idea for recognizing the complex 
actions in a dynamic multi-agent environment has been outlined in [3], but it still 
remains purely theoretical because of the computational complexity. Currently we 
prefer to use a simpler technique that is based on matching the patterns of successive 
kicks and the game events. The recognition of the type and the result of an event is 
done by special rules which use spatio-temporal primitives and a set of helpful 
functions like: team(player) which returns the identifier of player’s team, or 
is_pass_possible(start_time, actor-of-action, team-mate) which checks whether the 
pass was possible. For example, one of the recognition rules says that: 
 
if (team(actor-of-action)==team(newKickEvent->actor-of-action))  
{ 
  type-of-action    = Pass; 
  result-of-action  = Receive; 
} 
else  
{  
  if (is_pass_possible(start_time, actor-of-action, team-mate)) 
     type-of-action = Pass; 
  else 
     type-of-action = KickBall; 
  result-of-action = Loss; 
}; 
 

The above rule just checks whether the ball was transferred between the two team-
mates. If yes, the pass is recognized and its result is set to Receive. If no, then the pass 
is recognized only if it was intended by the actor. The result is set to Loss. The rules 
are triggered in a proper order. For each kind of action the appropriate attributes are 
calculated. For example, length is calculated for a pass, and the numeric value is 
transformed into a qualitative value: short, normal, long. Other attributes are 
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calculated in a similar way. For a player who is in the ball possession the additional 
properties of his position are determined and reported. These properties include: 
player-position, the number of team-mates and opponents staying close, and distance-
to-enemy-goal. 
 
3. At the end, we update the data concerning the action of both teams. It encompasses 
setting the following attributes: region-of-action, dynamics-of-action, state-of-action, 
and speed-of-action. Also the team-of-action (the attacking team) is updated if 
necessary. Finally, the performance data are updated.  

4   Example 

Below, we give a short example of the RoboCup match representation created 
automatically from the Soccer Server output data. A similar representation of the real 
match fragments can be created manually, so that we could check how the generator 
is commenting the real match.   
 
<time=1; type-of-event = beginning-of-match> 
<time=6; type-of-event = beginning-of-game> 
<time=6; team-of-action = ATTCMUnited2000; region-of-pitch = Middle; 
   state-of-action = Beginning; number-of-action = 1> 
<time=6; type-of-action = KeepBall; region-of-pitch = Middle;  
   actor-of-action =Yellow8> 
<time=7; player-position = Free> 
<time=7; distance-to-enemy-goal = Far> 
<time=7; team-of-action = ATTCMUnited2000; region-of-pitch = Middle;  
   state-of-action = Course; number-of-action = 1>  
<time=8; type-of-action = Pass; direction = Left; region-of-pitch = Middle;  
   actor-of-action = Yellow8> 
<time=11; result-of-action = Receive; region-of-pitch = Middle;  
   partner-of-action = Yellow9> 
<time=11; type-of-action = KeepBall; region-of-pitch = Middle;  
   actor-of-action = Yellow9> 
<time=12; player-position = Free> 
<time=12; distance-to-enemy-goal = Far>  
<time=12; type-of-action = Pass; direction = Left; region-of-pitch = Middle;  
   actor-of-action = Yellow9> 
<time=17; result-of-action = Receive; region-of-pitch = Right-Half; 
   partner-of-action = Yellow5>  
<time=17; type-of-action = KeepBall; region-of-pitch = Right-Half; actor=Yellow5> 
<time=18; player-position = Marked; number-of-opponents-staying-close =1> 
<time=18; type-of-action=Pass; direction = Forward; region-of-pitch = Left-Half;  
   actor-of-action = Yellow5>  
<time=18; distance-to-enemy-goal = Far> 
<time=38; result-of-action = Loss> 
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5   Conclusion 

In this paper the conceptual structure of information for a dynamic multi-agent game 
was presented. The representation is designed for a soccer commentary generation 
system. The analysis of a human soccer commentary lead us to the representation 
which contains the attributes representing: the actions, the events and their spatial, 
temporal, and statistical properties. We also introduced two levels for representing an 
action of the game. The one for representing the actions of individual players and 
other level for a team action. Next, we outlined the way the representation is created 
from a low-level quantitative data. The topic beyond the scope of this paper is a 
commentary generation. In future research, we want to add more performance 
measures and the attributes representing the knowledge used in background 
commentaries. We also want to extract more statistical data from the example and 
apply them to the generation rules. The evaluation procedure for a soccer commentary 
generator is another open question. We are planning to test the accuracy of the 
generator and similarity between computer and human output. 
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Abstract. In a dynamic situation like robot soccer any individual player can
only observe a limited portion of their environment at any given time. As such to
develop strategies based upon planning and cooperation between different players
it is imperative that they be able to share information which may or may not be
in any individual player’s field of vision. In this paper we propose a method for
multi-agent cooperation for perception based upon the Extended Kalman Filter
(EKF) which enables players to track objects absent from their field of vision and
also to improve the accuracy of position and velocity estimates of objects in their
field of vision.

1 Introduction

Robot Soccer is a relatively new research initiative and in terms of its development it
is in its infancy. One of the current challenges for robots playing in the RoboCup Four-
Legged League is to implement a game based upon cooperation and planning. Planning
e.g. behaviour or a strategy based upon game play [2] can be facilitated by the efficient
sharing of information among the team players. Players can share information regarding
their own pose, estimate of the pose of the opponents and an estimate of the ball position
and velocity.

Since each player (generally) knows its own pose with a high degree of accuracy
sharing this information is fairly straightforward. However sharing information about
the ball and the opponents is not that trivial. In this paper we ignore the problem of
tracking opponents since we wish to avoid the problem of data association. We pro-
pose a solution for ball tracking by fusing information from multiple robots using an
Extended Kalman Filter (EKF).

Kalman filters have been successfully used in robotics to track objects and achieve
robot localisation with a high degree of accuracy. For robot localisation, Kalman fil-
ters effectively fuse information from position estimating sensors like sonars and vision
with odometry [5] [7] [8] [4]. The observations are matched to a map of the local en-
vironment and then merged to update the robot pose. In the studies mentioned above,
Kalman filters were successfully employed to fuse together information from different
sensors located on the same robot. We undertake the task of fusing distributed simulta-
neous sensor information from different robots.

The problem of ball tracking by fusing multiple simultaneous observations of the
same object from distributed vantage points has been tackled in the past [6] [9]. Stroupe
et al. [6] used the method of Smith and Cheeseman [5] to combine two dimensional
Gaussian distributions by a single matrix operation. Due to the associativity and the
symmetry of the operation any number of distributions can be combined in any order
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to fuse the information from different robots leading to a highly efficient and reactive
method. However the parameters of the observation in their case do not correspond to
the canonical form of the Gaussian as assumed by the method of Smith and Cheeseman
[5]. To overcome this obstacle they have to rotate their observations and then re-rotate
them in the end to extract the position and uncertainty of the tracked object. Moreover,
the method they describe is used only for locating the position of the ball when the
robots are perfectly localised (i. e. ,the different robots know their pose with certainty)
and standing still which is achieved artificially by placing the robots in specific loca-
tions. Also, since they only locate the position of the ball they are unable to extract
information regarding the speed and the direction of the ball’s motion.

The solution to the general problem of fusing the multiple simultaneous observa-
tions to accurately determine the position and the velocity of the ball is described by
Weigel et al. [9]. They determined the ball position by a probabilistic integration of all
ball measurements coming from the different players using a combination of Kalman
Filters and Markov Localisation. Since Grid-Based Markov Localisation is computa-
tionally expensive they used only a two dimensional grid which does not allow them to
store the velocity of the ball and as such they could not determine the position of the
ball accurately when the ball was in motion. However their algorithm does allow for
integrating the ball in a global sensor integrator placed off-board.

In the robocup legged-league off-board processing is not allowed and any algorithm
for fusing the multiple simultaneous observations wold have to be constrained by the
computational power of the AIBO robots. We propose a method for ball tracking to
accurately determine the ball position and velocity when both the robots and the ball
is in motion. We use an approach based upon Extended Kalman filters which does not
make any assumptions of linearity. The algorithm is highly efficient and does not place
undue load on an AIBO Robot and can be used either on an ERS-7 or an ERS-210 with-
out degrading performance. The algorithm was successfully used in the RoboCup 2004
championships held in Lisbon where UTSUnleashed! exploited the power of informa-
tion sharing in the Open Challenge where we demonstrated active passing between
players. UTSUnleashed! also used the above algorithm in games to successfully cre-
ate game plays based upon cooperation which led us to second position in the soccer
competition in our second year of competition.

The remainder of the paper is set out as follows. In the next section we give a brief
description of the theory of Extended Kalman filter. In Section 3 we present the state
model and the algorithm for fusing multiple simultaneous ball observations by differ-
ent robots. In section 4 we present the results of some analytical experiments and in
section 5 we conclude with a brief discussion.

2 Extended Kalman Filter

The problem of ball tracking and robot localisation requires an estimate every time
a new measurement is received, which calls for a solution comprising of a recursive
filter. This means that the data can be processed sequentially rather than as a batch,
which greatly enhances the execution of the filter algorithm since it is not necessary to
store the complete data set nor is it necessary to reprocess the existing data when new
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measurements become available. Such a filter consists of essentially two stages: pre-
diction and update. The prediction stage uses the system model to predict the state
probability density function from one measurement time to the next. The state is usu-
ally subject to unknown disturbances which are modelled as random noise hence the
prediction stage generally translates, deforms and spreads the state probability density
function. The update operation uses the latest sensor measurements to modify the pre-
dicted probability density function.

Formally we want to consider the evolution of the state sequence {xk, k ∈ N} given
by xk = fk(xk−1, vk−1) where fk maybe a nonlinear function of the state xk−1 and
vk−1 is a process noise sequence. The objective of tracking is to recursively estimate
xk from measurements zk = hk(xk, wk) where hk maybe a nonlinear function and nk

is a measurement noise sequence. In particular we seek filtered estimates of xk based
on the set of all available measurements z1:k = {zi, i = 1, · · · , k} up to time k.

From a Bayesian perspective, the tracking problem is to recursively calculate some
degree of belief in the state xk at time k, given the data z1:k up to time k. Thus it is
required to construct the probability distribution function p(xk|z1:k). It is assumed that
the initial pdf p(x0|z0) ≡ p(x0) is known a priori. Then in principle, the pdf p(xk|z1:k)
may be obtained recursively in two stages: prediction and update.

Suppose that the required pdf p(xk−1|z1:k−1) at time (k − 1) is available. The pre-
diction stage involves using the system model to obtain the prior pdf of the state at
time k:p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. At time step k, a measure-

ment zk becomes available, and this may be used to update the prior pdf via Baye’s

rule:p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. In the update stage, the measurement zk is

used to modify the prior density to obtain the required posterior density of the current
state.

The Extended Kalman filter assumes that the posterior density at every time step is
Gaussian and hence, parametrised by a mean and a covariance. If p(xk−1|z1:k−1) is
Gaussian then it has been shown [1] that p(xk|z1:k) is also Gaussian. It is then possible
to write the above by means of matrix operations

F̂k =
dfk(x)

dx

∣∣∣∣
x=mk−1|k−1

(1)

Ĥk =
dhk(x)

dx

∣∣∣∣
x=mk|k−1

(2)

If we define N (x, ; m, P ) as a Gaussian density with argument x, mean m and covari-
ance P , the Extended Kalman filter algorithm can be viewed as the following recursive
relationship:

p(xk−1|z1:k−1) ≈ N (xk−1; mk−1|k−1, Pk−1|k−1)
p(xk|z1:k−1) ≈ N (xk; mk|k−1, Pk|k−1)

p(xk|z1:k) ≈ N (xk; mk|k, Pk|k)

where

mk|k−1 = fk(mk−1|k−1) (3)
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Pk|k−1 = Qk−1 + F̂kPk−1|k−1F̂
T
k (4)

mk|k = mk|k−1 + Kk(zk − hk(mk|k−1)) (5)

Pk|k = Pk|k−1 −KkĤkPk|k−1. (6)

In the above (zk − hk(mk|k−1)) is termed as innovation and is the difference between
the expected and the actual measurement. Kk is defined as the Kalman gain and is
given by Kk = Pk|k−1Ĥ

T
k S−1

k . where Sk is the covariance of the innovation term and

is given by:Sk = ĤkPk|k−1Ĥ
T
k + Rk.

3 Ball Tracking

In the case of robot localisation it is fairly simple to have a state model since the mo-
tion model which consists of the commands given to the actuators (walk forward, strafe
left, turn clockwise) captures the robot’s kinematics. The update model consists of the
observations (distance, heading and elevation) made by the robot’s camera to the land-
marks, if seen in the frame. If the robot sees more than one landmark in any given vision
frame then the estimate of the robot’s pose is highly accurate since the uncertainties in-
troduced by the observation of one landmark are compensated for by the observations
to the other landmarks. Thus the more landmarks that a robot sees in any given frame
the more accurate the estimate of the pose.

We use a similar logic for the problem of ball tracking by reversing the problem
of robot localisation into a problem of ball localisation. Let us assume for the sake of
explanation that the ball has a camera on it and the robots are the beacons. The ob-
servations made by the robots to the ball can then be viewed as observations made by
the imaginary camera on the ball. One can then imagine that the ball uses the EKF
described above to localise itself off the robots. The more robots that a ball views
the better localised it will be since the uncertainties are compensated for by multiple
observations.

The state vector of the ball is given by (x, y, vx, vy)T where x and y are the coor-
dinates of the ball in a global reference frame and vx and vy are the speeds of the ball
along the x and the y axis respectively. The heading of the ball with respect to the x-axis

can then be easily calculated by φb = tan−1

(
vy

vx

)
and the speed of the ball is given

by vb =
√

v2
x + v2

y .

Since it is impossible to capture the exact kinematics of the ball we model the state
model by using the standard equations of kinematics.

⎡
⎢⎢⎣

x
y
vx

vy

⎤
⎥⎥⎦

f

=

⎡
⎢⎢⎣

x
y
vx

vy

⎤
⎥⎥⎦

i

+

⎡
⎢⎢⎣

(vx + aδt
2 )δt

(vy + aδt
2 )δt

aδt
aδt

⎤
⎥⎥⎦ (7)

In the above system a is the magnitude of the retardation of the ball which is determined
by experiments and δt is a time interval.
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Fig. 1. Diagram representing the algorithm used to fuse information from different robots using
the method described above

The measurement model comprises of the distance to the ball, the heading to the ball
and the elevation to the ball with respect to the camera center of the robot. Formally:

Distance =
√

(x− xc)2 + (y − yc)2 + (z − zc)2. (8)

Bearing = tan−1

(
Dv

Du

)
. (9)

Elevation = tan−1

(
Dw

Du

)
. (10)

Where, Du, Dv, Dw are the unit vectors from the camera. The coordinates of the robot’s
camera center (xc, yc, zc) can easily be calculated if the pose of the robot, the neck tilt
and the head tilt and pan angles are known.

It is well known that the observations of landmarks leads to a reduction in the un-
certainty of the pose when using an EKF [1][3]. Thus if a robot observes a landmark in
a vision frame then its uncertainty is reduced. If the robot has not observed a landmark
then we increase it’s uncertainty by a constant factor determined by experiments. Thus
the measure of the uncertainty gives an indication of how reliable the observations of
a particular robot are. If the uncertainty of the robot is within some error bound then
we consider it’s observations to be reliable and the robots transmits it’s observations to
the team members. If on the other hand the uncertainty is large then it’s observations
would corrupt the EKF of the team members and hence the robot does not send its in-
formation. In this case the robot calculates the position of the ball relative to it’s frame
of reference. In this situation the robot is still able to react to the ball which is important
in a game of robot-soccer.

The robots which satisfy the uncertainty threshold described above then transmit to
their team mates information regarding their own pose, their neck tilt and pan angles
and the observation of the ball (distance, heading, elevation). We send the neck tilt and
pan angles as opposed to the camera coordinates and the unit vectors to reduce the
overall transmission on the wireless network.
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The receiving robot calculates the camera locations and the unit vectors for each
robot with the aid of the above information and then updates the ball position and ve-
locity as described in section (2). As a result of this algorithm the pose of the fused ball
is unique and is common to all the robots. This pose might be different from the pose
which is calculated independently by the robot based on its own observations.

Different issues that arise from such a procedure are tackled as such:

– If the robot can see the ball then behaviour is adopted based upon its own obser-
vation of the ball. This is necessary to accommodate for the fact that the data from
other robots lags by at least one frame. Moreover if the fused ball is quite distinct
from the robot’s own perception of the ball then th robot is not forced to make
wrong decisions or be frozen as a result of the disparity. This is important in a
highly reactive game like robot soccer.

– If the uncertainty in the determination of the robot’s own pose is high then it does
not send the ball information to the other robots. This normally tends to happen
when the robot is chasing a ball and is unable to see a landmark. In this case if
the uncertainty in the fused ball is small (compared to some threshold) then it is
possible for the lost robot to use the ball as a landmark and update its own pose.
Complete localisation takes a few cycles and the robot will inadvertently see a
landmark during that time.

– Since the ball identification and measurements are vision based (as opposed to a
sonar) it is quite possible that erroneous information may enter the data set. For
example a robot might see a false ball or get a wrong distance reading due to re-
flection. In this case we employ a 2 sigma gate procedure which does not allow any
readings which deviate by 2 standard deviations to be integrated into the set.

– If no observation is made for 2 seconds (50 framesin an ERS210 and 60 frames
in an ERS7) then the track is deleted and the ball position is reinitialised from
observation.

4 Results

Experiments were performed using Sony AIBO ERS-210 robots. Several experiments
trying to emulate the dynamic nature of a robot soccer game were carried out. A brief
description of a prototypical example is given below and the results reported.

Robots were placed on the field and allowed to move. A ball was rolled along a
particular trajectory and the estimates of the ball position and velocity from the robot
were recorded. Figure (2) shows the configuration of the field and the position of the
robots initially. Robot A was looking outfield and was not allowed to move. However
the other robots were allowed to move. The robots were given a few seconds to localise
themselves. A ball was then placed on the penalty box of the blue goal and made to
roll diagonally to the penalty box of the yellow goal. Robots B, C and D could see the
ball at all times with Robot D and C coming quite close to the ball although none of
the robots managed to touch the ball. As robot A could not see the ball at any instant,
information from the three robots was fused together according to the process described
above and the trajectory of the ball according to Robot A’s world model was plotted.
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Fig. 2. Trajectory of the ball (solid line) and the trajectory as observed by Robot A (dashed line).
Robot A was standing in place while robots B, C and D were allowed to move.

The result is shown in figure (2). As can bee seen from the figure the trajectory of the
ball as evaluated by robot A is quite accurate.

Several trials of similar experiments were performed and on an average the mean
deviation from the actual path was 5 cm with a standard deviation of 1 cm. Trials per-
formed where all the robots could not see the ball simultaneously gave similar results
reflecting the robustness of the algorithm.

5 Discussion

In this paper we present a method of integrating simultaneous observations of a single
unique object from different robots using an extended Kalman filter. The computational
ease and flexibility of the approach makes it an ideal candidate for object tracking in
complex dynamic domains. The approach was tested in the domain of the Robocup
where the task is made particularly difficult due to the dynamic and uncertain nature
of the domain. The ability of moving robots to fuse information about moving targets
enabled UTSUnleashed! to build a highly competitive team at RoboCup 2004.
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Abstract. This article presents a survey of prevalent research results pertaining 
to emergent cooperation in RoboCup soccer. Results reviewed maintain particu-
lar reference to research that uses biologically inspired design principles and 
concepts, such as emergence and evolution, as a means of attaining cooperative 
behavior. The core of this article argues that even though emergent cooperative 
behavior derived within RoboCup (and the larger field of multi-robot systems) 
is still in its infancy, it holds considerable future potential, as a problem solver 
in domains where systems comprising many interacting components must co-
operatively solve a global task.   

1   Introduction 

To date, research that qualitatively measures and evaluates mechanisms that underlie 
and motivate emergent cooperative behavior in real world1 and artificial systems 
remains largely in stage of research infancy. The concept of emergent behavior has 
propagated many ideas about emergent cooperative behavior in biological systems, 
and roboticists and computer scientists alike have now adopted these ideas. Early 
research in decentralized systems [4], [5] suggested that complexity at a group level 
might be attainable with very simple individual agents, with no need for central con-
trol. A derivative of this idea is to use a biologically inspired design approach to engi-
neering group behaviors in multi-robot systems. Such a design approach utilizes con-
cepts such as evolution and self-organization with the goal of a global behavior 
emerges from interaction of the systems components [6], [7].  It is argued by certain 
researchers [8], [9] that the use of biologically inspired principles such as evolution 
and emergence are needed in the purposeful design of complex artificial systems in 
order to replace ineffective preprogrammed and centralized design methodologies.  
With few exceptions, and then only in multi-robot systems containing relatively few 
robots [10], the majority of research in emergent cooperative behavior is restricted to 
simulated problem domains given the inherent complexity of applying evolutionary 
design principles to collective behaviors in groups of real robots [11].  

An important future direction that the survey emphasizes is the gaining of insightful 
knowledge into design algorithms for emergent cooperation. If emergent cooperative 
                                                           
1 The emergence of cooperation has also been studied in a disparity of fields, such as ecological 

modeling [1], game theory [2], and economics [3]. 
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behavior was sufficiently understood, purposeful design of cooperative behavior could 
be applied to benefit a variety of application domains including telecommunications 
[12] and space exploration [13].  As a final introductory note, in the literature various 
researchers have adopted the use of nomenclature that is ambiguous in defining the 
term cooperation. Such terminology often suffers from the frame of reference problem 
[14], as definitions correspond to the perspectives and interests of the researchers con-
ducting the study. Thus, for the purposes of this survey, a definition of cooperation is 
not provided, but rather a survey of research that uses biologically inspired design 
principles as a means of deriving cooperative behavior between two or more robots 
(players) given a specific task in the RoboCup domain.  

2   Emergent Cooperative Behavior in RoboCup 

Within RoboCup, various leagues, defining the types of robots used as players, and 
the types of game scenarios played, currently exist as research initiatives [15], [16], 
[17], [18], [19], [20], where each league maintains its own set of technical challenges 
and engineering accomplishments.  One of the functions of RoboCup is that it pro-
vides a research platform for explorations in designing group behaviors (such as co-
operation) that can potentially be applied to the broader field of multi-robot systems. 
Such research explorations have been developed in simulation [22], [23], [24], [26], 
[27], [28], [29], [30], [31], [32], [33], [34] as well as with real robots [35], [36], [37]. 
For example, Veloso et al. [35] used a team of small and autonomous two-wheeled 
robots, while Veloso and Uther [36] used a team of Sony AIBO ® robot dogs, to play 
in a RoboCup soccer tournament. It is obvious from these latter experiments that 
robotic systems provide a degree of realism that is never possible in simulation, 
though as a complementary research tool, simulators allow researchers to investigate 
issues such as cooperation, via implementing abstract and complex behaviors. This 
article surveys only emergent cooperative behavior research in simulated RoboCup 
systems.   

2.1   Cooperative Passing Behavior with Neural Networks 

Noda et al. [21], [31] used a RoboCup simulator [26] as a test-bed for the learning of 
cooperative behavior within groups of soccer agents. Learnt cooperative behavior 
took the form of one soccer agent learning when pass to a teammate and when to 
shoot the ball at the opponent goal area. Agents used a neural network with thirty 
hidden neurons and a back propagation method [38] to learn in which situations it was 
better to cooperate and in which situations it was better not to cooperate, according to 
the evaluation criteria of the number of goals scored, and the time taken to score.  The 
learning approach was supervised given that over the course of several hundred train-
ing scenarios, a coaching agent provided a positive feedback signal when one of the 
offense players scored a goal, and a negative feedback signal when a shot aimed at the 
opponent goal area failed or a time limit expired.  The authors illustrated that training 
the neural network using the back propagation method allowed the success rates of 
the shoot and pass actions to increase as agents learnt when to pass and when to shoot 
the ball depending upon the position of a defensive player relative to the goal area and 
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other agents. Learnt cooperative behavior was evaluated in terms of the time taken to 
score a goal as well as the number of goals scored.   
     The key criticism of this research is that cooperative behavior was limited to a 
learnt decision making process for a single soccer agent, where the decision to pass or 
not defined cooperative behavior. The agents, environment, and learning mechanism 
were kept simple, so that this form of cooperative behavior could be successfully 
learnt. In their conclusions, the authors justified using a simple neural network learn-
ing mechanism as it provided a good starting point for the learning of more complex 
forms of cooperative behavior that would potentially be applicable to an entire team 
of soccer agents.   

2.2   Cooperative Team Behaviors with Layered Learning  

Stone and Veloso [32] introduced a layered learning approach to cooperative behav-
ior, where soccer agents used neural networks to initially learn low-level individual 
behaviors such as intercepting a ball, and then decision trees [39] to learn higher-level 
cooperative behaviors such as deciding when, and to which soccer agent to pass the 
ball to. The layered learning approach was implemented within the RoboCup server 
[26] as a simulated environment, and allowed for a bottom-up definition of soccer 
agent capabilities at both the individual and team level.  That is, learnt low-level indi-
vidual behaviors formed the basis for, and were incorporated as part of, higher-level 
team behaviors. In various game scenarios, the layered learning approach provided 
the capability for a group of offensive soccer agents to cooperate via making strategic 
passes to each other, such that the probability of scoring a successful shot at the op-
ponent goal area would be maximized.   

The research of Stone and Veloso [25] extended their previous work and elabo-
rated upon their approach for having a soccer agent decide if to cooperate with team-
mates, via passing the ball, or to not cooperate via shooting the ball directly at the 
opponent goal area. In this research, the authors used the layered learning approach to 
design an action selection mechanism that allowed soccer agents to anticipate if coop-
eration with a particular teammate would be advantageous. This action selection 
mechanism was implemented in several experiments, and proved successful in en-
couraging cooperative behavior, and outperformed an approach for team control that 
did not utilize this action selection mechanism. A comparison in performance was 
made in terms of the evaluation criteria, of the number of goals scored, and the time 
for which a team maintained control of the ball. 

The cooperative team-level behaviors described in this series of research papers 
were not emergent in the sense that is typically referred to in artificial life literature, 
as these cooperative team-level behaviors relied largely upon individual agents learn-
ing action selection mechanisms based upon decision tree confidence factors. Coop-
erative behavior was emergent in the sense that a series of decisions by individual 
soccer agents regarding whether to pass the ball or not formed a team-level behavior 
that was more successful in terms of goals scored and the time for which the team 
maintained control of the ball. In many experiments, the game scenarios tested did not 
reflect a complete range of scenarios that would be required in an actual RoboCup 
soccer match, and in certain cases it was unclear if the cooperative behavior exhibited 
would generalize to a broader class of game situations. Though, the layered learning 
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approach provided an excellent methodology for the learning of cooperative behavior 
in a task environment where its inherent complexity prevented the derivation of a 
direct mapping from sensors to actuators via the use of more traditional learning 
methods.  

2.3   Cooperative Behaviors with Neuro-evolution  

In the research theme of using artificial evolution to derive cooperative behavior 
within a team of soccer agents, Whiteson et al. [27] compared and evaluated two 
different neuro-evolution approaches for the synthesis of cooperative behavior. These 
methodologies attempted to derive cooperative behavior within a group of three soc-
cer agents for the keep-away soccer task environment [28], [29], [30]. Using these 
neuro-evolution methodologies, soccer agents first learnt a small number of sub-tasks 
that were then combined, as dictated by an artificial evolution process, such that an 
overall complex behavior emerged.  The authors compared two neuro-evolution ap-
proaches for evolving cooperative behavior amongst a team of keeper [28], [29], [30] 
soccer agents. In the first approach, genome strings encoded synaptic weights of a 
population of complete neural network controllers. These genomes were evaluated in 
each generation, the fittest individuals selectively reproduced, and subsequently 
propagated throughout the evolutionary process. In the second approach, the enforced 
sub-populations method [40] was used to evolve sub-populations of neurons, instead 
of evolving complete controllers as in the first approach.  

Results elucidated that both approaches evolved a successful neural network con-
troller, though the enforced sub-populations approach performed significantly better 
in terms of the evaluation measures defined for the keep-away soccer task and in 
facilitating emergent cooperative behavior. Although the enforced sub-populations 
approach proved superior in these experiments, an obvious criticism of this approach 
is that for more difficult tasks, for example those not executed in a grid-world envi-
ronment, the solution space would be too large for an artificial evolution algorithm to 
search effectively and construct an appropriate controller. 

2.4   Cooperative Behaviors with Layered Learning and Genetic Programming    

Hsu and Gustafson [29], [30] investigated a methodology for facilitating emergent 
cooperative behavior using the keep-away soccer task. The methodology combined 
layered learning [32] and genetic programming [41] approaches. The authors argued 
that using a layered learning approach to genetic programming, as opposed to a pure 
genetic programming approach, team-level behaviors such as cooperation could read-
ily be derived.  

In several experiments, the authors compared a standard genetic programming ap-
proach [41] with their methodology that combined layered learning and genetic pro-
gramming. These experiments highlighted that the layered learning approach was able 
to more quickly evolve cooperative behavioral strategies within the team of keepers, 
and with a higher fitness comparative to the standard genetic programming approach. 
The authors argued that the layered learning approach allowed for a workable decom-
position of a complex problem into many readily solvable sub-problems, and that for 
each of these sub-problems, corresponding fitness functions were readily identifiable. 
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Using the layered learning approach, team-level behavior was formed via the evolu-
tion of complementary keeper strategies, such that when the three keepers interacted 
with each other, an overall cooperative behavior emerged.  This cooperative team-
level behavior was derived in a bottom-up manner, where keepers first learnt the 
skills necessary to cooperate as a pair of players, and then as a team of three players.   

The key criticism of this research is that only homogenous teams were evolved, 
and team level cooperative behavior was derived from the use of only two layers in 
the layered learning approach. Specifically, only two low-level behaviors were used 
in the derivation of team-level behaviors. Also, the use of a grid world placed severe 
limitations on the form of cooperative team-level behavior that could be evolved. 

2.5   Cooperative Team Behaviors with Genetic Programming  

In a similar theme of research, Luke et al. [33] implemented genetic programming 
techniques within a RoboCup simulator, in an attempt to evolve cooperative behavior 
within an entire team of eleven soccer agents. The performance of different genetic 
programming techniques were compared for the derivation of cooperative behavior, 
where such cooperative behavior was evaluated according to the criteria of the num-
ber of goals scored by the team, the number of successful passes, and the period of 
time for which the team maintained control of the ball.  

Luke et al. [33] used the Strongly Typed Genetic Programming (STGP) technique 
[42] to simultaneously test entire teams of soccer agents against each other in com-
petitive co-evolution scenarios. After many generations of the co-evolutionary proc-
ess, cooperative behavior emerged within each of the competing teams that effec-
tively combined offensive and defensive team-level strategies. In a final set of evolu-
tionary runs, cooperative team-level behaviors were evolved such that different 
groups of soccer agents within each team, cooperated with each other in a comple-
mentary manner, via simultaneously defending the goal area, and dispersing through-
out the field holding certain positions so as to increase the chance of receiving a pass 
from fellow soccer agents.  Such cooperative behaviors prevented the soccer agents 
from interfering with each other, as had occurred in early evolutionary runs,  
where many agents were closely gathered about the ball in an attempt to gain control 
of it.  

The key problem with these experiments was that they relied purely upon a com-
petitive co-evolution process, and the functionality of genetic programming in order 
to produce cooperative behavior within a team of soccer agents. Meaning that in order 
to evolve team-level cooperative behavior within a feasible amount of time, several 
constraints had to be placed on the artificial co-evolution process, such as limited 
population sizes, and teams composed of functionally simple agents. Additionally, 
cooperative behaviors that emerged under the co-evolutionary process could only be 
analyzed from a purely observational perspective. That is, fitness comparisons be-
tween the competing teams only illustrated progress and counter progress of emergent 
cooperative behaviors, and did not correspond to ‘true’ evolutionary progress [43] 
given the fitness landscape of both teams were continuously changing due to the Red 
Queen affect [44].  
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3   Future Directions  

The aim of the survey was not to provide an exhaustive list or compilation of all re-
search in RoboCup, but rather to highlight prevalent examples of when emergent 
cooperation facilitates a solution that would not otherwise be attainable.  The survey 
primarily argued that the majority of RoboCup emergent cooperative behavior re-
search utilized simple or limited game tasks usually involving only two or three simu-
lated robots.  It is evident from the literature that design methodologies based upon 
concepts such as artificial evolution, are deemed by many researchers, to be an effec-
tive means for investigating the conditions under which cooperation emerges. Unfor-
tunately, current RoboCup systems lack a proven methodology that allows the trans-
fer of emergent cooperative behavior design mechanisms to algorithms that can be 
used effectively in real world multi-robot systems.  Additionally, the use of evolu-
tionary computation was highlighted in many cases as being an effective means for 
the derivation of cooperative behavior.  Though, use of artificial evolution is still 
largely in a stage of research infancy, so evolution of cooperation is currently limited 
to simple forms in task scenarios (aspects of the game only) comprised of simple 
individuals.  

In the research reviewed, several key open problems were identified. These prob-
lems were not constrained by the nature of RoboCup, but rather by the infancy of the 
biologically inspired design mechanisms and a lack of analytical methods and tech-
niques. It is obvious that if emergent cooperative behavior derived from RoboCup is 
to be used to any great benefit, especially in real-world multi-robot systems, then it is 
important that future research address certain open problems. For example, design 
methodologies for achieving desired emergent cooperation would ideally need to be 
scalable and defined by algorithms and methods of analysis that are equally applica-
ble in the physical world.  Given the early stage of research and development of Ro-
boCup and the relative infancy of the notion of emergent cooperation as a means of 
solving multi-robot tasks, it is justifiable that standardized methods for deriving, test-
ing, proving the convergence of, and evaluating emergent cooperative behavior do not 
yet exist.  
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Abstract. The domain of robotic soccer is known as a highly dynamic
and non-deterministic environment for multiagent research. We intro-
duce an approach using Hierarchical Task Network planning in each of
the agents for high-level coordination and description of team strategies.
Our approach facilitates the maintenance of expert knowledge specified
as team strategies separated from the agent implementation. By com-
bining high level plans with reactive basic operators, agents can pursue
a grand strategy while staying reactive to changes in the environment.
Our results show that the use of a planner in a multiagent system is both
possible and useful despite the constraints in dynamic environments.

1 Introduction

Coordination among different agents in a multiagent system (MAS) is considered
as one of the most import challenges in order to achieve a common goal. This
task becomes increasingly difficult in highly dynamic, partially observable, and
adversarial environments such as robotic soccer. Noisy sensor data and imperfect
actuators further add to this problem.

For our work, we have in mind a multiagent system where the user specifies
not only a general task for the system, but also the way specific situations
are handled. On the other hand, the user can expect a certain set of available
primitives that handle simple tasks on their own. The idea is that a designer can
change the team behavior for specific situations. With the widely used reactive
approaches, changes are complicated because of interdependencies so that simple
changes can have impact on more than one situation. Another observation we
made with previous approaches was the difficulty to specify strategies for reactive
multiagent teams. Even though reactivity is a key quality in soccer, long term
strategies seem to be as useful. Classical planning approaches are a solution to
compute actions that lead towards given goals, but are in general regarded as
not applicable to highly dynamic multiagent scenarios.

In this work, we suggest to use Hierarchical Task Network (HTN) planners
in each of the agents in order to achieve coordinated team behavior, while at
the same time our agents should always follow the strategy as suggested by
the human expert. The expert knowledge should be separated from the rest
of the agent code, in a way that it can be easily specified and changed. While
pursuing the given strategy, the agents should keep as much of their reactiveness
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as possible. Different levels of detail in the description of strategies facilitate the
generation of useful information for debugging or synchronization.

HTN planning is based upon work presented in [15]. It makes use of domain
knowledge to speed up the planning and is able to solve classical planning prob-
lems orders of magnitude more quickly than classical planners if provided with a
good set of HTNs. In our work, we followed the formalization of soccer domain
knowledge in [5] but adapted it for the use in HTN planning.

Furthermore, we show how it is possible to use an HTN planner in the domain
of robotic soccer, even though it is very different from environments used in
classical planning with deterministic operators and a single planning agent being
the only reason for changes in the world. For our approach, we have chosen a
team of agents in the RoboCup Soccer Simulation League 3D [8].

We start by reviewing relevant related work, and then describe our approach
in detail, outlining problems that arose while trying to adapt the planner to be
used in the MAS, and the solutions to overcome them. We present and discuss
the results of our first tests and give directions for future work.

2 Related Work

Several approaches that use a planning component in a MAS can be found in the
literature. In [4], the authors describe a formalism to integrate the HTN planning
system SHOP [13] with the IMPACT [17] multiagent environment (A-SHOP).
While the environment of this work clearly is a multiagent system, the planning
is carried out centralized by a single agent. This is a contrast to our approach,
which uses a planner in each of the agents to coordinate their actions.

Bowling et al. [2] presents a strategy system that makes use of plays to coordi-
nate team behavior of robots in the RoboCup Small Size League. Multiple plays
are managed in a playbook which is responsible to choose appropriate plays, and
evaluate them for adaption purposes. Effects of individual plays are not speci-
fied due to the difficulties in predicting the outcome of operators in the dynamic
environment. This is in contrast to our approach, as we use desired effects of the
operators in our plans as described in section 3. The planning component in [2]
is also centralized.

In [9], the use of coordination graphs [7] to coordinate a team of agents in
dynamic environments without explicit communication is proposed. The coor-
dination graphs are applied to the continuous domain of robotic soccer where a
discretization of the state is achieved by assigning roles to the different agents,
similar to the approach in [16]. The coordination graphs are then built on the
derived set of roles.

In [11, 12], the behavior of agents in a Multiagent System is specified using
UML statecharts. Agents are designed in a top-down manner with a layered
architecture. At the highest level global patterns of behavior are specified in an
abstract way. Explicit specification of cooperation and multiagent behaviors can
be realized.
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method diagram_4
pre [ is_current_formation(F),

#formation(F,A,back,_,Side),
#formation(F,B,forward,_,Side),
#formation(F,C,_,attacking,center),
#formation(F,D,forward,_,OtherSide),
#different(Side,OtherSide),
#different(Side,center)

]
subtasks [pass(A,B),

pass(B,C),leading_pass(C,D)].

Fig. 1. Building up play with Diagram #4 from [10] (left) and its notation as HTN
method for our planner (right). Preconditions prefixed with ’#’ denote function calls.

3 A Planner for Soccer Agents

The main focus of our work was to achieve high-level coordination for a team
of several agents in a dynamic environment. All planning should be done in a
distributed fashion. The system should allow for easy specification of team plans,
and automatically generate individual actions for the agents during execution.

In [5], we present an approach to model soccer knowledge, as it can be found
in soccer theory books. The focus of this work was the representation of diagrams
used in [10] to describe moves to be used in specific phases of the match. We
derive an ontology from [10] which breaks down the top level task play soccer into
subtasks by means of aggregation and specialization. A subset of this ontology
can be found in Tab. 1. The hierarchy of the tasks and subtasks facilitates the
collection of useful debugging output during development.

In Hierarchical Task Network (HTN) planning, the objective is to perform
tasks. Tasks can be complex or primitive. HTN planners use methods to expand
complex tasks into subtasks, until the tasks are primitive. Primitive tasks can be
performed directly by using planning operators. Changes to basic HTN planning
algorithms are necessary in order to use it for the soccer domain, because here
the outcome of operators is not deterministic.

Because it is impossible to foresee how the world will look like after a few
actions, our planner generates what is called plan stub in [1], a task network
with a primitive task as the first task. As soon as a plan stub has been found,
an agent can start executing its task. The algorithm in Fig. 2 expands a list of

Table 1. Some complex tasks with subtasks (’|’: alternatives; ’,’: sequences)

play soccer offensive phase | defensive phase | nothing
offensive phase upon ball possession, build up play, final touch, shooting
build up play build up play long pass | build up play diagonal pass
build up play long pass diagram 3 | diagram 4 | . . .
diagram 4 pass(A,B), pass(B,C), leading pass(C,D)
pass(B,C) do pass(B) | do receive pass | do positioning
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Function: plan(snow, < t1, ..., tk >, O, M)
Returns: (w, s), with w an ordered set of tasks, s a state; or failure

if k = 0 then return (∅, snow) // i.e., the empty plan
if t1 is a pending primitive task then

active ← {(a, σ)|a is a ground instance of an operator in O,
σ is a substitution such that a is relevant for σ(t1),
and a is applicable to snow};

if active = ∅ then return failure;
nondeterministically choose any (a, σ) ∈ active;
return (σ(< t1, ..., tk >), γ(snow, a));

else if t1 is a pending complex task then
active ← {m|m is a ground instance of a method in M ,

σ is a substitution such that m is relevant for σ(t1),
and m is applicable to snow};

if active = ∅ then return failure;
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(< t1, ..., tk >);
set all tasks in front of t1 to pending, set t1 to expanded ;
return plan(snow, w, O, M);

else
// t1 is an already executed expanded task and can be removed
return plan(snow, < t2, ..., tk >, O, M);

Fig. 2. Creating an initial plan stub (Notation according to [6])

tasks to a plan stub. At the same time, the desired successor state is computed
and returned. The second algorithm (see Fig. 3) removes executed tasks from
the plan and uses the first algorithm then to create an updated plan stub.

To handle non-determinism, we treat a plan as a stack. Tasks on this stack
are marked as either pending or as expanded. Pending tasks are either about to
be executed, if they are primitive, or waiting to be further expanded, if they are
complex. Tasks marked as expanded are complex tasks which already have been
expanded into subtasks. If a subtask of a complex task fails, all the remaining
subtasks of that complex task are removed from the stack and it is checked if the
complex task can be tried again. If a task was finished successfully, it is simply
removed from the stack.

Our plan operators realizing primitive tasks describe only the desired effects
of an action. Using desired effects of an action we can check if the action was
executed successfully. Simultaneously executed actions which are not part of the
desired effects of the operator are simply ignored in the description.

To give an example, we assume that the planner is about to plan for a situation
like in Fig. 1 and the complex task play soccer has already been partially
expanded as shown in Fig. 4 (left). All the pending tasks in Fig. 4 are still
complex tasks. At this level of expansion, the plan still represents a team plan,
as seen from a global perspective. The team task pass(2,9) will expand to
do pass(9) for agent #2, agent #9 has to do a do receive pass for the same
team task. The other agents position themselves relatively to the current ball
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Function: step(sexpected, snow, < t1, ..., tk >, O, M)
Returns: (w, s), with w a set of ordered tasks, s a state; or failure

if k = 0 then return (∅, snow) // i.e., the empty plan
if t1 is a pending task then

if sexpected is valid in snow then
i ← the position of the first non-primitive task in the list;
return plan(snow, < ti, ..., tk >, O, M);

else
// t1 was unsuccessful; remove all pending children of our parent task
return step(sexpected, snow, < t2, ..., tk >, O, M);

else
// t1 is an unsuccessfully terminated expanded task, try to re-apply it
active ← {m|m is a ground instance of a method in M ,

σ is a substitution such that m is relevant for σ(t1),
and m is applicable to snow};

if active = ∅ then
// t1 cannot be re-applied, remove it from the list and recurse
return step(sexpected, snow, < t2, ..., tk >, O, M);

else
nondeterministically choose any (m, σ) ∈ active;
w ← subtasks(m).σ(< t1, ..., tk >);
set all tasks in front of t1 to pending, set t1 to expanded ;
return plan(snow, w, O, M);

Fig. 3. Remove the top primitive tasks and create a new plan stub

pending-pass(2,9)

pending-pass(9,10)

pending-leading-pass(10,11)

expanded-diagram-4

expanded-build_up_long_pass

expanded-build_up_play

pending-final_touch

pending-shooting

expanded-offensive_phase

expanded-play_soccer

method pass(A,B)
pre [my_number(A)]
subtasks [do_pass(B) with pass(we,A,B),

do_positioning].

method pass(A,B)
pre [my_number(B)]
subtasks [do_receive_pass with pass(we,A,B)].

method pass(A,B)
pre [my_number(C),#\=(A,C),#\=(B,C)]
subtasks [do_positioning with pass(we,A,B)].

Fig. 4. Plan stack during planning (left) and different methods to reduce the team task
pass(A,B) to agent tasks (right)

position with do positioning at the same time. The desired effect of pass(2,9)
is the same for all the agents, even if the derived primitive task is different
depending on the role of the agent. To express that an agent should execute
the do positioning behavior while taking the effect of a simultaneous pass
between two teammates into account, we are using terms like do positioning
with pass(we,2,9) in our planner. Figure 4 (right) shows methods reducing
the team task pass(A,B) to different primitive player tasks.
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pending-(do_receive_pass with

pass(we, 2, 9)),

expanded-pass(2, 9),

pending-pass(9, 10),

pending-leading_pass(10, 11),

expanded-diagram-4,

...

pending-(do_positioning with

pass(we, 2, 9)),

expanded-pass(2, 9),

pending-pass(9, 10),

pending-leading_pass(10, 11),

expanded-diagram-4,

...

Fig. 5. Step 1: Plan Stubs for player 11 and player 9 (see also Fig. 1)

pending-(do_pass(10) with

pass(we, 9, 10)),

pending-do_positioning,

expanded-pass(9, 10),

pending-leading_pass(10, 11),

expanded-diagram_4,

...

pending-(do_positioning with

pass(we, 9, 10)),

expanded-pass(9, 10),

pending-leading_pass(10, 11),

expanded-diagram_4,

...

Fig. 6. Step 2: Plan Stubs for player 11 and player 9

In different agents, the applicable methods for the top team task pass(2,9)
lead to different plan stubs. This is an important difference to the work presented
in [1]. The plan stubs created as first step for agent 9 and agent 11 are shown in
Fig. 5. When a plan stub is found, the top primitive tasks are passed to the C++
module of our agent and executed. The agent has to execute all pending primitive
tasks until the next step in the plan starts. If there are pending primitive tasks
after one step is finished, these agent tasks are simply removed from the plan
stack and the next team task can be expanded. Figure 6 shows the plan stub for
the second step from the diagram in Fig. 1. For player 11, the expansion leads
to a plan stub with two primitive tasks in a plan step while for player 9 there
is only one task to be executed. Each step in plans for our team stops or starts
with an agent being in ball possession. If any of the agents on the field is in ball
possession, we can check for the desired effect of the previous action.

4 Results and Discussion

For our approach of generating coordinated actions in a team we implemented
an HTN planner in Prolog which supports interleaving of planning and acting.
Our planner supports team actions by explicitly taking the effects of operators
simultaneously used by teammates into account. The planner ensures that the
agents follow the strategy specified by the user of the system by generating
individual actions for each of the agents that are in accordance with it. The
lazy evaluation in the expansion of subtasks which generates plan stubs rather
than a full plan, makes the planning process very fast and enables the agents to
stay reactive to unexpected changes in the environment. The reactiveness could,
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however, be increased by adding a situation evaluation mechanism that is used
prior to invoking the planner. This would improve the ability to exploit sudden,
short-lived opportunities during the game.

Creating strong teams is possible with many approaches. We strongly be-
lieve that our approach leads to a modular behavior design and facilitates rapid
specification of team behavior for users of our agent architecture. Our plans
can describe plays as introduced in [2], which have shown to be useful for syn-
chronization in a team. Our approach supports different levels of abstraction in
plans. That means there are different levels of detail available to describe what
our team and each single agent is actually doing. Additionally, the planner can
find alternative ways to achieve tasks. The approach in [2] was used for Small
Size League; but for larger teams, more opportunities are possible for which an
approach using fixed teammates seems to restrictive. On the other hand, the
approach in [2] supports adaptation by changing weights for the selection of suc-
cessful plays. In our approach, the corresponding functionality could be achieved
by changing the order in which HTN methods are used to reduce tasks. At this
point in time, our approach does not support this yet. As soon as we do have an
adaptive component in our approach, it makes sense to compare results of our
team with and without adaptation.

Although more detailed evaluations have to be carried out, the first tests
using the planner seem very promising and indicate that our approach provides
a flexible, easily extendable method for coordinating a team of agents in dynamic
domains like the RoboCup 3D Simulation League.

5 Conclusion and Future Work

We presented a novel approach that uses an HTN planning component to coor-
dinate the behavior of multiple agents in a dynamic MAS. We formalized expert
domain knowledge and used it in the planning methods to subdivide the given
tasks. The hierarchical structure of the plans speeds up the planning and also
helps to generate useful debugging output for development. Furthermore, the
system is easily extendable as the planning logic and the domain knowledge are
separated.

In order to use the system in RoboCup competitions, we plan to integrate a lot
more subdivision strategies for the different tasks as described in the diagrams
in [10]. A desirable enhancement to our work would be the integration of an
adaption mechanism. Monitoring the success of different strategies against a
certain opponent, and using this information in the choice of several applicable
action possibilities, as e.g. outlined in [2], should be explored. The introduction
of durative actions into the planner (see for instance [3]) would give a more fine
grained control over the parallelism in the multiagent plans. Finally, we want
to restrict the sensors of the agents to receive only partial information about
the current world state, and address the issues that result for the distributed
planning process.
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4. Jürgen Dix, Héctor Muñoz-Avila, and Dana Nau. IMPACTing SHOP: Planning in
a Multi-Agent Environment. In Fariba Sadri and Ken Satoh, editors, Proceedings
of CLIMA 2000, Workshop at CL 2000, pages 30–42. Imperial College, 2000.

5. Frank Dylla, Alexander Ferrein, Gerhard Lakemeyer, Jan Murray, Oliver Obst,
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Abstract. The field of machine learning is concerned with the question of how 
to construct computer programs that automatically improve with experience. 
The aim of this paper is to describe a learner machine which can be used in dif-
ferent learning problems without any change in the system. We designed such a 
machine using k-nearest neighbors algorithm. How to optimize k-nearest 
neighbors algorithm to be effectively used in the machine is also discussed. Ex-
perimental results are also demonstrated at the end. 

1   Introduction 

Most of the machine learning jobs we do today are in the shape of solution-finding to 
a specific problem, in which we know what the exact problem is, we find a solution 
for that and this solution is specialized for that kind of problem or similar ones with 
their specific features. But now think about a new learning machine which is designed 
before defining a learning problem, and it can be applied to a large number of learn-
ing problems, or in other words a General-Purpose Learning Machine (GPLM).  A 
GPLM should be suitable for using in different jobs with their different demands, and 
therefore should have the following characteristics: 

1. Disusing intellectual cost for adapting the machine to a special problem: It means 
that the learning machine should receive the training sets as a block-box, and it 
should not need any other intellectual input about the current problem. For exam-
ple, in Artificial Neural Networks (ANN) [1], [2], for each specific problem, a 
topological structure should be determined for the net and this requires a human in-
tellectual power or in other words, designing a systematic algorithm for doing the 
task, to be used by a computer, would be troublesome. 

2. Fast and online learning: A GPLM should also satisfy online learning problems. 
3. Fast and efficient response: A GPLM should use its learned knowledge fast 

enough, to be utilized in real-time problems. 
4. Additional learning: A GPLM should be able to receive new training sets any time, 

with minimum disturbance to the previous learned knowledge. 
5. No limitation for the problem-type it can be applied to: For example, decision trees 

[1] are well-suited for discrete values, and they can not deal with real-valued  
numerals well. 

Various learning methods are available, but few of them satisfy the generality points 
described above. Among them learning networks like ANN, Cerebellar Model  
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Articulation Controller (CMAC) [3] and instance-based learning methods [1] are 
more relevant to our purpose. ANN provides a robust approach to approximating real-
valued, discrete-valued, and vector-valued target functions. Nevertheless, as it was 
mentioned before, it does not satisfy the first, second and fourth points. CMAC, 
which is another type of learning nets and does local generalization, is a good candi-
date for applications where low cost embedded solution and high-speed operation 
with real-time online adaptation are required, e.g., in smart sensors, in measuring 
systems, etc. However, CMAC uses quantized input, so the number of the possible 
different input data is finite. It also can not be used for high-dimensional problems 
effectively. The two latter reasons suppress CMAC from covering the fifth generality 
point, which is so important for a general system. 

Another generation of learning methods which do not provide an explicit definition 
of target function, after the training session, is instance-based learning algorithms. 
Generalization beyond training set is postponed until a new instance must be classi-
fied. Each time a new query instance is encountered, its relationship to the previous 
stored examples is examined in order to assign a target function value for the new 
instance. Instance-based methods are sometimes referred to as “lazy” learning meth-
ods because they delay processing until a new instance must be classified. Case-Based 
Reasoning (CBR) [1] is a more general type of instance-based method. In CBR in-
stances are presented in a rich symbolic form. During the learning phase instances are 
saved in a database, and each time an unknown instance should be classified, a few 
similar instances are retrieved from the database and through a generalization process 
beyond them, the target value of the unknown instance is estimated. In this method, 
for each special problem, the presentation manner of the instances and also the defini-
tion of similar instances should be determined first, and it requires intellectual cost. 
Therefore K-Nearest Neighbors (KNN) [1] which is a more specific facet of CBR 
would be a better choice. In KNN the presentation form of the instances is fixed. 
Instances are presented in the shape of multi-dimensional points and the similarity is 
defined according to Euclidian distance between two instances. By now, we can indi-
cate that KNN satisfies all the generality points above except the third one. This un-
satisfactory refers to the “lazy” nature of instance-based methods, and can be covered 
using multi-dimensional index structures [4], [5]. We’ll talk about it and other obsta-
cles, in the way of matching KNN to be efficiently used in GPLM, later.  

2   GPLM Structure 

2.1   Where Does the Idea Come from? 

The GPLM idea comes from human brain structure. Human being can learn various 
things without changing the structure of his brain. A simple view of the brain from 
learning point of view is shown in Fig. 1. a. Different samples from different fields 
enter the brain through the five senses, or maybe a feedback from the brain, and 
would be memorized. Each time an unknown instance enters; the brain uses its previ-
ous experiences and produces the output via some unknown procedures. The Brain 
should deal with different types of learning problems through a fixed structure. For 
example, one learning entry is about math and the other is about soccer. According to 



 General-Purpose Learning Machine Using K-Nearest Neighbors Algorithm 531 

this issue, we can conclude that the brain uses the same learning procedures for dif-
ferent problems. This conclusion strikes the idea of designing a general machine, 
which uses the same learning process for different problems, to be utilized for various 
learning problems or better to say a GPLM. 

2.2   GPLM as a Black Box 

Overall structure of GPLM as a black box is shown in Fig. 1. b. A set of training in-
stances for a specific problem enters the machine and machine life cycle starts. “Spe-
cific” here, does not mean that the machine is designed for special-purpose use. For 
another learning problem a copy of machine can be used or we can restart the previ-
ous one and reinitialize it for new problem. But each time a machine is initialized for 
a problem; it’ll be specialized to that. The training set, after entering the machine, 
would be used in order to find the output of unknown instances which get in from 
another entry. Moreover, the machine is able to learn new instances which are sepa-
rately presented in the figure. The stippled line which links output to an additional 
learning entry implies that we can have feedback from output to input. A problem 
may strike the mind that is this job necessary: to use our estimated outputs for learn-
ing while the same procedure will be applied next time and the same output will be 
estimated? Indeed, it is not necessary and it can also disturb the future estimations, 
but if next time we need the same value as before, the operation will be sped up and 
repeated operations won’t be done. 

 

Fig. 1. a) A simple view of human brain from the learning point of view. Note that training 
inputs may be from different fields, e.g. how to solve a special kind of math problem, how to 
shoot in soccer, etc. b) A GPLM structure as a black box. 

2.3   Why KNN? 

We introduced GPLM as a black box, and we didn’t discuss what kind of processes is 
done inside. We proposed KNN for its internal structure and we’ll present an imple-
mented sample of GPLM with this algorithm. But in this section we’ll talk about the 
philosophy of using KNN in the machine. 

ANN and CMAC are imitations of the brain physical structure in a way. A similar 
structure to the brain is simulated in computer and used for solution-finding to learn-
ing problems. In other words, ANN and CMAC are imitations of the brain hardware. 
Now, we’d like to find out what kind of software controls the brain or better to say 
we’d like to mimic the brain software. Finding an answer to this question may be so 
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difficult, but good sources which can help us find the answer are ourselves, how we 
think, how we learn and etc. 

Clarifying the discussion, we propound an example. Consider a soccer player, 
while the ball is traversing in the air. He wants to estimate where the ball hits the 
ground in order to get there and intercept it. Soccer players do this well. What kind of 
processing takes place inside the player’s mind for this estimation? Suppose that this 
position depends on the ball’s velocity, angle and gravity. The position can be deter-
mined via physics. But does the player use physics formulas? Of course not. Now, 
suppose that the player is transferred to another planet with a different gravitational 
force. He can’t do the job as well as before at the beginning, but little by little gets 
better. Therefore, we can firmly express that the player do the job by way of experi-
ence. How do the player’s experiences help him estimate the solution in the new 
state? An interesting and reasonable idea is: each time the same event happens, an 
illustration (or maybe a piece of film) of that, is saved in player’s mind. For a new 
state, while the ball is traversing in the air, the player recalls some illustrations similar 
to this state1, and then through a set of comparative operations between the new one 
and the previous recalled instances, the value of the new state is estimated. The reason 
we emphasize on the word illustration is the astonishing power of human being in 
imagination and image processing, in which the computer is relatively weak. For 
example, using a map is easy for a man but if he is given the map in the shape of 
numeric positions, using it, is almost impossible. Computer works vice versa2. The 
player example gave us an idea about the brain software: 

* Instances are saved in the mind in the shape of illustrations. Each time an unknown 
instance should be predicted, a few similar illustrations are recalled and then through 
a set of comparative operations the target value of the new instance is predicted.  

Such image processing software in a computer would be so time-consuming and 
even impractical, because we have a completely different hardware: a large amount of 
neurons in the brain versus digital serial computers. We know that computers are ro-
bust in numeric computations and weak in image processing. Thus we are convinced 
with the idea of comparative operations in the brain and instead of applying image 
comparison we use numerals. Moreover, recalling similar states in the brain is equiva-
lent to finding the nearest neighbors in KNN algorithm. So the idea above can be al-
tered to the following, to become more feasible for implementing in digital computers: 

** Instances are saved in a database in the shape of multi-dimensional points. Each 
time an unknown instance should be estimated, a few of the nearest points are re-
trieved and then through a set of numeric comparisons the target value of the new 
instance is estimated.  

Comparing the * and the ** ideas, we can indicate that the software which controls 
the brain is similar to CBR, and because of the debate of generality mentioned before, 
KNN which is a more specific facet of CBR, would be suitable for the current digital 
computers. 

                                                           
1 This situation, to recall similar things while seeing an object, happens very often. For in-

stance, when you see somebody like your father, you recall your father as well. 
2  Interesting discussions about differences between human and computer can be found in [6]. 
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3   Practical Design and Implementation of GPLM 

We studied GPLM as a black box in the previous section and we did not say anything 
about its internal structure. In this section we’ll design the internal system with KNN 
algorithm and study the obstacles in the way of reaching our scope. It is necessary to 
introduce some parameters: 

    N: total number of saved instances 
    k: number of required instances for generalization 
    m: number of attributes which the output value depends on 

In practical applications:  

kmN ,>>    ,    km ≈  (3) 

A GPLM which uses KNN as an internal system is displayed in Fig. 2. At the begin-
ning of the machine job a set of N training instances, the value of k and an array 
which determines the range of each attribute enter the machine. These training points 
will be stored in the database. When an unknown instance enters, the machine finds k 
nearest points to it. Its output value then will be estimated through a generalization 
beyond these found points and will be sent out as output. Besides each time a new 
training instance enters the machine it will be stored in the database. 

By now, overall process in GPLM has been covered. But for practical implementa-
tion, there are some issues which are discussed in the following sections. 

 

Fig. 2. Overall structure of GPLM, with KNN applied to it 

3.1   Laziness 

The way a GPLM works was described briefly, but implementing it in an optimal way 
is not that easy. In this structure, when the training instances enter, they are just saved, 
and then when we need to estimate an unknown instance we have to search among N 
points. This operation for great values of N, m is really costly and can not be applied. 
The operation of delaying process to the retrieval time is called laziness. In order to 
avoid this problem various indexing methods have been proposed, such as KD-Trees. 
An overview of these methods will show that finding k nearest neighbors exactly, for 
high-dimensional spaces (e.g. greater than 50), is really time-consuming and can not 
be applied. In order to overcome the problem, we should attend that the nature of 
learning is approximation according to the previous knowledge. So instead of finding 
the k nearest neighbors exactly, approximate k nearest neighbors can be found. For 
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example, in KD-Trees the approximate nearest neighbor is found with the cost of 
)(log NO , and then for finding the exact nearest neighbor an algorithm with the cost 

of )2( mO  should be applied. Therefore eliminating the latter phase will substantially 

reduce the cost of query. With a little change to the previous indexing methods, we 
can find the approximate k nearest neighbors fast enough. Thus the laziness problem 
can be overcome by approximate KNN retrieval. 

3.2   Curse of Dimensionality 

Another practical issue in applying KNN algorithms is that the distance between 
points is calculated based on all attributes (i.e., on all axis in the Euclidean space 
containing the instances). To see the effect of this policy, consider applying KNN to a 
problem in which each instance is described by 20 attributes, but where only 2 of 
these attributes are effectively relevant to determining the output value. In this case, 
instances that have identical values for the 2 relevant attributes may nevertheless be 
distant from one another in the 20-dimensional space. As a result, the similarity met-
ric used by KNN depending on all 20 attributes will be misleading. The distance be-
tween neighbors will be dominated by the large number of irrelevant attributes. This 
difficulty, which arises when many irrelevant attributes are present, is sometimes 
referred to as the curse of dimensionality. KNN algorithms are especially sensitive to 
this problem (see Fig. 3. a). 

 

 

Fig. 3. a) Stippled curve relates to a problem which suffers from curse of dimensionality. b) 
Stretching and shortening axis can affect the value of Euclidian distance between instances. In 
the left space b is closer to X, but in the right one a is. 

One interesting approach to overcoming this problem is to weight each attribute dif-
ferently when calculating the distance between two points, or we can stretch or shorten 
the domain space for some axis (see Fig. 3. b). The attributes which are more relevant 
should be shortened in their axis and vice versa. The amount by which each axis 
should be stretched can be determined automatically using a cross-validation approach. 
To see how, first note that we wish to stretch (multiply) the jth axis by some factor

jz , 

where the values 
1z …

nz  are chosen to minimize the output value error of the KNN 

algorithm. Second, note that this error can be estimated using cross-validation. Hence, 
one algorithm is to select a random subset of the available initial training examples, 
then determine the values of 

1z …
nz  that lead to the minimum error in estimating the 

remaining examples. By repeating this process multiple times the estimate for these 
weighting factors can be made more accurate. This process of stretching the axis in 
order to optimize the performance of KNN provides a mechanism for suppressing the 
impact of irrelevant attributes. For more detailed solutions see [7], [8]. 
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The cross-validation algorithm which just described briefly may need a great deal 
of time, but it is done when the machine is initialized and its output factors are saved. 
Thus there won’t be any effect on the retrieval and the learning time.  

3.3   Generalization from Nearest Neighbors 

Another important issue in KNN algorithms is generalization from the retrieved 
neighbors. A few effective and efficient methods have been developed such as distance-
weighted algorithm, locally-weighted regression and etc (see [1]). We are not going to 
talk about these algorithms or maybe a new one. Most of the algorithms are suitable for 
our purpose, but we should be careful of the algorithm time complexity, which may 
negate the efforts for reducing the time of retrieving the k nearest neighbors. 

4   Empirical Results 

We have examined the GPLM in different problems. Two of these examinations are 
presented in this section. 

Consider a soccer player shooting a ball. We’d like to estimate range (R) of the 
shoot. Suppose that R depends on velocity (

xv ,
yv ,

zv ) and acceleration (
xa ,

ya ,
za ). R 

can be determined by way of physics, therefore we supplied training and test sets in 
this way. The result is displayed in Fig. 4. 

 

Fig. 4. Success and error for 6-dimensional shooting range problem, a) error percentage drops 
as N grows, b) error less than 20% is considered as success 

Another practical example which is a challenging problem in RoboCupRescue 
Simulation League, is estimating the amount of water should be poured on fire to be 
extinguished in a cycle. It depends on Area of the burning building and Ignition time. 
Result is displayed in Fig. 5. 

 

Fig. 5. Success and error for 2-dimensional extinguishing problem, a) error drops as N grows, 
b) error less than 20% is considered as success 
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5   Conclusions 

In this paper, we proposed GPLM which is suitable for various learning problems. 
The features of a “General-Purpose Machine” described in the introduction. We get 
the GPLM idea from the brain functionality and proposed KNN for the internal sys-
tem. We also discussed about how to optimize KNN to be efficiently used in GPLM. 
In the computer simulation, we applied GPLM to several learning problems, and the 
simulation results showed that we have achieved our scope of generality. 
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Abstract. Recognition of colored objects is important and practical
for robot vision. This paper proposes a color recognition method which
is robust to illumination change. A color space of Cb/Y and Cr/Y is
introduced where Cb and Cr are color difference and Y is intensity of
YCbCr color space. This color space is not affected by the change of
the brightness of illumination. And a method to update clusters of color
table is proposed. The method can cope with the change of the color of
illumination. Experiments show that the proposed method can recognize
color more robustly for illumination change. RoboCup four legged robot
league is chosen as the research platform.

1 Introduction

Images are widely used by a robot to recognize its environment. Many objects in
the environment where a robot works have some colors and they are useful cues
for recognizing the environment or objects. Color information observed in images
changes according to illumination condition and thus robust object recognition
with color information is not easy. Many studies have dealt with the estimation
of illumination or object color [1][2].

To recognize color fast and simply, a lookup table that relates observed pixels
and color names is effective. Jüngel et al. proposed a method to construct a
table dynamically by scanning an image for the RoboCup field [3]. Mayer et al.
assumed a known environment to find a target object with a given color table and
modify the table [4]. These methods are not applicable to general environment
because of the restriction of the environment for constructing their recognition
method. Hanek et al. utilized shape information instead of color information for
object recognition in RoboCup middle size league [5]. Their method requires
much calculation cost. Dahm et al. proposed a new color space in which color
clustering becomes simpler [6].

We propose a new method to recognize colored objects robustly. A color space
which is simple and robust for illumination change is introduced. A color table
is updated using statistical information of original color cluster and observed

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 537–544, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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pixels. The effectiveness of the proposed methods are verified experimentally.
RoboCup four legged robot league is chosen as the research platform.

2 Camera and Environment

Sony ERS-7 (AIBO) is the common robot for RoboCup four legged robot league.
A CMOS camera is mounted at its nose and used for image acquisition. The
image size is small, 208 × 160 pixels . Its color space is YCbCr. A 4200 mm
× 2700 mm field is used for the match. Objects in the field are a ball, goals,
robots, landmarks and the field itself as shown in Fig. 1. They are colored to
help autonomous behaviors of the robots. It is obvious that color reconition is
fundamental for tasks as self-localization, measurement of ball position, etc.

Ball Orange
Goal Sky blue, Yellow
Field Green, White
Robot Red, Dark blue
Landmark Pink-Sky blue, Pink-Yellow

Fig. 1. Field of RoboCup four legged robot league

3 Camera Calibration

Proper camera calibration is essential for measurement with images. Camera pa-
rameters to calibrate are, intrinsic parameters such as focal length [7], distortion
of the lens, limb darkening etc.

We took advantage of the calibration function of MVTec Halcon image pro-
cessing software [8] to obtain intrinsic and distortion parameters. The distortion
parameter κ is -4683m−2, which is smaller than we expected, and we found that
correction of distortion is not mandatory for image processing with the camera.

Image intensity becomes darker at the limb, and it is called limb darkening
(or vignetting). Theoretically, it is proportional to the fourth power of cosine of
irradiation angle. Fig. 2(a) shows the image of a white drawing paper parallel
to the camera. The limb darkening is obviously observed because the lens is
wide-angle (56.9deg × 45.2deg). Fig. 2(b) shows the intensity values for a row
of image. We can see the limb darkening of the ERS-7’s camera is proportional
to the third power of cosine, not fourth. Fig. 2(c) shows the compensation by
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(a) Original image with limb darkening (c) Compensated image

(b) Limb darkening for a row of image

Fig. 2. Limb darkening of ERS-7 CMOS camera and its compensation

the third power of cosine. Uniform intensity distribution is obtained. However,
compensation of the limb darkening is not mandatory either, for we utilize a
color space robust to the brightness change.

4 Realization of Robust Color Table

4.1 Color Table

In real-time image processing, object recognition with a color image is often re-
alized based on color labeling. Color labeling here means to relate each observed
pixel to an object’s color name such as the ball color. It is realized by thresh-
olding in a color space or by using a lookup table (color table) that relates each
pixel to a color name. We take advantage of the color table for color labeling.
The table-based method has the characteristics of detailed color labeling with
low calculation cost.

4.2 Color Space Robust to Brightness Change

The color space of the ERS-7’s camera is YCbCr as mentioned above. Y, Cb
and Cr represent intensity and color difference of blue and red respectively. For
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Fig. 3. Color disribution of Cb-Cr space and Cb/Y-Cr/Y space

color recognition, Cb and Cr are important. In principle, Cb and Cr change in
proportion to the Y, i.e. Cb and Cr are affected by brightness. Therefore, we
propose a color space of the color differences divided by the intensity; Cb/Y-
Cr/Y space. Color table is constructed and recognition is performed in the
space.

This space is expected to be robust to the brightness change. Fig. 3 shows an
example. A Kodak color chart was captured by the camera, and each pixel value
is plotted in Cb-Cr space and Cb/Y-Cr/Y space. Pink, yellow and green data
of the chart were tested. In Fig. 3, data with suffix “b” and “d” were captured
at bright (1200 lx) and dark (800 lx) environment respectively. We can see that
the Cb/Y-Cr/Y space is not affected by the brightness change. Additionally, we
can see distributions for the dark image tend to become larger. It is because the
effect of noise of the intensity value is magnified by the division.

4.3 Update of Color Table

When illumination changes, observed color information also changes. We propose
a method to cope with the color change to some extent. The basic idea is to
update the color table according to the illumination change.

Fig. 4 outlines the update process. Suppose a reference color table was ac-
quired in advance and average vector and covariance matrix of each cluster of
the color table is calculated as shown in Fig. 4(a)DThe ellipses represents the
points with the same Mahalanobis distance.

The update process of the color table is as follows.

1. Capture an image under an illumination condition and plot each pixels of
the image on Cb/Y-Cr/Y space.

2. Make a cluster with points which have small Mahalanobis distance to the
cluster of the color table as shown in Fig. 4(b). The square of Mahalanobis
distance obeys the χ2 distribution with 2 degrees of freedom and statistical
evaluation is possible.
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Fig. 4. Update of color recognition table

3. Calculate the offset between the cluster made in 2 and the cluster of the
color table.

4. Move the the cluster of the color table by the offset calculated in 3 and make
a new cluster of the color table (Fig. 4 (c)).

By applying the above procedure to each cluster of the color table, an updated
color table is constructed.

5 Experiments

The lighting was by commercially available fluorecent lights. They were adjusted
to 1200 and 800 lx.

5.1 Color Recognition Experiments

First we constructed the reference color table in advance under the 1200 lx illumi-
nation. Three images were used for this. For comparison, we prepared a traditional
color table in YCbCr space. A color is assigned to each point in the YCbCr space.

Fig. 5 shows the results to recognize the color of objects on the field. Fig. 5(a) is
the image used to construct the reference table. Fig. 5(b) by the previous method
and Fig. 5(c) by the proposed method both show the sufficient color recognition.
Fig. 5(d) shows the image under 800 lx and additional lighting of a incandescent
lamp. Brightness itself was changed and color was changed because of the lamp
with red-shifted spectrum. In this condition, the previous method failed to detect
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(a) Input Image (b) Previous method (c) Proposed method

(d) Input Image (e) Previous method (f) Proposed method

(g) Input Image (h) Previous method (i) Proposed method

Fig. 5. Input image and color recognized image by previous and proposed method

the landmarks (Fig. 5(e)) and on the contrary, the proposed method succeeded
in precise color recognition (Fig. 5(f)) . Fig. 5(g) shows another example with the
same lighting condition as Fig. 5(d). In this case, the previous method failed again
(Fig. 5(h)). The proposed method produces much better results (Fig. 5(i)), but
there exist some recognition failures for orange and yellow objects. This is because
the cluster for orange was moved to the yellow pixels and consequently a mixtured
wrong cluster of the table was produced at the update.

5.2 Ball Recognition and Measurent of Distance

We conducted another experiment of recognizing the ball and measuring distance
to it using the produced color table by the proposed color recognition methods.
With its head shaking, the robot tried to recognize the ball and measure its
distance. The ball was set at 300, 500, 1000 and 1500 mm from the robot.
Twenty trials were performed for each distance. The distance to the ball was
measured by two methods: using the number of pixels (when the ball is far) and
using the geometrical configuration between the robot and the ball (when the
ball is near). In both methods, the more precise the color recognition is, the
more accurate the distance measurement becomes.



Improvement of Color Recognition Using Colored Objects 543

Table 1. Ball recognition (number for 20 trials)

1500 1000 500 300
Recognition Recognition Recognition Recognition

Previous method 20 20 20 20

Proposed method 20 20 20 20

Previous method 20 20 20 20

Proposed method 20 19 18 19

Previous method 0 0 0 0

Proposed method 19 20 18 19

Previous method 0 0 0 0

Proposed method 20 18 19 20

1200 lx

1200 lx + blue light

800 lx

800 lx + blue light

Light Method

Table 2. Measurement of ball distance (unit: mm)

Average distance Standard deviation Average distance Standard deviation

Previous method 1873.9 57.5  366.7 13.8

Proposed method 1526.4 38.4 310.8  8.7

Previous method 1920.9 35.4  385.9  5.5

Proposed method 1535.6 23.3 325.8  6.4

Previous method × × × ×

Proposed method 1752.5 45.6  316.4  4.7

Previous method × × × ×

Proposed method 1641.1 27.3  364.0 7.5

800 lx

800 lx blue light

1200 lx

1200 lx + blue light

1500  300
Light Method

The illumination condition was 1200 or 800 lx by the fluorecent lights with
or without a 100W blue incandescent lamp, i.e. four conditions. Table 1 and 2
show the number of successful experiments and results of distance measurement
respectively.

From Table 1, we can observe the following. The previous method only suc-
ceeded when illumination was 1200 lx and every trial failed at 800 lx. It is because
the pixel values of the ball went out of the range assigned in the reference table.
On the contrary, the proposed method almost succeeded in every condition re-
gardless of illumination. There are a few failures, in which an object other than
a ball was recognized wrongly. This is because the cluster of the table invaded
other color region at the update.

As for the distance measurement in Table 2, the proposed method produced
more precise results in every condition. In the previous method, the number of
recognized pixels decreases and thus the distance errors increase. The proposed
method can recognize the pixels robustly, and consequently distance measure-
ment becomes precise.

6 Conclusion

In this study, we have proposed a color recognition method which is robust to
illumination change. A color space of Cb/Y and Cr/Y was introduced where Cb
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and Cr are color difference and Y is intensity of YCbCr color space. The color
space is not affected by the brightness change. And a method to update clusters
of color table was proposed. This method can cope with the change of the color
of illumination. Experiments showed that the proposed method can recognize
color more robustly for illumination change.

One problem is that the shift of the cluster of the table is sometimes not
precise and it causes the failure of color recognition. Future work is to cope
with this problem. And illumination model should be considered which includes
mirror reflectance.
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Abstract. This paper presents selected methods used by the vision sys-
tem of the GermanTeam, the World Champion in the Sony Four-Legged
League in 2004. Color table generalization is introduced as a means to
achieve a larger independence of the lighting situation. Camera calibra-
tion is necessary to deal with the weaknesses of the new platform used in
the league, the Sony Aibo ERS-7. Since the robot camera uses a rolling
shutter, motion compensation is required to improve the information
extracted from the camera images.

1 Introduction

The perceptive layer in a robotic architecture is the primary source of informa-
tion concerning the surrounding environment. In case of the RoboCup 4-legged
league, due to the lack of range sensors (e.g. laser scanners, sonars), the robot
only has the camera to rely upon for navigation and object detection, and in
order to be able to use it to measure distances, the camera position in a robot-
centric reference system has to be dynamically estimated from leg and neck joint
angle measurements, having to deal with noise in these measures. The robot in-
teracts with a dynamic and competitive environment, in which it has to quickly
react to changing situations, facing real-time constraints; image processing tasks
are generally computationally expensive, as several operations have to be per-
formed on a pixel level, thus with an order of magnitude of 105−106 per camera
frame. The need to visually track fast moving objects (i.e. the ball) in the ob-
served domain, further complicated by the limited camera field of view, makes
it necessary for the vision system to be able to keep up with the highest possi-
ble frame rate that the camera can sustain: in the case of the robot Sony Aibo
ERS-7, 30 fps. As a result, image segmentation is still mainly achieved through
static color classification (see [3]).

2 Color Table Generalization

Robustness of a vision system to lighting variations is a key problem in RoboCup,
both as a long term goal to mimic the adaptive capabilities of organic systems,
� The Deutsche Forschungsgemeinschaft supports this work through the priority pro-

gram “Cooperating teams of mobile robots in dynamic environments”.
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as well as a short term need to deal with unforeseen situations which can arise
at the competitions, such as additional shadows on the field as a result of the
participation of a packed audience. While several remarkable attempts have been
made in order to achieve an image processor that doesn’t require manual cali-
bration (see [5], [12]), at the moment traditional systems are more efficient for
competitions such as the RoboCup. Our goal was to improve a manually created
color table, to extend its use to lighting situations which weren’t present in the
samples used during the calibration process, or to resolve ambiguities along the
boundaries among close color regions. Thereto, we have developed a color table
generalization technique which uses an exponential influence model similar to
the approach described in [7], but in contrast to it, is not used to perform a
semi-automated calibration from a set of samples. This new approach is based
on the assumption of spatial locality of the color classes in the color space, so
that instead of the frequency of a set of color samples, it’s the spatial frequency
of neighbors in the source color map to determine the final color class of a given
point, following the idea that otherwise, a small variation in lighting conditions,
producing a spatial shift in the mapping, would easily result in classification
errors. Thus, a color table is processed in the following way:

– Each point assigned to a color class irradiates its influence to the whole color
space, with an influence factor exponentially decreasing with the distance:

Ii(p1, p2) =
{

λ|p1−p2| i = c(p2)
0 ∀i �= c(p2)

(1)

where p1, p2 are two arbitrary points in the color map, λ < 1 is the ex-
ponential base, Ii(p1, p2) is the influence of p2 on the (new) color class
i ∈ {red, orange, yellow, · · · } of p1, and c(p2) is the color class of p2,

– Manhattan distance is used (instead of Euclidean) to speed up the influence
calculation (O(n2), where n is the number of elements of the color table):

|p1 − p2|manhattan = |p1y − p2y|+ |p1u − p2u|+ |p1v − p2v| (2)

– For each point in the new color table, the total influence for each color class
is computed:

Ii(p0) = Bi ·
∑
p�=p0

Ii(p0, p) (3)

where Bi ∈ (0..1] is a bias factor which can be used to favor the expansion
of one color class over another

– The color class that has the highest influence for a point is chosen, if:

max(Ii)
Ibk +

∑
i Ii

> τ (4)

where τ is a confidence threshold, Ibk is a constant value assigned to the
influence of the background (noColor) to prevent an unbounded growth of
the colored regions to the empty areas, and i again represents the color class.
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a) b)

Fig. 1. Effects of the exponential generalization on a color table: (a) original, (b)
optimized

a) b) c)

d) e) f)

Fig. 2. Exponential generalization. (a) and (d) represent images taken from the same
field, but in (d) the amount of sunlight has increased: notice the white walls appearing
bluish. (b) and (e) are the result of the classification from the original color table,
calibrated for the conditions found in (a); notice that (e) is not satisfactory, as the
ball is hard to detect and the goal appears largely incomplete. (c) and (f) are classified
using the generalized table, showing that it can gracefully accommodate to the new
lighting conditions (f).

The parameters λ, τ , Bi, Ibk control the effects of the generalization process,
and we have implemented 3 different settings: one for conservative generalization,
one for aggressive expansion, one for increasing the minimum distance among
neighboring regions. The time required to apply this algorithm, on a 218 elements
table, is ≈ 4− 7 minutes on a 2.66GHz Pentium4 processor, while for a table of
216 elements, this figure goes down to only 20-30 seconds.

3 Camera Calibration

With the introduction of the ERS-7 as a platform for the 4-Legged League,
an analysis of the camera of the new robot was required to adapt to the new
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specifications. While the resolution of the new camera is ≈ 31% higher compared
to the previous one, preliminary tests revealed some specific issues which weren’t
present in the old model. First, the light sensitivity is lower, making necessary
the use of the highest gain setting, at the expense of amplifying the noise as
well; such a problem has been addressed in [10]. Second, images are affected by
a vignetting effect (radiometric distortion), which makes the peripheral regions
appear darker and dyed in blue.

3.1 Geometric Camera Model

In the previous vision system, the horizontal and vertical opening angles of the
camera were used as the basis for all the measurement calculations, following the
classical “pinhole” model; however for the new system we decided to use a more
complete model taking into account the geometrical distortions of the images
due to lens effects, called the DLT model (see [1].) This model includes the lack
of orthogonality between the image axes sθ, the difference in their scale (sx, sy),
and the shift of the projection of the real optical center (principal point) (u0, v0)
from the center of the image (together called “intrinsic parameters”) and the
rotation and translation matrices of the camera reference system relative to the
robot (R, T , “extrinsic parameters”). In addition to this, we have also decided
to evaluate an augmented model including radial and tangential non-linear dis-
tortions with polynomial approximations, according to [4] and [8]. In order to
estimate the parameters of the aforementioned models for our cameras, we used
a Matlab toolbox from Jean-Yves Bouguet (see [2]). The results showed that
the coefficients (sx, sy, sθ), are not needed, as the difference in the axis scales
is below the measurement error, and so is the axis skew coefficient; the shift
between the principal point (u0, v0) and the center of the image is moderate
and dependent from robot to robot, so we have used an average computed from
images taken from 5 different robots. As far as the non-linear distortion is con-
cerned, the results calculated with Bouguet’s toolbox showed that on the ERS-7
this kind of error has a moderate entity (maximum displacement ≈ 3 pixel), and
since in our preliminary tests, look-up table based correction had an impact of
≈ 3ms on the running time of the image processor, we decided not to correct it.

3.2 Radiometric Camera Model

As the object recognition is still mostly based on color classification, the blue
cast on the corners of the images captured by the ERS-7’s camera is a serious
hindrance in these areas. Vignetting is a radial drop of image brightness caused
by partial obstruction of light from the object space to image space, and is
usually dependent on the lens aperture size ([9], [6]), however, in this case the
strong chromatic alteration seems difficult to explain merely in terms of optics,
and we suspect it could be partially due to digital effects. To be able to observe
the characteristics of this vignetting effect, we captured images of uniformly
colored objects from the robot’s camera, lit by a diffuse light source (in order
to minimize the effects of shadows and reflections). As can be seen in Figure 3,
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a) b) c) d)

Fig. 3. (a,b,c) Histograms of the U color band for uniformly colored images: yellow (a),
white (b) and skyblue (c). In case of little or no vignetting effect, each histogram should
exhibit a narrow distribution around the mode, like in (c). (d) Brightness distribution
of the U color band for a uniformly colored yellow image.

the radiometric distortion di for a given spectrum i of a reference color I is
dependent on its actual value (brightness component):

di(I) ∝ λi(Ii) (5)

Moreover, the chromatic distortion that applies on a certain pixel (x, y) appears
to be also dependent on its distance from a certain point (cf. Fig. 3(d)), center
of distortion (ud, vd), which lies approximately close to the optical center of
the image, the principal point; so, let r =

√
(x− ud)2 + (y − vd)2, then (radial

component):
di(I(x, y)) ∝ ρi(r(x, y)) (6)

Putting it all together:

di(I(x, y)) ∝ ρi (r(x, y)) · λi (Ii(x, y)) (7)

Now, we derive ρi, λi, ∀i ∈ {Y, U, V } from a set of sample pictures; since both
sets of functions are non-linear, we decided to use a polynomial approximation,
whose coefficients can be estimated using least-square optimization techniques:

ρi (r) =
n∑

j=0

�i,j · rj

λi (Ii) =
m∑

j=0

li,j · Ij
i

(8)

In order to do so, we have to create a log file containing reference pictures which
should represent different points belonging to the functions that we want to
estimate, hence we chose to use uniform yellow, blue, white and green images
taken under different lighting conditions and intensities. Then, the log file is
processed in the following steps:

– For each image, a reference value is estimated for the 3 spectra Y, U, V,
as the modal value of the corresponding histogram (numOfBins = color
Levels = 256).

– The reference values are clustered into classes, such that series of images
representing the same object under the same lighting condition have a single
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reference value; this is achieved using a first order linear Kalman filter to
track the current reference values for the 3 image spectra, and a new class
is generated when:

∃j ∈ {Y, U, V } :
∣∣∣rm

j,k − rp
j,k−1

∣∣∣ > ϑ (9)

where rm
j,k is the reference (for spectrum j) measured at frame k, rp

j,k−1 is
the reference predicted by the Kalman filter at frame k − 1, and ϑ = 40 is a
confidence threshold.

– Simulated annealing ([11]) is used to derive the coefficients (ud, vd), and �i,j ,
li,j∀i ∈ {Y, U, V } (in a separate process for each color band).

– In each step, the coefficients �i,j , li,j are mutated by the addition of zero mean
gaussian noise, the variance is dependent on the order of the coefficients, such
that high order coefficients have increasingly smaller variances than low order
ones.

– The mutated coefficients are used to correct the image, as:

I ′i(x, y) = Ii(x, y)− ρi (r(x, y)) · λi (Ii(x, y)) (10)

– For each image Ii,k in the log file (i is the color band, k the frame number),
given its reference value previously estimated ri,k, the current “energy” E
for the annealing process is calculated as:

Ei =
∑
(x,y)

(
I ′i,k(x, y) − ri,k

)2 (11)

– The “temperature” T of the annealing is lowered using a linear law, in a
number of steps which is given as a parameter to the algorithm to control the
amount of time spent in the optimization process; the starting temperature
is normalized relative to the initial energy.

– The correction function learned off-line is stored in a look-up table for a fast
execution on the robot.

Figure 4 shows some examples of corrections obtained after running the algo-
rithm on a log file composed of 8 image classes (representing different colors at
different lighting conditions) of 29 images each, decreasing the temperature to

a) b) c) d)

Fig. 4. Color correction in practice: histograms of the U color band of a uniformly
yellow colored image before correction (a), and after (b); actual image taken from a
game situation, before correction (c) and after (d).



Improving Percept Reliability in the Sony Four-Legged Robot League 551

0 in 100 steps, for a total optimization time of 7 minutes (Pentium4 2.66GHz).
In case of the image spectra which exhibit the highest distortion (Y, U), the
variance after the calibration is reduced by a factor of 10.

4 Motion Compensation

The camera images are read sequentially from a CMOS chip using a rolling
shutter. This has an impact on the images if the camera is moved while an
image is taken, because each scan line is captured at a different time instant. For
instance in Figure 5 it can be seen, that the flag is slanted in different directions
depending on whether the head is turning left or right. In experiments it was
recognized that the timestamp attached to the images by the operating system
of the Aibo corresponds to the time when the lowest row of the image was taken.
Therefore, features in the upper part of the image were recorded significantly
earlier. It is assumed that the first image row is recorded shortly after taking the
previous image was finished, i. e. 10% of the interval between two images, so 90%
of the overall time is spent to take the images. For the ERS-7, this means that
the first row of an image is recorded 30 ms earlier than the last row. If the head,
e. g., is rotating with a speed of 180◦/s, this results in an error of 5.4◦ for bearings
on objects close to the upper image border. Therefore, the bearings have to be
corrected. Since this is a quite time-consuming operation, it is not performed as a
preprocessing step for image processing. Instead, the compensation is performed
on the level of percepts, i. e. recognized flags, goals, edge points, and the ball.
The compensation is done by interpolating between the current and the previous
camera positions depending on the y image coordinate of the percepts.

a) b)

Fig. 5. Images taken while the head is quickly turning. a) Left. b) Right.

5 Results

The algorithms described here have been tested and used as part of the vision
system of the GermanTeam which became World Champion in the Four-Legged
League at the RoboCup 2004 competitions. The average running time of the
whole image processor was 9±2 ms, and the robot was able to keep up with
the maximum camera frame rate under all circumstances, i.e. 30 fps. Through-
out the competitions, our vision system proved to be robust and accurate, and
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our robots’ localization was widely acclaimed as the best of the league; these
techniques have also been used on the vision system of Microsoft Hellhounds, a
member of the GermanTeam, achieving the second place in the Variable Lighting
Technical Challenge at the Japan Open 2004 competitions.
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Abstract. Recovery of 3D body pose is a fundamental problem for human mo-
tion analysis in many applications such as motion capture, vision interface,  
visual surveillance, and gesture recognition. In this paper, we present a new im-
age-based approach to infer 3D human structure parameters from uncalibrated 
video. The estimation is example based. First, we acquire a special motion da-
tabase through an off-line motion capture process. Second, given uncalibrated 
motion video, we abstract the extrinsic parameters and then silhouettes database 
associated with 3D poses is built by projecting each data of the 3D motion da-
tabase into 2D plane with the extrinsic parameters. Next, with the image silhou-
ettes abstracted from video, the unknown structure parameters are inferred by 
performs a similarity search in the database of silhouettes using approach based 
on shape matching. That is, the 3D structure parameters whose 2D projective 
silhouette is the most similar to the 2D image silhouette are took as the 3D re-
construction structure. We use trampoline sport motion, an example of complex 
human motion, to demonstrate the effectiveness of our approach. 

1   Introduction 

Recovery of 3D body pose is a fundamental problem for human motion analysis in 
many applications such as motion capture, vision interface, visual surveillance, and 
gesture recognition. Human body is an articulated object that moves through the 3D 
world. This motion is constrained by 3D body kinematics and dynamics as well as the 
dynamics of the activity being performed. Such constraints are explicitly exploited to 
recover the body configuration and motion in model-based approaches, such as[1, 2, 
3], through explicitly specifying articulated models of the body parts, joint angles and 
their kinematics (or dynamics) as well as models for camera geometry and image 
formation. Recovering body configuration in these approaches involves searching 
high dimensional spaces (body configuration and geometric transformation) which are 
typically formulated deterministically as a nonlinear optimization problem, e.g. [2], or 
probabilistically as a maximum likelihood problem, e.g. [3]. In this paper we intro-
duce a novel image-based framework for inferring 3D body pose from silhouettes 
using a single monocular uncalibrated camera. 
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Compared with other methods proposed previously, the strength of our approach 
lies in the combination of shape matching approach based on moment invariants and 
3D human pose database together for the inference of 3D structure from complex 
motion video. On the other hand, our approach can process uncalibrated video since 
camera calibration of intrinsic parameters is unnecessary. 

2   Related Work  

Human pose estimation from images is an active area of computer vision research 
with many potential applications ranging from computer interfaces to motion capture 
for character animation, biometrics or intelligent surveillance. In the last decade there 
have been extensive researches in human motion analysis.  

Inferring 3D pose from silhouettes can be achieved by learning mapping functions 
from the visual input to the pose space. However, learning such mapping between 
high dimensional spaces from examples is an ill posed problem. Therefore certain 
constraints should be exploited. In [4], the problem was constrained using nonlinear 
manifold learning, where the pose is inferred by mapping sequences of the input to 
paths of the learned manifold. In [5], 3D structure parameters are inferred from multi-
view using a probabilistic model of multi-view silhouettes. Inferring pose can also be 
posed as a nearest neighbors search problem where the input is matched to a database 
of exemplars with known 3D pose. In [7] pose is recovered by matching the shape of 
the silhouette using shape context. Another promising approach, called model based 
[9, 10, 11, 12], relies on a 3D articulated volumetric model of the human body to 
constrain the localization process in one or several images. In this situation, the goal 
in human pose estimation applications is to estimate the model’s articulation and 
possibly structural parameters such that the projection of the 3D geometrical model 
closely fits a human in one or several images. 

The approach we use in this paper to infer 3D structure can be posed as a mapping 
problem through shape similarity between the projection of the 3D geometrical model 
and the input of image silhouettes based on the 3D pose database. 

3   Framework 

To infer structure parameters from uncalibrated video, this paper introduces a novel 
image-based framework (Figure 1). The estimation is example based. At first, motion 
database in special sport motion, such as trampoline sport, is acquired through an off-
line motion capture process and a 3D human pose motion database is built (Section 4.1). 
Second, given motion video, we abstract the viewpoint (extrinsic parameters) automati-
cally (Section 4.2) and build a 2D silhouettes database associated 3D poses by project-
ing 3D pose into 2D plane (Section 4.3). At last, given the 2D silhouettes abstracted 
from video, we infer the 3D structure parameters through performs a similarity search 
in the silhouettes database associated 3D poses through a approach based on moments 
(Section 4.4). We use trampoline sport motion, an example of complex human mo-
tion, to demonstrate the effectiveness of our approach (Section 5). The overall system 
diagram can be seen in Fig.1. 
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motion capture
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silhouettes abstract

shape matching

reconstruction results
 

Fig. 1. The overall system diagram 

4   3D Pose Reconstruction 

4.1   Human Model and 3D Pose Database  

Our human body model (Fig.2) based on 
VRML consists of kinematics ‘skeletons’ of 
articulated joints controlled by angular joint 
parameters ,covered by ‘flesh’ built from super-
quadric ellipsoids with additional tapering and 
bending parameters. We acquire a special mo-
tion database through an off-line motion capture 
process.  In our practice, trampoline sport mo-
tion, an example of complex human motion, is 
selected to demonstrate the effectiveness of our 
approach. We collect the trampoline sport mo-
tion data by motion capture and build a standard 
3D trampoline motion database, which include 
all the species of trampoline sport motion. 

4.2   Extrinsic Parameters Estimation  

3D human pose can be observed from the different viewpoints and the appearances 
are different. So it is necessary to abstract the viewpoint of the motion video and 
adjust the appearance of the 3D human model to ensure that the viewpoint of watch-
ing 3D model and that of video are the same. Then we can compare the difference 
between the silhouettes abstracted from video and projective silhouettes of 3D human 
model clearly.  

The method for abstracting viewpoint from trampoline sport video is based on our 
previous work [13, 14], whose idea is to locate the trampoline in the image frame. 

Fig. 2. Human model 
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Fig. 3. Viewpoint Abstract and Simulation System Viewpoint Adjustment        

4.3   2D Silhouettes Database 

Once the viewpoint of the video 
(extrinsic parameters) has been ab-
stracted and appearance of 3D human 
model is adjusted automatically, we 
can project the 3D pose of the human 
model and build the 2D silhouettes 
database of human pose.  

In our practice, the simple image-
based method is adopted to build the 
2D silhouettes database of human 
pose. The particular steps are that: 
after abstract the viewpoint of the 
video, all the motion data of 3D data-
base are driven with virtual athlete 
and displayed in the screen. At the 
same time, the 2D silhouettes of 
human pose are collected by captur-
ing the screen and processing with 
the image processing technique. 

4.4   Human Pose Inferring Based on Shape Matching 

We use the shape matching approach based on moment which is combination of af-
fine moment invariants [16] and Hu moment invariants [17] to infer the 3D structure. 

Moment invariants are features based on statistical moments of characters. They 
are traditional and widely-used tool for character recognition. Classical moment in-
variants were introduced by Hu 1962 . 

Among seven moment invariants derived by Hu, 1 6,...,φ φ  are invariant under 

translation, rotation and scaling of the object and 7φ are invariant under translation 

and scaling.  
The AMIs were derived by means of the theory of algebraic invariants [16]. 

Supposed 1 4,...,I I  are the AMIs derived by Flusser and 7φ  is the 7th moment invari-

ants derived by Hu [17]  

Fig. 4. 2D Silhouettes database built with one 
viewpoint 
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We defined the vector  7 1 2 3 4( , , , , )I I I Iφ  as the shape similarity vector and com-

pute it with every 2D silhouette shape of the 2D pose database. Given raw video, we 
abstracted the human silhouette from image frame and at the same time, compute the 

shape similarity vector of  the silhouette described as iL 1 2 3 4 7( , , , , )I I I I φ . Then 

we compute the Euclidean distance between iL  and all the shape similarity vectors in 

2D pose database. The silhouette in the 2D pose database whose Euclidean distance to 

iL  be the minimal to be selected and the corresponding 3D structure parameters are 

took as the structure of image silhouette. 

5   Experiments 

We have developed a prototype system for inferring 3D pose from video image. And 
it is implemented on an Intel Pentium IV 2.8GHz 512MB PC running WindowXP.  

The experiments results of estimating 3D structure from image frame of trampoline 
video can be described in Fig.5. The first row are the image frames, the second row is 
the human silhouettes abstracted from image frames by the background subtraction 
algorithm. The third row is the silhouettes picked up from the 2D silhouettes database 
according to shape similarity and the forth row is the 3D reconstruction results de-
scribed with surface geometrical model. 
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Fig. 5.  3D Pose Inferring from Motion Video 

 

Fig. 6. 3D pose inferring from simulated video silhouette 
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In order to test the validity of our method in larger data, we have implemented our 
method on 2000 synthetic instances of human figure contours in random poses that 
were generated with a computer graphics package called Poser [19]. The result can be 
seen in Fig.6. The first row is the synthetic human figure contours and the second row 
are the reconstruction results described with surface geometrical model and the third 
row are the reconstruction results described with skeleton model. 

6   Conclusion 

In this paper we introduced a new silhouette-based framework for inferring human 
pose from video using a single monocular uncalibrated camera. We have verified with 
a great deal of instances and the experiments showed that the framework is efficient 
to estimate the 3D structure from complex motion video such as sport video.           
The major limitation to this approach is that it requires a database that is appropriate 
for the problem domain. We believe that this is not a serious limitation for many ap-
plication areas where the likely human behaviors can reasonably be predicted in ad-
vance. Another possible weakness of the approach is matching ambiguities, since 2D 
silhouette can be corresponding to various 3D human pose. But the approach we pre-
sent can be used to process the multi-view videos, that is, the reconstruction results is 
the 3D structure whose projective silhouette of geometrical model is most similar 
with the multiple silhouettes abstracted from multi-video synchronously. 

Acknowledgments 

This research is supported by NSF of China, Grant (60103007, 60403042,60473002); 863 
Plan of China, Grant (2003AA114010, 2004AA115130, 2005AA114010); National Spe-
cial Item for Olympics, Grant (2001BA904B08, KACX1-04, Z0004024040231); National 
973 Project, Grant (2002CB312104, 2002CB312105). 

References 

1. J.M.Rehg and T.Kanade. Model-based tracking of self-occluding articulated objects. In 
ICCV, pages612–617,1995. 

2. D. Gavrila and L. Davis. 3-d model-based tracking of humans in action: a multi-view ap-
proach. In IEEE Conference on Computer Vision and Pattern Recognition, 1996. 

3. H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic tracking of 3d human figures using 
2d image motion. In ECCV (2), pages 702–718, 2000. 

4. M. Brand. Shadow puppetry. In International Conference on Computer Vision, volume 2, 
page 1237, 1999 

5. T. D. Kristen Grauman, Gregory Shakhnarovich. Inferring 3d structure with a statistical 
image-based shape model. In ICCV, 2003. 

6. Howe, Leventon, and W. Freeman. Bayesian reconstruction of 3d human motion from sin-
gle-camera video. In Proc. NIPS, 1999. 

7. G. Mori and J. Malik. Estimating human body configurations using shape context match-
ing. In European Conference on Computer Vision, 2002. 



560 X.-J. Qiu et al. 

8. G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive 
hashing. In ICCV, 2003. 

9. C. Sminchisescu, and B.Triggs, A Robust Multiple Hypothesis Approach to Monocular 
Human Motion Tracking, research report INRIA-RR-4208, June 2001. 

10. J. Deutscher, and A. Blake, and I. Reid, Articulated Body Motion Capture by Annealed 
Particle Filtering, Proc. CVPR, vol. 2, pp. 126–133, 2000. 

11. C. Sminchisescu, and B. Triggs, Covariance-Scaled Sampling for Monocular3D Body 
Tracking, Proc. CVPR, pp.447–454, 2001. 

12. [Breg98] Bregler, C. and Malik, J. Tracking People with Twists and Exponential Maps, 
Proc. CVPR, 1998. 

13. Qiu Xian-jie, Wang Zhao-qi and Xia Shi-hong. A novel computer vision technique used 
on sport video. Journal of WSCG, Prague,Czech Republic, 2004,545~554 

14. Qiu Xian-jie, Wang Zhao-qi and Xia Shi-hong and Wu Yong-dong. A Virtual-Real Com-
parison Technique Used on Sport Simulation and Analysis. Journal of Computer Research 
and Development(Accepted). (In Chinese). 

15. C. Sminchisescu and A. Telea, Human Pose Estimation From Silhouettes: A Consistent 
Approach Using Distance Level Sets. In the Proceedings of WSCG2002, Prague, Czech 
Republic. 

16. Hu M K. Visual Pattern Recognition by Moment Invariants. IRE Trans. IT, 
8,1962,179~182. 

17. Flusser Jan Suk Tomas.Affine moment invariants: A new tool for character recognition. 
Pattern recognition Letters, 1994vol15,433–436. 

18. W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-Based Visual 
Hulls. In Proceedings ACM Conference on Computer Graphics and Interactive Tech-
niques, pages 369–374, 2000. 

19. Egisys Co.Curious Labs.Poser5:The Ultimate 3D Character Solution.2002. 



A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 561 – 568, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Integrating Collaboration and Activity-Oriented 
Planning for Coalition Operations Support 

Clauirton Siebra and Austin Tate 

Centre for Intelligent Systems and their Applications 
School of Informatics, The University of Edinburgh 

Appleton Tower, Crichton Street, EH9 1LE, Edinburgh, UK 
{c.siebra, a.tate}@ed.ac.uk  

Abstract. The use of planning assistant agents is an appropriate option to pro-
vide support for members of a coalition. Planning agents can extend the human 
abilities and be customised to attend different kinds of activities. However, the 
implementation of a planning framework must also consider other important re-
quirements for coalitions, such as the performance of collaborative activities 
and human-agent interaction (HAI). This paper discusses the integration of an 
activity-oriented planning with collaborative concepts using a constraint-based 
ontology for that. While the use of collaborative concepts provides a better per-
formance to systems as a whole, a unified representation of planning and col-
laboration enables an easy customisation of activity handlers and the basis for a 
future incorporation of HAI mechanisms. 

1   Introduction 

Coalitions, from Latin coalescere (co-, together + alescere, to grow) is a type of or-
ganisation where joint members work together to solve mutual goals. The principal 
feature of any coalition is the existence of a unique global goal, which motivates the 
actions of all coalition members. However, normally such members are not directly 
involved in the resolution of this goal, but in sub-tasks associated with it. For exam-
ple, a search and rescue coalition that aims to evacuate an island (evacuate island is 
the global goal) has several sub-tasks (e.g., refill helicopters, provide information 
about weather  conditions, etc.) that must be performed to reach the global goal. 

The basic idea of this paper is to support coalition members via assistant agents 
that  provide planning facilities. In this scenario each member could have a personal 
agent that supports his/her activities and delivers, for example, planning information, 
coordination commands and options to carry out activities. This approach is powerful 
because while human users have the ability to take decisions based on their past-
experiences (case-base reasoning), agents are able to generate and compare a signifi-
cant number of options, showing both positive and negative points of such options. 
Projects as O-Plan [1] and TRAINS [2] explore this fact, providing planning agents 
that interact in a mixed-initiative style with users during the development of solutions, 
such as plans. 

However the use of standard planning mechanisms is not sufficient to deal with the 
complexity of problems associated with coalition domains, such as disaster relief 



562 C. Siebra and A. Tate 

operations. In these domains, activities cannot consist merely of simultaneous and 
coordinated individual actions, but the coalition must be aware of and care about the 
status of the group effort as a whole [3].  The Helicopters Attack Domain [4] and the 
Guararapes Battle game [5] are two experiments that corroborate with this affirma-
tion. The principal reason for the problems in such domains is that “collaboration 
between different problem-solving components must be designed into systems from 
the start. It cannot be patched on” [6]. Thus, the idea of our approach is to develop the 
collaborative framework together with the planning mechanism in a unified way, 
using a constraint-based ontology for that. The properties of constraint manipulation 
have already been used by several planning approaches as an option to improve their 
efficiency and expressiveness [7]. Constraints are especially a suitable option to com-
plement the abilities of Hierarchical Task Network (HTN) planning as, for example, 
to represent possible resultant subproblems dependences of the decomposition process 
[8]. The use of constraints will also facilitate a future expansion of our system toward 
a better human support. Note that constraints are a declarative way of providing in-
formation so that users specify what relationship must hold without specifying a com-
putational procedure to enforce that relationship. Consequently users only state the 
problem while the computer tries to solve it [9]. 

The remainder of this document is structured as follows: section 2 presents some 
initial aspects of our approach associated with hierarchies, planning representation 
and process. Section 3 summarises the collaborative formalism that our models are 
based on, explaining how we are modelling its principal concepts using the constraint-
based ontology and associated functions. Finally section 4 concludes this work. 

2   Hierarchical Coalitions and Conceptualisation 

This section introduces three important concepts for our work: the coalition organisa-
tion, the planning representation and the activity-oriented planning process. 

Hierarchies are a well-known and used structure for organising members of a team. 
Military organisations, for example, are the most common examples of hierarchical 
arrangements. One of the principal advantages of hierarchies is that they support the 
deployment of coordination mechanisms because such mechanisms can exploit their 
hierarchical organisational structure. This is because the organisation implicitly de-
fines the agents responsibilities, capabilities, connectivity and control flow. In addi-
tion, hierarchies also have the following advantages:  

• They are compatible with the divide-and-conquer idea so that the process of split-
ting a problem into smaller sub-problems is repeated in each level; 

• Hierarchical levels may deal with different granularities of knowledge so that each 
of them does not need to specify all the details about the problem, and; 

• It is possible to enclose problems in local subteams, instead of spreading them 
along the entire organisation. 

We are considering hierarchical organisations arranged into three levels of decision-
making: strategic, operational and tactical. However this is not a “must restriction” so 
that hierarchies can be expanded to n levels. A last important aspect of hierarchical 
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coalition systems is that there is a need of customising their agents so that they are 
able to support specific activities carried out into each decision-making level. 

Our planning representation is based on <I-N-C-A> (Issues - Nodes - Constraints - 
Annotations) [10], a general-purpose constraint-based ontology that can be used to 
represent plans in the form of a set of constraints on the space of all possible plans in 
the application domain. Each plan is considered to be made up of a set of Issues and 
Nodes. Issues may state the outstanding questions to be handled and can represent 
unsatisfied objectives, questions raised as a result of analysis, etc. Nodes represent 
activities in the planning process that may have sub-nodes (sub-activities) making up 
a hierarchical description of plans. Nodes are related by a set of detailed Constraints 
of diverse kinds such as temporal, resource, spatial and so on. Annotations add com-
plementary human-centric and rationale information to the plan, and can be seen as 
notes on their components. 

The system architecture considers planning as a two-cycle process, which aims to 
build a plan as a set of nodes (activities) according to the <I-N-C-A> representation. 
In this way, the first cycle tries to create candidate nodes to be included into the 
agent’s plan, respecting its current constraints. If this process is able to create one or 
more candidate nodes, one of them can be chosen and its associated constraints are 
propagated, restricting the addition of future new nodes. The agents’ plan contains the 
net of activities that agents intend to perform. If an agent receives a new activity, it 
must generate actions that include this new node in its plan. Each action is a different 
way to perform this inclusion so that different actions generate different nodes con-
figurations. We call this process of activity-oriented planning because agents provide 
context sensitive actions (e.g., delegations, Standard Operating Procedures, dynamic 
plan generation and specific solvers) to perform activities.  

In brief, the role of agents is to provide actions to decompose nodes until there are 
only executable nodes. Each action is implemented by an activity handler, which uses 
one or more different constraint managers to validate its constraints. For example, the 
action of applying a SOP is a handler that decomposes an activity according to the 
SOP specification. For that, the handler uses specific constraint managers that check 
the pre-conditions in which the SOP can be applied, signalising in case of conflicts. 

3   The Collaborative Framework 

Planning agents are able to support the performance and coordination of activities, 
however they do not ensure collaboration between coalition members. For that, coali-
tion systems must also consider notions of collaboration since their phase of concep-
tion. Considering such fact, this section summarises the collaborative formalism that 
we are exploring and how we are implementing its ideas following the <I-N-C-A> 
approach. 

3.1   Requirements of the Teamwork Theory for Collaboration 

The Teamwork Theory [11] provides a set of formal definitions that lead the design of 
collaborative systems. Several works have proposed frameworks based on such defi-
nitions. SharedPlans [12], for example, argues that each collaborative agent needs to 
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have mutual beliefs about the goals and actions to be performed, and about the capa-
bilities, intentions and commitments of other agents. STEAM [13] is an implemented 
model of teamwork, where agents deliberate upon communication necessities during 
the establishment of joint commitments and coordination of responsibilities. Although 
these and other works have different approaches to deal with different technical prob-
lems, an investigation on these works can distinguish the following principal require-
ments: (1) agents must commit on the performance of joint activities; (2) agents must 
report the status of their activities, informing on progress, completion or failure, and; 
(3) agents must mutually support the activities of other coalition members, sharing 
useful information or using their own resources for that. 

3.2   Activities Commitment 

We are implementing both ideas of activities commitment and status reporting 
through the “AgentCommitment” function. This section analyses the commitment of 
activities, while the next section (Section 3.3) discusses the status reporting process. 

According to <I-N-C-A>, each plan p is composed by a set of plan nodes ni. If a 
superior agent, that has p as goal, sends such nodes ni to its subordinate agents, then a 
commitment between the superior and each subordinate must be done. For that end, 
the function “AgentCommitment”, implemented by each agent of the hierarchy, re-
ceives as input parameter the node ni ∈ p and the sender identifier.  

01. function AgentCommitment(sender,ni) 
02.    subplan ← GenerateNodes(ni) 
03.    if(∃(subplan)) 
04.       if(HasNodesToBeDelegated(subplan)) then 
05.         Delegate(subplan,subord) ∧ WaitCommits() 
06.         if ∃s (s ∈ subord)∧(¬Commit(s)) then 
07.           go to step 04 
08.       Report(sender,ni,COMMITED) 
09.       while(¬Complete(subplan)) 
10.         if(JustReady(subplan)∨Changed(subplan))then 
11.           Report(sender,ni,EXECUTING) 
12.         if(Violated(subplan)∨Receive(FAILURE)) then 
13.     go to step 04 
14.       end while 
15.       Report(sender,ni,COMPLETION)       
16.    else   
17.       Report(sender,ni,FAILURE)  
18.       ∀s (s ∈ subord) ∧ HasCommitment(s,subplans), 
19.         Report(s,subplans,FAILURE) 
20. end 

At this point we can discuss some implications and features of this function. First, 
ni has a set of constraints associated with it so that the “GenerateNodes” function 
(step 02) considers such set to return an option (nodes list or subplan) to perform ni. If 
a subplan is possible (step 03) and it does not depend of anyone more (step 04) then 
the agent can commit on ni (step 08). However, if subplan depends on the  
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commitments of subordinates, then the agent must delegate the necessary nodes to its 
subordinates and wait their commitments (step 05). This implies that commitments 
are done between a superior agent and their subordinates and, starting from the bot-
tom, a “upper-commitment” only can be done if all the “down-commitments” are 
already stabilised. Note that a delegation on the same subplan cancels previous com-
mitments. 

Second, an interesting implication is that if some subordinate agent is not able to 
commit (step 06), the agent returns (step 07) to generate other subplan option rather 
than sending a failure report to its superior. This approach implements the idea of 
enclosing problems inside the sub-coalition  where they were generated. 

Finally if the agent is not able to generate a subplan for ni, it reports a failure to its 
superior (step 17). In addition, it must also alert their subordinates that ni has failed 
and consequently its subnodes can be abandoned  (step 18-19). 

We can note that the principal advantage of this approach is that commitments are 
naturally manipulated during the constraint processing as any other constraint. In 
other words, the failure in a commitment is interpreted as a problem of constraint 
satisfaction, which can trigger a common process of recovery, such as a replanning. 

3.3   Status Reporting 

After reporting a commitment (step 08), an agent ai must monitor and report execu-
tion status until the completion/failure of ni. The principal questions here are when to 
send a report and which information should be reported. There are two obvious cases 
in which ai performing ni must report: when ai completes ni and when happens an 
execution failure so that ai is not able to deal with the failure by itself. In the first case 
ai only needs to send a completion report, while in the second case a failure report 
must be sent optionally with the failure reasons (constraints unsatisfied). 

Reports associated with progress are a more complex case. In order agents do not 
have to communicate each step of their execution. Previous works have already iden-
tified communication as a significant overhead of risk in hostile environments [13]. 
Furthermore, in case of progress reports, the information associated with them should 
be useful to the monitoring process. 

Considering these facts, we start from the principle that relevant information, once 
sent, becomes common knowledge and hence unnecessary to updates. For example, if 
ai informs that it has just started the execution of ni, ai does not need to send other 
messages informing that it still executing ni. From this point we must think on which 
could be the information generated during activities execution and that is likely to 
help superior agents during the process of monitoring. For that end, consider the fol-
lowing scenario: when ai commits on the performance of ni, it informs which subplan 
it is going to use. The constraints of such subplan can have the following classes of 
values: concrete, which expresses known values or estimated values if ai has a good 
idea about the process; and variables to be used during unpredicted situations, indicat-
ing that ai does not have idea about  some specific information. 

Using constraints with concrete values, the superior agent of ai can perform more 
confident reasoning on the ongoing activities. For example, if it knows that the activ-
ity of ai will take 30 minutes, it can allocate ai to a new activity after 30 minutes. 
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Thus, if during the execution of subplan one of its concrete values is changed or its 
variables are instantiated, a progress report must be sent.  

Returning to the function, while the planning is not complete (step 09), the changes 
in subplan (step 10) are monitored and sent to superiors as a ongoing execution report 
(step 11). Constraint violations and  failure reports are also monitored (step 12) so that 
the agent firstly tries to repair the problem by itself (step 13) before sending a failure 
report. From this discussion we can stand five different plan (or subplan) status: pos-
sible, no-ready, impossible, complete and executing. The <I-N-C-A> definition for 
activities contains a status attribute that can be filled with one of these options. 

At last, the principal point of this function is that the reasoning associated with 
commitments and reports are based on results of constraint processing. This fact is 
illustrated by the functions “Complete” (step 09), “JustReady” (step 10), “Changed” 
(step 10) or Violated (step 12), which are all applied on constraints. Thus, we still 
having the same basis for working, which is also used by the planning mechanisms 
(activity handlers and constraint managers). 

3.4   Mutual Support  

The principal idea behind mutual support is to enable that one agent has knowledge 
about the needs of other agents. For example, an agent a1 knows that a specific road is 
clean so that it uses this constraint in its plan. However, as the world is dynamic, the 
road can be blocked. If any other agent finds out that such road is no longer clear, it 
must inform this fact to a1. Thus this informer agent is supporting the performance of 
a1. The easier option to implement this feature is to force agents to broadcast any new 
fact to all coalition. Consequently all agents will have their world state updated and 
problems like that can be avoided. However, this is not an appropriate approach in 
terms of communication and agents will also receive several useless information. 

Consider now that Θx is a coalition and  that each agent ai ∈ Θx has a plan pi with a 
set of conditional constraints C, which ai desires that hold so that pi still valid. In this 
case each ci ∈ C is a constraint that ai believes that is true and hopes that still being 
true. Then ai broadcasts C for Θx so that other agents of its subgroup know what it 
needs. Such agents must deal with C according to the function below: 

01. function MutualSupport(ai,C,myBel) 
02.    while(∃ci ci∈C) 
03.       if(∃cick ci∈C ∧ ck∈myBel ∧ Contrast(ci,ck)) then  
04.          newActivity ← CreateActivity(Goal(ci)) 
05.          if(¬∃newActivity) then Inform(ai,ck)              
06.          Retire(ci,C) 
07.       if(∃ci ci∈C ∧ ¬Valid(ci)) then Retire(ci,C)    
08. end 

According to this function, which is applied by agents that receive C from ai, 
agents must compare their believes myBel, which are also a set of constraints, with C. 
If they find some “contrast” (step 03), they must try to create a new activity whose 
goal is to turn ci true (step 04). If this is not possible, they must inform ai that ci is no 
longer holding and its new value is ck (step 05). 
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The Contrast function (step 03) says that two constraints, which are supposed to be 
equal, are not equal. However we are also considering as contrast the situation where 
two constraints have the potential to be equal. For example, ((color Car) = ?x) and 
((color Car) = blue). In this case the two constraints are in contrast because they have 
the potential to be equal if the variable ?x assume the value “blue”. This second type 
of contrast is very useful in the following class of situations. Suppose that one of the 
activities of ai is “rescue injured civilians”. For that end, ai firstly needs to find such 
civilians so that they have the following conditional constraints: ((position ?a) = ?b), 
((role ?a) = civilian) and (status ?a) = injured). This set of constraints implies that the 
variable ?b is the location of an injured civilian ?a. Then if other agents that have or 
discover a set of constraints that contrast with the set sent by ai, they must inform ai 
(note that in this case no make sense to create a new activity). 

The Valid function (step 07) accounts for eliminating the constraints that no longer 
represent conditions to sender agents. This is important to avoid that agents still send-
ing useless information and also to decrease the number of messages in the coalition. 
A practical way to do that is to consider that all ci∈C has a timestamp that indicates 
the interval that such constraint is valid. Using a  timestamp as (tinitial,tfinal) and consid-
ering that tinitial and tfinal are ground values, the Valid function only needs to compare if 
the condition (tfinal < current-time) is true to eliminate the respective constraint. How-
ever, the use of timestamps fails if sender agents does not know the interval that their 
conditional constraints must hold. Note that the use of timestamps tries to avoid that 
agents need to broadcast messages saying that they no longer need that a group of 
constraints hold. Rather, timestamps enable that agents reason by themselves on the 
elimination of such constraints.  

One of the principal advantages of the MutualSupport function is that it improves 
the information sharing because the sending of information is guided by the con-
straint-based knowledge that each agent has on the activities of its partners. In addi-
tion, the function also decreases the number of messages changed among agents. 

4   Conclusion and Directions 

This work shows the integration of an activity-oriented planning with notions of col-
laboration via a unified constraint-based framework. This framework enables an easy 
development of activity handlers, which can be customised according to the tasks of 
each decision-making level. Ongoing experiments of this proposal are using the Ro-
boCup Rescue simulator as principal domain of evaluation. The first idea is to dem-
onstrate the importance of coordination and collaboration during coalition operations. 
However, the principal purpose is to show that the development of planning mecha-
nisms can be maintained independent of the collaborative framework.  
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Abstract. Self-localization in dynamic environments is a central prob-
lem in mobile robotics and is well studied in the literature. One of the
most popular methods is the Monte Carlo Localization algorithm (MCL).
Many deployed systems use MCL together with a laser range finder in
well structured indoor environments like office buildings with a rather
rich collection of landmarks. In symmetric environments like robotic soc-
cer with sparse landmarks which are occluded by other robots, most of
the time the standard method does not yield satisfying results. In this
paper we propose a new heuristic weight function to integrate a full 360◦

sweep from a laser range finder and introduce so-called don’t-care re-
gions which allow to ignore some parts of the environment. The proposed
method is not specific to robotic soccer and scales very well outside the
soccer domain.

1 Introduction

Self-localization in dynamic environments is a central problem in mobile robotics
and is well studied, leading to many satisfying approaches which can be found
in the literature such as [5, 2, 1].

Most localization algorithms follow a probabilistic approach. The most pop-
ular among these is the Monte Carlo Localization algorithm (MCL) [1]. Many
applications of this method use a laser range finder (LRF) for perceiving the en-
vironment. MCL with LRF works best in environments with many landmarks.

In environments where landmarks are sparse, on the other hand, the results
are far less satisfying. One such domain is the Middle-size league of robotic
soccer, where up to ten mobile robots are competing on a field of the size of
12× 8 meters. Available landmarks are the goals and the corner posts. To make
the task even harder, they are often occluded by other robots.
� This work was supported by the German National Science Foundation (DFG) in

the Priority Program 1125, Cooperating Teams of Mobile Robots in Dynamic Envi-
ronments and by a grant of the Ministry of Science and Research of North Rhine-
Westphalia, Germany.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 569–576, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



570 A. Strack, A. Ferrein, and G. Lakemeyer

For these reasons, the combination of a LRF and MCL is presently not the
method of choice for self-localization in RoboCup. Most teams use vision-based
systems for the purpose of localization. Nevertheless, our team, the “Allema-
niACs”, successfully deploys a Monte Carlo approach with a laser range finder
in that environment. In this paper we present two modifications to MCL with
LRF which allows it to be a viable and robust method for self-localization in
RoboCup.

In principle, the sparsity of landmarks can be dealt with by taking many sin-
gle measurements in a sweep from the laser scanner. However, this makes the
use of the standard MCL algorithm intractable because the range of weights for
the samples grows exponentially in the number of single readings. To circumvent
these computational problems we propose a heuristic weight function. Further-
more, we introduce so-called don’t-care regions in maps that ignore the regions
outside the field and thus enables incomplete specification of environments.

It turns out that our approach, which was inspired by the RoboCup setting,
scales very well for indoor navigation in large environments.

The rest of the paper is organized as follows. In Section 2 we briefly introduce
the MCL method and some extensions as well as some related work in the field.
In Section 3 we present our modifications to the MCL algorithm. Before we
conclude with Section 5, we show some experimental results in Section 4.

2 Related Work

By far the most approaches for the localization task use probabilistic methods.
A belief distribution P(l) describes the probability that the robot is located at
pose l = (x, y, θ), where x and y are Cartesian coordinates, and θ denotes the
orientation of the robot.

The belief is updated using the sensory perceptions. e1:t = ((u1, z1) . . . (ut, zt))
denotes a sequence of proprioceptive sensor information ui, and exteroceptive
measurements zi. The former are given as odometry measurements, and the
latter are measurements from, for example, a LRF or a camera.

Together with the Markov assumption that perceptions at time t are statisti-
cally independent from former evidence the update is given by

P(Lt+1|e1:t+1) = αP(zt+1|Lt+1) ·
∑
lt

P(Lt+1|lt, ut) p(lt|e1:t).1 (1)

P(zt+1|Lt+1) and P(Lt+1|lt, ut) are probability distributions denoting the per-
ception model and the motion model, respectively. α is a normalization factor
ensuring that all probabilities in the resulting distribution sum up to one.

The recursive nature of Eq. 1 allows for updating the belief at time t + 1 in
terms of the belief at time t. It is called a recursive Bayes Filter.

Implementations of the Bayes Filter differ mainly in the representation of the
belief. For example, Kalman Filter (KF) based approaches use a unimodal Gaus-
sian distribution (e.g. [5]). In contrast, grid-based Markov Localization (ML)
1 Here P denotes a probability distribution whereas p denotes a single probability.
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stores the distribution in a discrete grid covering the state space. While the for-
mer methods are computationally more efficient and accurate, their restriction
to unimodal distributions makes it impossible for them to perform global local-
ization (finding the position without initial knowledge). ML is able to solve this
task and also the kidnapped-robot problem, which means finding the correct
position again after the filter converged to a wrong position.

A combination of both methods, called ML-EKF ([3]), combines the robust-
ness of ML and the accuracy of the KF. MCL is a further refinement of ML,
replacing the probability grid by the already described sampling mechanism. As
the filter converges, the samples gather around positions of high probability. An
experimental comparison [4] of the described localization methods showed that
the ML-EKF approach performs about equally well as MCL.

In this paper, we will make use of the Monte Carlo Localization algorithm [1].
It works by approximating the belief by a set of weighted samples:

P(lt) ∼ {(l1,t, w1,t), . . . , (lN,t, wN,t)} = St. (2)

Once the initial sample set is given, the Monte Carlo algorithm works in three
steps:

1. In the prediction step the samples are moved according to the odometry
information ut. Noise is added to the movement according to the known
relative error of odometry.

2. In the weighting step the samples are weighted with the perception model
using the exteroceptive sensory data zt+1.

3. In the re-sampling step a new sample set is drawn. The distribution of sam-
ples represents the distribution of weights of the weighting step.

3 A Heuristic Perception Model for MCL

In this section, we present the modifications to the MCL method to be able to
localize with a laser range finder in environments with sparse landmarks. First,
we briefly discuss don’t-care regions and their integration into the sensor model.
Then we introduce our heuristic weight function.

3.1 Don’t Care Regions in Occupancy Grid Maps

We use occupancy grid maps (as in [2]) for representing the environment. Each
cell of the grid stores the probability of this cell being occupied by an obstacle.
Fig. 2 presents an example of a RoboCup field. Black regions denote an occu-
pancy with a probability of 1 (the goals and the posts), and white regions are
free areas. With the help of this information one can determine for each position
on the map which distance a laser ray pointing to a certain direction should
measure. This value will be referred to as the expected distance in the following.
The red border around the field in Fig. 2 represent our don’t-care extension to
occupancy grid maps. In these areas simply no information about occupancy is
given. This models an incompletely specified environment.
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Fig. 1. Sensor model for a single distance measurement for known and unknown ex-
pected distance

When using a 2D laser range finder, the weighting step of MCL can be per-
formed as described in [2]. The perception model p(d|l) for a single laser beam
describes the probability that the laser beam traveling in a certain direction from
l will measure the distance d.

We need the environment model to distinguish two cases: (1) the laser beam
will hit an obstacle; (2) the laser beam will hit a don’t care-region. In the first
case we know the expected distance of the measurement. According to [2], this
yields the single-beam perception model shown in Fig. 1(a). The peak represents
a Gauss curve assigning a high probability to the laser beam being reflected at the
expected distance. Note that the probability of the measurement being shorter
than expected is significantly higher than the probability of its being longer.
This is due to the possibility of dynamic occlusion. Because the probability of
occlusion is equal at all distances, it is modeled by a geometric distribution.
The merging of the geometric distribution with the Gaussian yields the model
displayed in Fig. 1(a).

As one does not have information of an expected distance in the case when a
laser ray is hitting a don’t-care region, the perception model is reduced by the
Gaussian part. This yields a purely geometric distribution shown in Fig. 1(b).

3.2 The Heuristic Perception Model

In order to perform the actual weighting of samples one has to combine the
probabilities of single-beam perception for a given sample position l and a full
2D-sweep z = (d1, . . . , dn) of the laser range finder by multiplying the weights [2]:

pmul(z|l) =
n∏

i=1

p(di|l). (3)

The weight range is exponential in the number of single measurements. With
360 readings it is practically impossible to weight the samples in that exponential
range. To give an example, suppose that we have two positions l1 and l2 with
uniform weights of 0.01 for l1 and 0.025 for l2. pmul yields the following weights:
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pmul(l1|z) = 0.01360 = 10−720 and pmul(l2|z) = 0.025360 ≈ 10−576.

The re-sampling step of MCL draws samples proportionally to their weights.
This means that in this example the sample containing position l2 has to be
drawn 10144 times (!) as often as the sample with position l1. Practically, this is
impossible because one cannot handle a sample set as large as this.

Note that using the logarithm of pmul does not provide a solution to this
problem. One can handle the weight range by doing so and also sample from the
logarithm of the sample distribution. However, the resulting sample distribution
would have to represent the proportions of the weights before using the logarithm.
Thus, the sizes of the sample sets would still be intractable.

It may seem that the problem could be fixed simply by reducing the number
of measurements to a manageable size.1However, in the RoboCup scenario this
does not work since typically up to 90% of the readings are useless due to the
sparsity of landmarks and occlusions. Hence even dropping a few readings risks
losing the few precious good readings. Instead, we propose to use all readings
for re-sampling, but replace the product by the sum of the measurements:

padd(z|l) =
n∑

i=1

p(di|l).

In contrast to the multiplicative model the weight range is now linear in the
number of single measurements of a 2D-sweep. Considering Fig. 1(a) the weights
range from about 0 to about 360 · 0.025 = 9.

Let us consider how the heuristics padd differs from the mathematically correct
model pmul. First, it is easy to see that the former changes the proportions of
the weights:

padd(z|l)
padd(z′|l)

�= pmul(z|l)
pmul(z′|l)

for most z, z′, l.

Furthermore, it does not preserve the order:

padd(z|l) > padd(z′|l) �≡ pmul(z|l) > pmul(z′|l) for many z, z′, l.

Thus, the additive perception model may prefer positions to others that would
not have been favored by the multiplicative model. A simple example for such
a situation is the following: Let z = (d1, d2) and l1, l2 such that p(d1|l1) =
0.06, p(d2|l1) = 0.01, p(d1|l2) = 0.04, and p(d2|l2) = 0.02. Now it follows that
pmul(z|l1) = 0.0006 < 0.0008 = pmul(z|l2) and padd(z|l1) = 0.07 > 0.06 =
padd(z|l2).

What one can learn from this example is that the additive model tends to
assign higher overall weights than the multiplicative model to positions with
high single weights. Expressed in different terms, the low weights do not have
such a great impact on the sample weighting as with the multiplicative model.

Having a look at Fig. 1(a), low single-beam weights can have two reasons:
(1) The reading is dynamically occluded, or (2) The reading is longer than
1 Experience shows that a reasonable number is in the order of 40.
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Fig. 2. Simulated global localization on the RoboCup field. The real position of the
robot is depicted by the gray circle. Because of the symmetry of the environment model,
two clusters have developed.3

expected. In the first case it is desirable that a low weight does not pull down
the weight of a correct hypothesis. In the second case, however, the weighting
function should reduce the weight of a position by the low single-beam weight.
padd works well in the first case while it fails in the second. In practice, however, it
turned out that even in this case the correct hypotheses were supported and the
algorithm converges (cf. Fig. 2). The convergence behavior is subject to further
investigation.

4 Experimental Results

We have tested our method extensively, both in simulation and with real robots
at RoboCup events. We will now present results concerning the accuracy and
robustness of our approach.

We used a map of a a RoboCup field as shown in Fig. 2 for the evaluation. It
contains just the goals and the corner posts of a RoboCup field. We changed the
noise level of the LRF in order to gain meaningful results. A noise level of n %
means that we set n% of the single readings randomly shorter than the reading
from the simulator. This simulates dynamic objects causing too short readings.
The distribution for the random shortening was uniform.

During the experiment with movement the robot traveled at an average speed
of 1.74m/s and 34◦/s, with a maximum speed of 3 m/s and 225◦/s. Fig. 3 shows
that below a critical noise level of 90% the accuracy is about 15 cm in the pose
and 4◦ in orientation. Above a noise level of 95% localization is no longer pos-
sible. One can get an intuitive understanding of what a loss of 90% of the laser
information means by calculating how many laser beams are still useful in that
case. For example, if the robot is placed in the middle of the field, about 12%

3 This ambiguity cannot be resolved by MCL with LRF due to the inherent symmetry
of the environment. In practice, it is resolved simply by using the information about
the color of nearest goal provided by the camera used for ball tracking.
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Fig. 3. Accuracy of position tracking by the MCL module. The red line shows the
mean error, and the green lines represent a one–σ–environment around the mean.

Table 1. Position Losses

RoboCup 2003
Team Artisti Trackies Eigen Cops Persia ISePorto AIS
Position Losses 0 1 7 4 2 1 5

German Open 2004
Team Paderkicker Minho Philips FUFighters Persia AIS
Position Losses 0 0 0 0 1 1

of its laser measurements correspond to usable landmarks. A loss of 90% means
that only 1%-2% remain which means 3-7 distance measurements.

We gathered data from two RoboCup events the AllemaniACs took part in
in order to gain results about the robustness of our localization approach. In
order to do so, we counted dis-localizations during each of the matches. The
results are shown in Table 1. All position losses were caused by severe failures
of odometry due to slippage caused by collisions. When this happens, the robot
senses a movement suggesting that it translated or rotated much farer than it
actually did.

5 Conclusion

In this paper we presented two extensions to the MCL algorithm that made it
possible to use the approach in connection with a 360◦ LRF in an environment
with sparse landmarks like the Middle-size league of RoboCup soccer.

We adapted the perception model for laser range measurements so that many
readings can be used. While usual implementations use about 20–40 measure-
ments per scan, we needed to make use of a whole sweep of 360◦ at a resolution of
1◦ because of the sparsity of landmarks and high sensor occlusion in RoboCup.
Our heuristic perception model exhibited good performance in this setting. As
the only source for dis-localizations was slippage, we suggest to add some kind
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of passive odometry to the sensory equipment of the robot. This should yield a
drastic increase in localization robustness.

We regard the fact as remarkable that MCL is at all able to keep track of the
position in the presence of a constant laser noise of 90% and fast movement of the
robot. We ascribe the good performance of our MCL Module in the presence of
laser noise to the characteristic of the additive perception model (cf. Section 3.2)
that it prefers position hypotheses with high individual weights.

The drawback of the additive model is the weak effect weights have on the
weighting of a position for readings that are longer than the expected distance.
This plays a role primarily in global localization. However, we found out that
our approach works well in this case, too, as is shown, for example, in Fig. 2.
Although the weights for wrong positions are not pulled down as strongly as
with the multiplicative model, it turns out that the correct hypotheses still have
a higher overall weight and are thus preferred for convergence.

Concluding, the additive model is a heuristic which turned out to work very
well in practice. In the future we want to investigate the mathematical properties
of that model and compare it with the multiplicative model in detail.

The second adaption, the don’t-care regions, represent an extension to occu-
pancy grid maps enabling one to mark regions where the map has no information
about occupancy. The results in localization performance showed that the ex-
tension works well. An opportunity to test the performance of our approach in
large indoor environments was during RoboCup 2004 at Lisbon /Portugal. We
won the silver medal in the technical challenge by autonomously driving all the
way from our team area to the soccer field. Thus, our approach to localization
in RoboCup is not only well suited for this domain but it scales up well in larger
indoor environments.
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Abstract. RoboCup projects can face a lack of progress and continuity.
The teams change continuously and knowledge gets lost. The approach
used in previous years is no longer valid due to rule changes and special-
ists leaving the team leave black boxes that no-one understands. This
article presents the application of a recent software development tech-
nique called eXtreme Programming to the realm of RoboCup. Many
common problems typical for teams of students seem to be solvable with
this technique. It also gradually spreads out in professional software pro-
duction companies. Students mastering it are of high use for their further
career after having left the university. The strategy is being tested on a
real RoboCup Mid-Size and an Aibo league project and produces very
promising results. The approach makes it possible to modularize scientific
knowledge into software that can be re-used. Both the scientist/expert,
who has the knowledge, and the software development team benefit from
this approach without much overhead on the project.

1 Introduction

1.1 RoboCup

RoboCup is an extremely difficult to approach problem and the complexity makes
it impossible for single individual researchers to tackle it. It seems mandatory to
attempt a solution in a team. In many teams members change frequently and the
interest in RoboCup may vary substantially. Devotion of all work power to a single
well defined topic exclusively is a rare exception. These discrepancies pose some
of the following questions which are quite typical for many RoboCup teams:

– How can one avoid starting anew each tournament, i.e. how to support sys-
tematically the enhancement of a existing behavior system? Every new team
member needs to get acquainted to the source code. The documentation is
hard to maintain and can lack the clarity needed to start programming.

– How can one address the problems caused by permanent changes of the rules?
Active and regular participation in tournaments requires a never-ending and
constant improvement. This is very much akin to try to meet the demands of
an external customer, who is not only never satisfied, but constantly changes
the requirements.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 577–584, 2006.
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– How can one cope with frequent team turn-overs, i.e how to avoid a sig-
nificant drop in performance or the resign of the team if some key system
designer graduates, leaving the team behind. How to either fill or avoid a
knowledge gap?

– How can one foster cooperation in the team, i.e. how to lower the danger of
a complete dependence on the expertise of a single member?

1.2 Correlations with the Industry

If we compare this to the software producing industry these questions sound
familiar and they can easily be paraphrased. The first might read as: how to
distribute knowledge about huge bodies of existing code to all members of project
teams in order to raise the overall productivity? Secondly, changing of rules can
be interpreted as a permanent change of customer specifications resulting in
an endless number of engineering change requests. Inherent to this lingers the
demand for ”faster, better and cheaper”, which is known as well from other
robotics customers like NASA[11] as from other big SW producing companies.
Thirdly the life cycle of the project usually lasts longer than the individual career
of a single project engineer. The goal of the whole project will be endangered if
the team of programmers lack cooperation. Solving a large problem in common
constitutes also a problem amongst humans.

1.3 Experience Matters

Both authors have a long experience of more than six years in different RoboCup
teams. They have extracted the problems described in this article from experi-
ence and conversations with many other teams. The authors thank the openness
of members of other teams. It made them realize that many teams face very
similar problems. No teams are mentioned specifically because the nature of the
problems is a general one. It suggests to investigate all viable solutions and espe-
cially to look for successful techniques from software engineering. It is important
to write down these experiences for the next generations.

This article is structured as follows: in the next section a problem description
is given. It suggests a mapping to some solution. Section 3 constitutes the core
of this paper, it defines the favored SW engineering method and reasons why it
is very well suited for this problem domain. It also indicates some open problems
that are partially addressed but need a more complete solution in near future.
Then follows the results on actually applying the suggested methods in running
RoboCup projects and closes with some outlook on future extensions.

2 Problem Description

2.1 The Development Process

In late 2003 it was decided to take a move from the RoboCup team formerly
known as GMD-Musashi, being rooted at Fraunhofer research institute AIS[6],
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to become an internship project only operated by students in a masters program
at the University of Applied Sciences of Bonn-Rhein-Sieg. During this migration
process we faced a number of problems.

Facing the blend of some very elaborate and difficult to program problems
students easily get overwhelmed. To keep them motivated one can use early suc-
cesses in spite of the complexity of the underlying task. Traditional SW produc-
tion models, such as the waterfall or spiral model, have a too slow turnaround
for this, so we chose eXtreme Programming [7] (XP) as an underlying pro-
gramming paradigm. It allows a jump start to code production and has a high
promise of early success. Secondly we introduced a visual programming suite
called ’Iconnect’[10]. It contains many different kinds of either standard or user
defined modules dedicated to signal processing tasks in real-time systems. The
programming paradigm is a synchronous data-flow architecture which eases the
programming tasks for a robot very much. Although the first steps are sim-
ple, the library reaches all the way up to vision algorithms like scaling, clipping
skeleton building, smoothing kernel filters and Lens calibration.

To foster collaboration, trust in the whole code has to be generated. This is
established through extended automated testing, so called test case driven de-
sign or unit testing [7]. Every student is allowed or even encouraged to change
the code of other group members, but to generate the necessary trust to dare so
the changed code has to be accompanied by many test cases. The positive com-
pletion of all tests ensures that the functionality of the code remained invariant.
Collective code ownership is essential and tightly bounded teams becomes pos-
sible. These procedures allow for micro architectural code transformation also
known as refactoring [9].

2.2 RoboCup

The use of standard platforms, such as the VolksBot[1] and the Aibo[2], eases the
development process in RoboCup. There can be a substantial waste of time in the
maintenance of shaky robots being constructed from far too many parts, which
can be tamed by using these basic robots. This change yields an encapsulation
of all micro-controller related issues, so the SW team can concentrate on other
issues, sometimes called high level SW. The knowledge of an expert is in the
micro-controller, ready to be used.

A good choice is to drastically cut down on the vast many number of choices
in the design space. Sacrificing here pays off in a much higher productivity,
see section 4. By prescribing a VolksBot as HW and Iconnect as the low level
SW exchange of modules becomes possible. Prescribing the SW development
methodology of XP adds many advantages which RoboCup seems to demand.
It supports small teams optimally with a range of techniques, without giving
too much overhead. One integral part of XP, the overall testing of the complete
behavior system, is difficult to automate completely for the given case of behavior
based robot control programs. But generally it is believed that regular unit
testing leaves less than 20% of the whole SW system uncovered (our experience).
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The expectations of the management may be met by a fast proof of capabilities
achieved by a purchase of some robot, instead of the time-consuming process
of building one. The start-up of new teams can focus on its organization and
actively building up its structure. The growth and decrease of a team is no
problem. Lazy students may get motivated by doing XP since it is fun to do and
early running tests are tempting. Finally pair programming makes all people in
the team cooperate and distributes the knowledge. This reduces what is known
as the ’truck’ factor in XP [7], which is the number of people that can be run
over by a truck without endangering the project. If this is 1, for any part of the
project, the project might be in trouble.

3 Approach

3.1 Top-Down Approach to Bottom-Up Robotics

Some of the methods of XP have to be adapted to the RoboCup environment
and some do not really seem to work at all. The authors have been on a few
(non-robotic) XP projects and there the technique works quite well, although it
is only a starting point and not the holy grail which solves all the problems. A
list of practices used or aimed for is given with some explanations why we do it
and whether it works as expected or not.

Borrowed Techniques from XP

Short releases: This prevents software-drift. There is always a fully working
version in CVS (or SVN). If there might be an integration problem between
modules, it is detected in an early stage and easy to solve. A release happens
every 4 to 6 weeks, and contains a fully working system, though it does
not have all the functionality of the end-product. This works very well and
motivates the team and assures the boss (professor or team-leader) that the
project is on track. If it is not on track appropriate steps are undertaken
without having too much damage.

Simple design: A complex design is hard to change. It is also impossible to
explain to new people coming into the project. It slows the speed of devel-
opment and discourages the exploration of alternative solutions. Worst case
scenario is a project that has virtually come to a full stop, nobody dares to
change much in the code and programming on the robot means, in practice,
that the person is mostly debugging.

Testing: An essential feature to get more certainty that the complex system
will actually work. If a test fails because something has changed the mistake
is easily found and fixed. The software grows and if it is uncertain if the basic
systems work as expected or not, there is no way to predict the behavior of
the software in the future.

Pair programming: Pair programming contains immediate code refereeing
and learning from each other without too much explicit training. One of
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the problems is that in a too small group there are several specialists work-
ing and a pair can quickly turn into one code-warrior and one viewer without
learning.

Collective code ownership: Everybody is allowed to change everything.Wait-
ing (hours, days) for someone to change a piece of code which could be fixed in
minutes by oneself is frustrating, slows down progress and gives rise to friction
in the team.

Continuous integration: To be certain that errors or incompatible modules
do not occur, continuous integration is an essential part of a professional
agile way of working. Persons can work for long periods of time on their own
island only to find out that during integration something very important was
very different than expected.

On-site expert: In XP an on-site customer is preferred as the expert on what
the end-product should look like. In scientific projects as RoboCup this is
more difficult and usually there is no customer. An on-site expert is recom-
mended to keep the group on track. Questions about algorithms, architec-
tures and planning issues are quickly resolved.

Steering: A complicated project has to be steered. In XP it is compared to
driving a car: one cannot point the nose into a certain direction and pay
no more attention to the driving. Steering is done continuously with small
adjustments all the time. This might result in uncertainty because there is
no grand/final plan while working. On the other side, such a plan is usu-
ally adjusted many times and only gives superficial certainty and a lot of
overhead.

Coding Standards: To be able to read all the code as if it was your own,
coding standards are needed. Today this is often an automated procedure in
the programming environment.

Coaching: The coach aids persons with the adopted way of working. Frictions
will arise due to different working habits, and the coach eases the transfer
from a naive approach to a structured one. The coach is not the bogyman, but
usually talks in general terms. The coach does not punish a team member
if something goes wrong but is instead looking how to solve the problem.
Nobody is to blame, instead everybody works on the solutions.

Strategic vs. implementation decisions: A big difference exists between
these sort of decisions. They can be made by the same persons but it is good
to separate them and explain explicitly what sort of decision is being made.
Inexperienced persons can make (some) implementation decisions, but only
the experts in the team can make the strategic decisions regarding overall
architecture, the algorithms to be used and hardware changes for example.

Practices from Experience in Robot Projects

Self-monitoring of the robots: Together with reliable software one should
pay attention to reliable hardware. If one is programming a behavior and
the robot starts to shake after running the code, the first thing to do is
check the new code. This reasoning is not always valid and can be plainly
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wrong. There are many possible problems with the hardware and software.
Fully automated checks of the important systems should give the user a hint
whether it is the new code causing the problems or something else. The
monitoring can be automated and on-line, which decreases debugging time.
It also helps with the control of a robot, if it can diagnose by itself what is
wrong.

Round-trip engineering: Build modules and behaviors according to the spec-
ifications, test them in simulation, transfer them to the real robot and test
them again. If the result is not close enough to what was expected the simula-
tion has to be adapted or the implementation rechecked. A research question
is how to automate the simulator tuning.

Active project management: Most of the people working on RoboCup are
students. They join the team for a certain amount of time and leave the
project. This is the ideal recipe for a failing project. Most of the knowledge
leaves with the students and the new students have to learn everything anew.
This causes a lack of progress on the long run.

3.2 Tools

Standardized hard- and software Preferably all the hard- and software
should be of-the-shelf. The robot used is a commercial product, unless the robot
itself is the research topic. The setup of the robot is standardized. One of the
tools we build is an installer for the robot and development software, an auto-
matic update procedure (one(!) button) for the drivers and the fully automated
control software update procedures. Every time one of these buttons is pressed
somewhere between five minutes (driver update) and a few hours (complete in-
stallation) is saved. Because it is easy to update the software it is more likely
that during the games all the robots have the same version running.

Just a few years ago a standardized, of-the-shelf, component based system was
lacking[14] and one of the aims of the robotic community. The standardization of
the hardware is progressing appropriately, though on the software side it is still
lacking. The approach used in modern software engineering is a visual based,
modularized and agile[4] one. The visual approach forces to build modules and
to standardize all the components. It becomes easier to test the software. To
cite Manuela Veloso, who talked in Padova about RoboCup, she was ”getting
bored by the lack of progress”, it was ”time to do something new”, the RoboCup
community should ”surprise her” and ”be less conservative”. The authors think
it is due to the approach used in the different RoboCup teams that the RoboCup
community is showing a slow-down, and not due to technological incompetence
or another reason. The lack of progress is a social problem, not a technological
one!

4 Results

The results of the proposed management approach are convincing but hard to
convey. The development speed is very high while the work pressure remains
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constant. There was a steep learning curve due to the new robot, a new and
unknown software tool and a new way of working (visual based and XP). To some
of the problems we encountered we have some solutions. For the simple design
the solution we use is extreme modularity. Everything we do is programmed in
modules (in C++). The interfaces are rigidly defined and strong typing is used.
In case of the visual programming environment, the graph built in this way is the
architecture. It supports hierarchy in cases where it is necessary. This ensures
flexibility and design overview. No design documents are used as the design is
the real-time system itself, in case of the visual tool.

The problems with pair-programming is solved by getting more persons on
the project. To be certain that modules are not messed up by unexperienced
programmers we work on the problem together with the expert if the change
is rather large. The on-site expert works really well. The rapid feedback of the
expert ensures that if a mistake is made or a problem has to be solved it is
done very swiftly. The steering done by the expert helps to keep the project
on track. The coaching eases communication in the team. Nobody has a special
place and everybody is treated as equal, which aids in the cohesion of the team
and speeds up the development process. The approach of dividing the strategic
and implementation decision is used to the maximum and it is a good working
practice. Students get certainty about the project and leaders are assured no big
mistakes are being made.

The estimated speed-up is hard to measure. In the mid-size league, a period
of just a few months, with a handful of people working a couple of days a week
resulted in our case in a working team that got through the first rounds. We
lost to the European Champion and the second on the world ranking list of
that year (2004), which is not a bad result for such a short period of working.
In comparison, other projects of us, without the methodologies written down
in this article, took one-and-a-half year (three times as long) to get the same
quality.

5 Future Developments

In the Netherlands a research project is ongoing which tests these methodolo-
gies between research groups. Questions arise about how it works when dozens
of people are working on a robotic project, in half a dozen different research
groups. One group is researching how to make a ’virtual laboratory’. How can
we work in different physical places and still have a decent project. One extra
practice is a gate keeper on the versioning system (CVS/SVN). There can be
many unstable branches, where groups or individuals can work, but there is only
one stable branch. This branch has a gatekeeper who checks whether the code
is according to the standards. If not then it does not go into the stable branch.
Another method is nightly updates and builds. All the unstable branches are
updated with the stable branch code. If merger problems arise it is reported in
the daily morning mail. Also all the branches are compiled from scratch, to check
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for problems. Everything is automated and the system emails one email in the
morning to everybody on the email list with all the details.

6 Summary

In this article we presented the application of a recent SW development technique
called eXtreme Programming to the realm of RoboCup. Some of the techniques
do not seem applicable to working with robots, but other one are working out
very fine. The result is a team that is expandable and has a high development
speed. We advise other groups also to pay attention to the social aspects of com-
plex high-tech projects such as RoboCup. This might be the first steps toward
the maturation of the robot-industry.
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Abstract. The default solution for mobile robot communication is RF-
networking, typically based on one of the IEEE 802.11 standards also
known as WLAN technology. Radio communication frees the robots from
umbilical cords. But it suffers from several significant drawbacks, espe-
cially limited bandwidth and range. The limitations of both aspects are in
addition hard to predict as they are strongly dependent on environment
conditions. An outdoor RF-link may easily cover 100m over a line-of-sight
with full bandwidth. In an indoor environment, the range often drops to a
few rooms. Walls made of hardened concrete even completely block the
communication. Driven by a concrete application scenario where com-
munication is vital, namely robot rescue, we developed a communication
system based on glassfibre links. The system provides 100MBit ethernet
connections over up to 100m in its default configuration. The glassfibres
provide high bandwidth, they are very lightweight and thin, and they can
take a lot of stress, much more than normal copper cable. The glassfiber
links are deployed from the mobile robot via a cable drum. The system
is based on media converters at both ends. One of them is integrated
on the drum, thus allowing the usage of inexpensive wired sliprings. The
glassfibre system turned out to be very performant and reliable, both in
operation in the challenging environment of rescue robotics as well as in
concrete experiments.

1 Introduction

Though there is some work where even cooperative robots are investigated with-
out communication [Ark92], there are hardly any application scenarios where
mobile robots can really operate without being networked. The common tech-
nical solution is the IEEE 802.11 family of standards also known as WLAN
[OP99]. WLAN has its well-known limitation [PPK+03], especially in respect to
bandwidth and range. One simple remedy is to use mobile robots to act as relay
stations along a kind of bucket brigade [NEMV02, NPGS03]. In doing so, the
relay robots follow a lead robot and they stop when the communication chain is
threatened to be broken. The big disadvantage is that rather many robots are
needed to cover extended areas and that the majority of the robots is used for
nothing but as a communication relay. More complex variations of the relay idea

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 585–592, 2006.
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are investigated in the field of ad-hoc networking [Per00] where dynamic links
and routing protocols are employed [JMH04, RT99, JW96].

In addition to the severe limitations in respect to bandwidth and reliability,
wireless communication solutions have the significant drawback for rescue appli-
cations that they block parts of the precious RF space. Rescue missions involve
different groups of first responders like firebrigades, police, medical doctors, and
so on. Each of these groups has their own communication systems. For many
large scale disasters like earthquakes, there are even many of these groups from
different countries, each with its own type of communication equipment. The
coordination of the usage of RF bands is a known problematic issue at disaster
sites. Any additional system like a rescue robot will face difficulties of acceptance
if it will block parts of this scarce resource with its wireless network.

Here, an extremely simple new approach is taken that circumvents the core
underlying troublemaker, namely the usage of RF as medium for mobile robot
communication. Instead, glassfibres are used. Being a cable based medium, the
challenge is to find a suited approach to deploy the cables during operation by
the robot itself. For this purpose a low-cost cable-drum system was developed,
which has proven to be very versatile and stable.

The rest of this paper is structured as follows. Section 2 gives an overview
of the system. Experiments and results are presented in section 3. Section 4
concludes the paper.

2 System Overview

As mentioned before, the quality of RF-communication strongly depends on envi-
ronmental conditions. We are interested in a particularly harsh domain, namely
rescue missions where robots are operating in urban disasters scenarios rang-
ing from earthquakes to gas or bomb explosions [RMH01, Sny01]. Distortions or
even complete failure of RF-communication is a known problem in the according

Fig. 1. A rescue robot with the glassfibre drum on its back (left). It has to operate in
an environment where high mobility is needed and the glassfibres are experiencing a
lot of stress through obstacles (right). Nevertheless, the glassfibres never failed in over
two years of operation.
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scenarios when RF-transceivers are moved through partially or fully damaged
buildings. In addition, RF bands are a scarce resource, which may only be used
under very special permissions at large scale disasters like earthquakes. We there-
fore developed an alternative solution to RF to allow for high bandwidth com-
munication of mobile devices.

The goal of the IUB rescue robots team is to develop fieldable systems within
the next years. Since the beginning of its research activities in this field in 2001,
the team has participated in several RoboCup competitions to test its approaches
[Bir05, BCK04, BKR+02]. In addition to work on mapping [CB05] and adhoc-
networking [RB05], the development of the robots themselves based on the so-
called CubeSystem [Bir04a] is an area of research in the team [BKP03, BK03].
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Fig. 2. The components of the deployable glassfibre communication system. The overall
system behaves much like a standard 100BaseTX FastEthernet connection between the
robot and an endpoint like a PC (cross-cable connection) or a network bridge (straight-
cable connection).

Figure 2 shows the main components of the overall system:

– two Allied Telesyn AT-MC100 media converter
– one IDM Electronics H6 slipring
– 30m to 100m of monomode glassfibres

Glassfibres are preferable over copper as cable medium for several reasons.
First, they are lightweight. For our application purposes in the order of a factor
two to three when compared to copper cable. Second, the bandwidth/distance
parameter is much higher [YZ01]. Third, glassfibers are much less vulnerable
to physical stress than normal CAT5 cables. This holds especially in respect to
the minimum bending radius. This parameter is of quite some importance in
application scenarios where high agility is a must. This robustness of the glassfi-
bres in our system has been proven in uncountable testruns of our robots in the
IUB rescue arena [Bir04b] as well as in various RoboCup competitions includ-
ing RoboCup 2003 in Padua, RoboCup American Open 2004 in New Orleans,
RoboCup 2004 in Lisbon and the RoboCup German Open 2005 in Paderborn.
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Fig. 3. A rescue robot with the newly designed cable deployment system

Fig. 4. A close-up of the cable deployment system

In none of the testruns or competitions did the glassfibre based communication
system ever fail.

As the cable is to be deployed from the robot, a rotating joint is required.
The usage of very expensive optical sliprings could be prevented by a simple
trick, namely using standard media converters. On both end points of the com-
munication system, 100BaseTX FastEthernet connections via a standard RJ45
connector are provided. 100BaseTX uses Category 5 cabling, or simply Cat5.
Cat5 is a type of cable designed for high signal integrity - it is tested to insure
a clean transmission of 100Mhz signals. The size of each wire is 22 gauges and
each pair of wires is twisted within the exterior cladding, thus the name ”twisted
pair” which refers to this type of cabling. As there is no shielding around the
four twisted pairs, Cat5 is generally referred by the term ”unshielded twisted
pair”, or simply UTP.

100BaseTX uses only two of the four available pairs of UTP cable. One
pair(TX) is used for transmission and the other(RX) is used for reception. The
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TIA-568B wiring standard defines the color-coding and, most important, the
order of wires’ connection in a RJ-45 8-pin modular jack. The so-to-say spare
wires on the cable are used in our system to power the media converter on the
cable drum.

So, the overall system mainly consists of a conventional 100BaseFX glassfibre
communication part, which is converted at both end points to a 100BaseTX
copper cable. The unconventional part is the 100BaseTX link on the robot,
which connects its network card with the media converter on the cable drum via
a wire slipring.

3 Performance of the Cabledrum

The potentially error-prone part of our system is the unconventional 100BaseTX
cabling involving a lowcost slipring. There are several crucial parameters for
CAT5 cable, namely

– Attenuation is the decrease in signal strength along the transmission line.
Since digital signal processing cannot significantly compensate for signal
degradation, ensuring low levels of attenuation is crucial.

– Attenuation to crosstalk ratio(ACR) is the difference between attenuation
and near-end crosstalk(NEXT). ACR is a crucial calculation with regard to
network transmissions. Its positive values ensure that a signal transmitted
along a UTP cable is stronger than near-end crosstalk.

– Near-end crosstalk(NEXT) measures the undesired signal coupling between
adjacent pairs at the transmit end.

– Far-end crosstalk(FEXT) measures the undesired signal coupling among ad-
jacent pairs at the receive end.

– Equal level far-end crosstalk(ELFEXT) is obtained by subtracting attenua-
tion from the far-end crosstalk. Poor ELFEXT levels can result in increased
bit error rates and/or undeliverable signals.

– Propagation delay is the amount of time the signal travels from the transmit
end to the receive end.

– Delay skew represents the difference between the pair with the highest prop-
agation delay and the pair with the lowest propagation delay.

There exist very strict limitations for these parameters [KBs, Ryb99]. As the
low level electrical properties of the slipring are neither documented nor easy
to measure, it is hence necessary to make a more high level investigation of the
properties of this link. Note that the usage of standard network test equipment is
not necessary helpful as the low level parameter of the slipring strongly depend
on its mode of operation, i.e., on its rotation rate. So, there is the need to evaluate
the deployable glassfibre system in respect to its compliance with the ethernet
standard.

The study of network transmission quality is a significant field of research
dealing with various metrics [Dre02, Fer90, Dre03]. Here, we simply measure
the round trip times of network packets to test the quality of the cabledrum
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Fig. 5. The average round trip times (RTT) of 1 million packets measured over a
standard 30 meter CAT5 cable as well as over the IUB cabledrum rotating at no (s =
0 rpm), medium (s = 30 rpm) and high speed (s = 60 rpm). The RTT only depend
on the packet size and slight random variations. No significant differences between the
standard cable and the drum rotating at different speeds can be measured.

system. To measure the potential problems caused by the slipring, the short
100BaseTX link from the robot card to the media converter via the slipring
is compared to a 30m standard CAT5 cable, i.e., a standard medium length
copper cable compliant to 100BaseTX. The cabledrum is furthermore rotated at
different speeds to test whether the transmission quality is influenced by this.
As shown in figure 5, a difference between the standard patch cable and the
cabledrum can not be measured in any of the experiments. This holds in respect
to reliability, which is always perfect with 0% packet loss, as well as in respect to
average round trip times (shown in figure 5) and jitter. The overall system with
100m glassfibres behaves thus like a direct 100BaseTX FastEthernet connection
between the robot and an endpoint with completely neglectable delays from the
media converters.

4 Conclusion

When it comes to mobile robot communication, wireless networks are the over-
whelming standard. We have shown that a cable based approach can be a serious
alternative, especially for RoboCup Rescue. A deployable glassfibre system was
presented which has proven to be reliable in the field as well as in experiments.
Glassfibres are lightweight, thin, and very robust. Furthermore, they carry high
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data rates with low delay and high reliability. The need for an expensive optical
slipring is circumvented in our system by using media converters. One of the con-
verters is on the cable drum. This allows a 100BaseTX copper wire connection
from the robot’s network card via a simple wire slipring to this media converter.
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Abstract. In the RoboCup F180 Small Size League, a global vision
system using multiple cameras has been used to capture the whole field
view. In the overlapping area of two cameras’ views, a process to merge
information from both cameras is needed. To avoid this complex process
and rule-based approach, we propose a mosaic-based global vision system
which produces high resolution images from multiple cameras. Three
mosaic images, which take into account the height of each object such as
our robots, opponent robots, and the ball on the field, are generated by
pseudo corresponding points. Our system archives a position accuracy of
better than 14.2 mm(mean: 4 mm) over a 4 × 5.5 m field.

1 Introduction

Recently, a global vision system using multiple cameras has been used in the
RoboCup F180 Small Size League(SSL), since the field size was changed to
5,500 × 4,000mm to create more space. In the case of using two cameras as a
global vision system, one is mounted over each half of the field to capture the
image which has enough resolution for object recognition. However, there will
be some problems with the use of two cameras. For example, in the overlapping
area of both cameras’ views, information from both cameras should be merged;
however, this is considered a very complex process.

A possible solution to avoid this complex process is to employ a planar per-
spective transform known as “image mosaicing,” which generates a high res-
olution image from two images. To obtain the mosaic image, a homography
between a reference image and the other image is computed by correspondences.
Although the mosaic image is generated from two camera images, the vision
algorithm already in use in the SSL can be easily applied to the mosaic image
without any changes. And any additional process such as merging information
from both cameras is not needed. Since the mosaic image is registered as a planar
image, there will be a blur around the object such as a robot, when the object
has a height from the plane used for calculating the homography. This causes
errors in the object identification, which processes regions to find the ball and
robots and identifies our robots.

In this paper, we propose a mosaic-based global vision system, which generates
mosaic images taking into account the height of each object. We will show that
our system is capable of high accuracy in position estimation.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 593–601, 2006.
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This paper is structured as follows. The second section points the problems in
the use of a two camera system. The next section describes the proposed system
in detail. Section 4 discusses the experimental results in position estimation and
processing time. Section 5 concludes the paper.

2 Problems with a Two Camera System

In order to capture the image which has a pixel representiong 5 millimeters on
the field, one is camera mounted over each half of the field as shown in Figure 1.
Each camera image is processed by color segmentation and followed by object
identification. Finally, the object’s position is converted to real world coordinates
for controlling the robots. After the vision processes described above, merging
information from both cameras is required, because of the overlapping area of
the two camera images. To merge results from both cameras in the overlapping
area, the following four methods are employed.

A. Updating recent result. When a recent result is obtained from either
camera, the final decision of the robot’s position is updated.

B. Hard decision boundary. The boundary for each camera is decided man-
ually in advance the final decision of the robot’s position is updated if the
position is inside the boundary.

C. Hysteresis. When a robot enters the overlap area, the camera that has been
tracking the robot continues to track it, and the other camera ignores the
data.

D. Fusion. Estimated positions by both cameras are merged to world coordi-
nates by weighting.

In method A, C, and D, robot1 and robot2 on the camera1 image shown in
Figure 1 are not identified, because half of the robot is outside of one camera’s
image and the other half of the robot is outside of the other camera’s image.
The camera cannot correctly identify the robot because the marking pattern is
not completely recognized in one camera’s image. In method B, the boundary

Fig. 1. Global Vision system using two cameras
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requires continual adjustment when both cameras are mounted. To solve these
problems, our approach generates a high resolution image from two cameras,
and then processes the mosaic image by the vision algorithm which is used in a
single camera system.

3 Mosaic-Based Global Vision System

To obtain the mosaic image from both cameras, a homography is computed by
correspondences between the two images. Since the mosaic image is registered
as a planar image, there will be a blur on the image around the object which
has a height from the plane used for calculating the homography. Our approach
is generating three mosaic images which take into account the height of our
robot, the opponent’s robot and a ball. Each mosaic image is processed by color
segmentation and object identification which usually are used in the global vision
system of a single camera. By generating the mosaic image considering the height
of each object, a highly accurate position estimate can be obtained.

3.1 Generating a Mosaic Image of the Field Plane

Figure 2(a) shows the relationship of projective geometry between both cameras
and the base plane (field). The planar perspective transform based on a homog-
raphy warps an image into another image using 8 parameters of the matrix H [7]
[8]. The homography between the two images of a planar surface is expressed as

p′ = H1p1 =

⎡
⎣h1 h2 h3

h4 h5 h6

h7 h8 1

⎤
⎦
⎡
⎣u1

v1

1

⎤
⎦ (1)

where p1 = [u1, v1, 1]T on the camera1 coordinate and p′ = [u′, v′, 1]T on the
mosaic image coordinate are corresponding points of two images. Mosaic image

Fig. 2. Projective geometry between both cameras and a base plane
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coordinate p′ corresponds to P = [xW , yW , zW ]T on the world coordinate. The
homography H2, which projects from the point p2 = [u2, v2, 1]T on the camera2
to p′ on the mosaic image, is computed inthe same way H1 was calculated.
These relations are expressed as the following equations:

p′ = H1p1

p′ = H2p2 (2)
P = αp′.

Note that the mosaic image coordinate p′ corresponds to the world coordinate P
on the field by linear mapping. In our vision system, the mosaic image, in which
a pixel represents 5 mm on the field, is generated using bilinear interpolation.
Therefore, it is easy to obtain the world coordinate P from the mosaic image
coordinate p′ by

P [mm] = 5[mm/pixel]× p′[pixel]. (3)

The process for generating a mosaic image of the field is described as follows:

Step1. By Choosing the landmark points on the field plane (such as rectangle’s
corner), which are observed from camera1, corresponding points of p1(u, v)
on the camera1 image coordinate and P (Xw, Yw, 0) on the world coordinate
for the landmark are measured manually.

Step2. P is converted to the mosaic image coordinate p′ by using equation (3).
Step3. The homography H1 is computed by using the correspondences of at

least 4 points. The homography H2 is also computed in the same way H1

was calculated.
Step4. Blending is performed around the area where both images are over-

lapped. Finally, the mosaic image is generated using H1 and H2, from both
camera images.

Figure 2(b) shows a mosaic image and both camera images. We can see that
the ball on the field plane is very clear, but the markers on the top of the robot
are not clear. Using the homography calculated from correspondences on the
field plane, P viewed from camera1, which is located at a height of robot h
from the base plane (field), is projected to P1 on the world coordinate as shown
in Figure 2(b). This causes errors denoted as d1 and d2 on the mosaic image
as shown in Figure 2(b). For this reason, a blur shown in Figure 3(b) will be
observed in the overlapping area on the mosaic image.

3.2 Generating a Mosaic Image of the Virtual Plane

Using the homography computed by correspondences on the field plane, pixels
on the top of the robot on the camera image are not correctly projected to
the mosaic image coordinate. In order to obtain the homography of any plane
in 3D space, correspondences on the plane should be measured. However, it is
impossible to measure the feature points on any plane in 3D space in a small
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Fig. 3. Mosaic image of field plane

amount of setup time. Our approach generates pseudo feature points on the
image coordinate for the top of the robot, and the homography is computed as
shown in Figure 4.

Fig. 4. Computation of homography of target plane
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The process for generating a mosaic image taking into account a virtual plane
is described as follows:

Step1. By choosing the landmark points on the field plane. Corresponding
points of p1(u, v) on the camra1 image coordinate and P (Xw, Yw, Zw) on
the world coordinate are measured manually.

Step2. Measuring the height of the robot(robot h), and P is converted to the
point Q(Xw, Yw, robot h) on the virtual plane.

Step3. Q is projected to camera 1 by reverse projection using the intrinsic and
extrinsic camera parameters. The pseudo corresponding point q1 is calculated
by

q1 =

⎛
⎝u1

v1

1

⎞
⎠ =

1
robot h′

⎛
⎝fku fs u0

0 fkv v0

0 0 1

⎞
⎠ (R | −RT )

⎛
⎜⎜⎝

xW

yW

robot h
1

⎞
⎟⎟⎠ (4)

where R is a rotation matrix, T is a translation matrix, f is a focal length,
s is shearing factor, and ku, kv are unit length of each axis.

Step4. The homography H ′
1 is computed by using the correspondences of q′

and q1. The homography H ′
2 is also computed by the same way of H ′

1.
Step5. Blending is performed around the area where both images are over-

lapped. Finally, the mosaic image taking into account the height of the object
is generated using H ′

1 and H ′
2.

Figure 5 shows a mosaic image of the virtual plane which has a height of the
robot (robot h = 150 mm). Although the ball on the field plane is not clear, we

Fig. 5. Mosaic image of the virtual plane
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can not see any changes around the markers on the top of the robot. We also
realized that the mosaic image of the virtual plane can absorb the change in the
height within ± 2cm.

The global vision system we proposed has two merits. One of them is to remove
the necessity for process of merging the information from both cameras. The
other is to facilitate the application of the vision algorithm which we have used
commonly in single camera system such as CMVision[10] and robot identification
method described in [9].

4 Experimental Results

To determine the accuracy of the proposed method, we measured the robot’s
position as ground truth and compared it to the position given by our global
vision system.

4.1 Configuration of Vision System

Two cameras are mounted at a height of 3,000 mm, and each camera has a view
of each area of 4,900 × 3,400 mm (overlapping area is 300 × 3,400 mm). Both
cameras are calibrated using over 40 feature points on the field plane to estimate
camera parameters.

4.2 Results

We evaluated the proposed method by location testing for 61 locations spread
over the field. Table 1 shows results in regard to location of the robot (height is
150mm) by the two mosaic images of the virtual plane and the field plane. The
mean of the position accuracy by the virtual plane (robot height) is 4mm. Note
that a pixel represents approximately 5 millimeters on the field in our camera
setting. This table shows that our vision system is able to correct to real world
locations with a high degree of accuracy. The system achieves a position accuracy
of better than 14.2 mm over a 4 m × 5.5 m field.

Table 1. Error of the estimated positions [mm]

Average SD Max
@ x y x y x y
Field plane 43.5 34.3 24.9 20.7 95.7 77.1
Target plane 3.7 4.3 2.8 2.8 12.0 14.2

* SD : Standard deviation

Figure 6 shows the distribution of the estimated positions. By the mosaic
image of the field, it is clear that the error becomes larger regarding the distance
from the optical center of the camera as shown in Figure 6(b). On the other hand,
the mosaic image of the virtual plane is able to estimate real world locations
very accurately, since the mosaic image was generated by taking into account
the height of the robot.
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Fig. 6. Distribution of estimated positions

4.3 Processing Time

The proposed global vision system takes 81 ms for all processes including gener-
ating three mosaic images for our robots, opponent robots and field plane. (39
ms for generating three full mosaic images, 38 ms for color segmentation, and 4
ms for object identification). This processing time is not sufficient for controlling
the robot in real-time using visual feed-back. To solve this problem, we generate
mosaic images of only 30 × 30 pixels around each object position, which was
detected in a previous frame, in order to run in real-time. The range of 30 × 30
pixels is about 15 × 15 cm in the real field. This search range works to reduce
total processing time to 13 ms (generating three mosaic images takes 5.5 ms,
color segmentation takes 5.5 ms, and object identification takes 1.1 ms for each
process).

5 Conclusion

We proposed a mosaic-based global vision system using multiple cameras, which
generates high resolution images taking into account the virtual plane of an
object’s height. Our system achieves a position accuracy of better than 14.2
mm(mean: 4 mm) over a 4 × 5.5 m field, and does not need any additional
process of merging information from both cameras.
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Abstract. In this paper a multi power multi direction kicking system is 
developed. This versatility is achieved without a need of either 
changing the power supply of robot  or the direction of whole chassis of 
robot .The main factors for designing a suitable solenoid were studied 
and the casual agents to obtain maximum velocity of ball were 
introduced. A main circuit is used for getting different currents for 
solenoid to have different power of shooting. An arrangement of 
solenoids is introduced to have multi direction kicking system.   

1   Introduction 

One of the main parts of robots which play in middle and small size leagues of 
Robocup matches is Kicker system. This system must kick the ball when a specific 
control command comes from processor of robot. There are usually two main 
different systems used for ball-kicking in robots.  

The first system consists of a couple of rode which rotate about an axis for 
kicking the ball. These rods get their force from a DC motor, controlled by the 
control unit of robot. The second system, used in mentioned type of robots is a 
solenoid system [1],[2],[3]. When a specific command comes from the control unit, a 
large amount of electrical current flows in solenoid windings and by producing a 
strong magnetic field, the bar will move. Almost all robots which designed based on 
this system are connected to one constant power for shooting ball. They only shoot at 
the end point of their playing algorithm to opponent goal and they don’t use their 
kicking system for passing to other robots. The reason of this behavior is that the 
power of solenoid kicking system is calibrated for maximum velocity of ball for 
shooting to the opponent goal. Almost all robots use this system only in one 
direction. So when robot wants to shoot toward a different direction from its chassis, 
it must rotate. Rotating is a time consuming movement and robots of opponent team 
can figure out where robot aims to shoot. So they distort the process of shooting by 
closing the front of robot. 

In this paper a multi power multi direction kicking system is developed. This 
versatility is achieved without a need of either changing the power supply of robot or 
the direction of whole chassis of robot.  
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Fig. 1. Kicking system of Cornell Big Red team  

2   Collision Analysis 

When a collision is occurred between kicker system and ball, the velocity of ball is 
changed. The summation of momentum of ball and kicker before and after collision is 
equal. Consider to the equation of conservation of momentum (1) and consider that 
velocity of kicker vanishes after occurrence of collision because of opponent direction 
of magnetic force of solenoid.   

)( mvmisionbeforecollvmvm barballballbarbarballball

→→→
+×=×+×  

                                                                     )( sionaftercollivbar

→
×  

)()( sionaftercollivmisionbeforecollvm ballballbarbar

→→
×=×                         (1)               

So, to obtain greater velocity of ball, the mass of solenoid system or the velocity of 
solenoid must be greater. The mass of solenoid is constant and its increase may cause 
many faults in motivation of robot in a match. So to get the maximum velocity for 
ball, the velocity of bar (core) of solenoid should be increased, in other words in order 
to be able to change the ball velocity we must be able to modify the bar speed. So the 
efforts should be concentrated on reaching the maximum bar velocity and for obtain 
the ability of changing velocity the bar. 

3   Calculating Transmission Velocity 

The velocity of a bar in the final position of solenoid is calculated from equation (2). 
In this equation the initial velocity of bar is considered to be zero.  

dtav .
→→

=  (2) 
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So, to obtain greater velocity, the acceleration of solenoid bar should be greater and 
for changing the velocity the acceleration should be changed. Now consider to the 
equation (3) for changing the acceleration of solenoid bar. 

→→
×= amF  (3) 

To obtain a greater acceleration, greater a force to the solenoid bar is needed by using 
greater magnetic field, and for changing the magnitude force which is forced to the 
bar, the force should be changed. Now consider to the equation (4) for finding the 
force. 

wF
→→
∇−=  (4) 

The above equation shows that the force is equal to gradient of work. So the work of 
each position of solenoid bar must be calculated at two positions. First, position is the 
start point and then at the end of movement. These works could be calculated by 
Electromagnetic laws (5). 

2
11 2

1 ILw =  

2
22 2

1 ILw =  

(5) 

Which “W1” equals work in start position, and “W2” equals work in the end position 
of movement. Using the above equations the force could be found by the equation (6). 
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Fig. 2. A solenoid motivation  

Inductance “L” could be calculated by the equation (7). 

R

N
L

2

=  (7) 
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Which “N” is turns of wire of solenoid for producing the electromagnetic field for 
movement of bar and "R" is reluctance. By equation (8) the Reluctance of the 
magnetic circuit for solenoid could be calculated. 

A

l
R avr

.μ
=  (8) 

The force could be calculated from the above equations. These calculations are 
presented in equations (9).  
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So, to obtain maximum force for shooting ball “I” (current flows in wires of 
solenoid), “N” (number turns of wire of solenoid), Permeability of core of solenoid 
and surface area of solenoid must be maximum. The only Value which could be 
changed to have different power of shooting is the current which flows in the 
solenoid. 

So we must change the value of current to have different powers. The resistance of 
wires of solenoid is constant (for DC currents), so the voltage which forces the 
solenoid must be changed.  

4   Producing Different Voltages from a Battery 

In this section a main circuit for producing the sufficient voltages for solenoid is 
introduced. This circuit should feed the solenoid to have maximum velocity or have 
different velocity of ball. There are several circuits for producing different voltages 
from a DC power supply introduced in Power Electronics. 

In this paper we use a Boost regulator. In a boost regulator, the output voltage is 
greater than the input voltage. A boost regulator is shown in figure 3. 
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Fig. 3. Circuit of a Boost regulator 
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The circuit operation can be divided into two modes. Mode 1 begins when 
transistor switched on. The input current, which rises, flows through inductor “L” and 
transistor. Mode 2 begins when transistor is switched off. The current which was 
flowing through the transistor would now flow through “L”,”C”, load and “D1”. The 
inductor current falls until transistor is turned on again in the next cycle. The energy 
stored in the inductor “L” will be transferred to load .The output voltage of the 
regulator could be found by using the volt second law and is shown in equation (10). 

inout V
d

V )
1

1
(

−
=  (10) 

The waveform for voltages is shown in figure 4 for three different duty cycles of 
transistor. So, to have several voltages from Boost regulator, the Duty cycle of 
transistor must be calculated and changed. A PWM system must be designed for 
changing Duty cycle of feed for transistor. To design a PWM circuit a timer must be 
used. This timer could be an independent timer or a timer of a microcontroller.   

 

Fig. 4. Wave form for 3 different duty cycles 

5   Multi Direction Kicking System 

A multi direction kicking system consists of three different independent solenoids 
which could shoot the ball independently. The arrangement of three different 
solenoids in three different angles could be implemented for different directions. For 
this arrangement of solenoid systems, they must be small and light enough. They must 
be small to produce different angles and they must be light because the weight of 
robot play the most important role in amount of time for reaching the ball in the 
match and this time is an important factor in the small size Robocup matches.   

To reach each direction the velocity of each of three solenoids should be 
calculated. The combination of velocity of solenoids produce a vector for shooting. 
The pattern of this vector is the pattern of shooting, and the magnitude of vector is 
power of shooting. 
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Usage of three independent solenoids could increase the power of shooting, too. 
The figure 5 shows the maximum power of shooting for different angles of two 
solenoids respect to central solenoid. In this figure “X” is the first solenoid angle with 
respect to central solenoid and “Y” is the second solenoid angle with respect to 
central solenoid. 

As the figure 5 shows, maximum velocity of ball will be resulted in the situation 
which, the angles of two beside solenoids are equal to each other. This velocity will 
be in the maximum value when these angles vanish, but to obtain several directions, 
these angles must be nonzero. By setting the angle of solenoids and the voltages 
which feed to the boost regulator, multi power and multi direction of shooting will be 
obtained. 

 

Fig. 5. maximum Power of shooting 
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Abstract. The paper presents the self-localization approach used by
the World Champion in the Sony Four-Legged Robot League 2004. The
method is based on a particle filter that makes use of different features
from the environment (beacons, goals, field lines, field wall) that provide
different kinds of localization information and that are recognized with
different frequencies. In addition, it is discussed how the vision system
acquires these features, especially, how the orientation of field lines is
determined at low computational costs.

1 Introduction

The Sony Four-Legged Robot League (SFRL) is one of the official leagues in
RoboCup, in which a standardized robot platform is used, namely the Sony
Aibo. The robots act completely autonomously. The main sensor of the Sony
Aibo is the camera located in its head. The head can be turned around three
axes (2× tilt, 1× pan), and the camera has a field of view of approximately 57◦

by 42◦. The soccer field in the SFRL has a size of approximately 5m×3m. As the
main sensor of the robot is a camera, all objects on the RoboCup field are color
coded. There are two-colored beacons for localization (pink and either yellow or
skyblue), the two goals are of different color (yellow and skyblue), the field is
green, and the field lines as well as the field wall are white.

During actual RoboCup games, the beacons and goals are rarely perceived,
especially by the robot that is handling the ball. Therefore it is advantageous if
also the field lines and the field wall can be employed for localization. However,
different features in the environment are recognized with different frequency
and they provide different kinds of information usable for localization. Lines
only provide localization information perpendicular to their orientation. The
field lines are mostly oriented across the field, but the side lines of the penalty
area also provide important information, especially for the goalie. The field lines
are seen less often than the field wall that is surrounding the field. Therefore the
latter provides information in both Cartesian directions, but it is often quite far
� The Deutsche Forschungsgemeinschaft supports this work through the priority pro-

gram “Cooperating teams of mobile robots in dynamic environments”.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 608–615, 2006.
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a) b) c)

Fig. 1. Different scanlines and grids. a) The main grid which is used to detect objects
on the field. b) The grid lines for beacon detection. c) The grid lines for goal detection.

away from the robot. Therefore, the distance information is less precise than the
one provided by the field lines. The field wall is seen from nearly any location on
the field. Goals and beacons are the only means to determine the orientation on
the field, because the field lines and the field wall are mirror symmetric. Goals
and beacons are seen only rarely. It turned out that the vision system is reliably
able to determine the orientation of field lines, while the orientation of the edge
between field wall and field is not as stable. Therefore, it is distinguished between
field lines along the field and field lines across the field. This especially improves
the localization of the goalie, because it sees both types of lines surrounding the
penalty area.

2 Acquiring Localization Information

The vision system of the GermanTeam processes images of a resolution of 208×
160 pixels, but looking only at a grid of less pixels. The grid is aligned to the
so-called horizon, i. e. the plane that is in parallel to the field plane, but on the
height of the camera. The idea is that for feature extraction, a high resolution
is only needed for small or far away objects. In addition to being smaller, such
objects are also closer to the horizon. Thus only regions near the horizon need
to be scanned at a relative high resolution, while the rest of the image can be
scanning using a wider spaced grid.

Each grid line is scanned pixel by pixel from top to bottom and from left to
right respectively. During the scan each pixel is classified by color. A characteris-
tic series of colors or a pattern of colors is an indication of an object of interest,
e. g., a sequence of some orange pixels is an indication of a ball, a sequence
of some pink pixels is an indication of a beacon, an (interrupted) sequence of
sky-blue or yellow pixels followed by a green pixel is an indication of a goal, a
sequence of white to green or green to white is an indication of an edge between
the field and the border or a field line, and a sequence of red or blue pixels is an
indication of a player. All this scanning is done using a kind of state machine;
mostly counting the number of pixels of a certain color class and the number
of pixels since a certain color class was detected last. That way, beginning and
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a) b) c)

Fig. 2. Three steps in beacon detection: a) Scanlines searching for pink runs. The pink
segments are the detected pink runs, the red segment is the result of clustering. b) The
specialist detects the edges of the beacon. c) The generated percept.

end of certain object types can still be determined although some pixels of the
wrong class are detected in between.

To speed up the object detection and to decrease the number of false positives,
essentially three different grids are used. The main grid covers the area around
and below the horizon. It is used to search for all objects which are situated on
the field, i. e. the ball, obstacles, other robots, field borders, field lines, and the
lower borders of the goals (cf. Fig. 1a). A set of grid lines parallel to and in most
parts over the horizon is used to detect the pink elements of the beacons (cf.
Fig. 1b and Fig. 2). The goal detection is also based on horizontal grid lines (cf.
Fig. 1c).

As a first step towards a more color table independent classification, points
on edges are only searched at pixels with a big difference of the Y channel of
the adjacent pixels. An increase in the Y channel followed by a decrease is an
indication of an edge. If the color above the decrease in the Y channel is sky-blue
or yellow, the pixel lies on an edge between a goal and the field. The detection
of points on field lines and borders is still based on the change of the segmented
color from green to white or the other way round.

The differentiation between a field line and the border is a bit more compli-
cated. In most cases, the border has a bigger size in the image than a field line.
But a far distant border might be smaller than a very close field line. Therefore
the pixel, where the segmented color changes back from white to green after a
green-to-white change before, is assumed to lie on the ground. With the known
height and rotation of the camera, the distance to that point is calculated. The
distance leads to expected sizes of the field line in the image. For the classifica-
tion, these sizes are compared to the distance between the green-to-white and
the white-to-green change in the image to determine if the point belongs to a
field line or a border. The projection of the pixels on the field plane is also used
to determine their relative position to the robot.

In addition, for every point classified as being on the edge of a field line or
the field wall, the gradient of the Y channel is computed (cf. Fig. 3a,b). This
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a) b)

Fig. 3. Points on the edges, including computed gradients. a) On a line. b) On a
field wall.

gradient is based on the values of the Y channel of the edge point and three
neighboring pixels, using a Roberts operator ([3]):

s = I
[
x + 1 y + 1

]
− I

[
x y

]
t = I

[
x + 1 y

]
− I

[
x y + 1

]
|∇I| =
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� ∇I = arctan
(

s
t

)
− π

4

(1)

where |∇I| is the magnitude and � ∇I is the direction of the edge. � ∇I is after-
wards projected to the field plane, resulting in a direction in field coordinates.

3 Self-localization

A Markov-localization method employing the so-called Monte-Carlo approach
[1] is used to determine the position of the robot. It is a probabilistic approach,
in which the current location of the robot is modeled as the density of a set of
particles. Each particle can be seen as the hypothesis of the robot being located
at this posture. Therefore, such particles mainly consist of a robot pose, i. e. a
vector pose = (x, y, θ) representing the robot’s x/y-coordinates in millimeters
and its rotation θ in radians. A Markov-localization method requires both an
observation model and a motion model. The observation model describes the
probability for taking certain measurements at certain locations. The motion
model expresses the probability for certain actions to move the robot to certain
relative postures. The one used is described in [2].

The localization approach works as follows: first, all particles are moved ac-
cording to the motion model of the previous action of the robot. Then, the prob-
abilities for all particles are determined on the basis of the observation model
for the current sensor readings, i. e. bearings on landmarks calculated from the
actual camera image. Based on these probabilities, the so-called resampling is
performed, i. e. moving more particles to the locations of samples with a high



612 T. Röfer, T. Laue, and D. Thomas

probability. Afterwards, the average of the probability distribution is determined,
representing the best estimation of the current robot pose. Finally, the process
repeats from the beginning. Since the general approach has already been de-
scribed in [2], this paper focuses on how to combine the perceptions of beacons,
goals, and (directed) edge point in a way that results in a stable self-localization.

Observation Model. The observation model relates real sensor measurements
to measurements as they would be taken if the robot were at a certain location.
Instead of using the distances and directions to the landmarks in the environ-
ment, i. e. the beacons and the goals, this localization approach only uses the
directions to the vertical edges of the landmarks. However, although the points
on edges determined by the image processor are represented in a metric fashion,
they are also converted back to angular bearings. The advantage of using land-
mark edges for orientation is that one can still use the visible edge of a landmark
that is partially hidden by the image border. Therefore, more points of reference
can be used per image, which can potentially improve the self-localization.

The utilized percepts are bearings on the edges of beacons and goals, and
points on edges between the field and the field lines, the field wall, and the goals.
These have to be related to the assumed bearings from hypothetical postures.
As has been pointed out in [2], the different percepts contain different kinds
of localization information and are seen with different frequencies. Therefore, it
is required to represent separate probabilities for beacons and goals, horizontal
field lines, vertical field lines, field walls, and goal edges for each particle.

As the positions of the samples on the field are known, it can be determined
for each measurement and each sample, where the measured points would be
located on the field if the position of the sample was correct. For each of these
measured points in field coordinates, it can be calculated, where the closest point
on a real field line of the corresponding type is located. Then, the horizontal and
vertical angles from the camera to this model point are determined. These two
angles of the model point are compared to the two angles of the measured point.
The smaller the deviations between the model point and the measured point
from a hypothetic position are, the more probable the robot is really located
at that position. Deviations in the vertical angle (i. e. distance) are judged less
rigidly than deviations in the horizontal angle (i. e. direction).

Calculating the closest point on an edge in the field model for a small number
of measured points is still an expensive operation if it has to be performed for,
e. g., 100 samples. Therefore, the model points are pre-calculated for each edge
type and stored in two-dimensional lookup tables with a resolution of 2.5 cm.
That way, the closest point on an edge of the corresponding type can be deter-
mined by a simple table lookup. Figure 4 visualizes the distances of measured
points to the closest model point for the four different edge types.

Probabilities for Beacons and Goals. The observation model only takes
into account the bearings on the edges that are actually seen, i. e., it is ignored
if the robot has not seen a certain edge that it should have seen according to
its hypothetical posture and the camera pose. Therefore, the probabilities of
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a) b)

c) d)

Fig. 4. Mapping of positions to closest edges. a) Field lines along the field. b) Field
lines across the field. c) Field wall. c) A goal.

the particles are only calculated from the similarities of the measured angles to
the expected angles. Each similarity s is determined from the measured angle
ωmeasured and the expected angle ωexpected for a certain pose by applying a
sigmoid function to the difference of both angles:

s(ωmeasured, ωexpected) =

{
e−50d2

if d < 1
e−50(2−d)2 otherwise

where d = |ωmeasured−ωexpected|
π

(2)

The probability qlandmarks of a certain particle is the product of these
similarities:

qlandmarks =
∏

ωmeasured

s(ωmeasured, ωexpected). (3)

Probabilities for Edge Points. The probabilities of the particles are calcu-
lated from the similarities of the measured angles to the expected angles. Each
similarity s is determined from the measured angle ωseen and the expected angle
ωexp for a certain pose by applying a sigmoid function to the difference of both
angles weighted by a constant σ:



614 T. Röfer, T. Laue, and D. Thomas

s(ωseen, ωexp, σ) = e−σ(ωseen−ωexp)2 (4)

If αseen and αexp are vertical angles and βseen and βexp are horizontal angles,
the overall similarity of a sample for a certain edge type is calculated as:

qedge type = s(αseen, βseen, αexp, βexp) = s(αseen, αexp, 10 − 9
|v|
200

) · s(βseen, βexp, 100)

(5)
For the similarity of the vertical angles, the probability depends on the robot’s

speed v (in mm/s), because the faster the robot walks, the more its head shakes,
and the less precise the measured angles are.

Calculating the probability for all points on edges found and for all samples
in the Monte-Carlo distribution would be a costly operation. Therefore, only
three points of each edge type (if detected) are selected per image by random.
To achieve stability against misreadings, resulting either from image processing
problems or from the bad synchronization between receiving an image and the
corresponding joint angles of the head, the change of the probability of each
sample for each edge type is limited to a certain maximum. Thus misreadings
will not immediately affect the probability distribution. Instead, several read-
ings are required to lower the probability, resulting in a higher stability of the
distribution. However, if the position of the robot was changed externally, the
measurements will constantly be inconsistent with the current distribution of
the samples, and therefore the probabilities will fall rapidly, and resampling will
take place.

The filtered probability q′ for a certain type is updated (q′old → q′new) for each
measurement of that type:

q′new =

⎧⎨
⎩

q′old + Δup if q > q′old + Δup

q′old −Δdown if q < q′old −Δdown

q otherwise.
(6)

For landmarks, (Δup, Δdown) is (0.1, 0.05), for edge points, it is (0.01, 0.005).

Overall Probability. The probability p of a certain particle is the product of
the three separate probabilities for bearings on landmarks, edges of field lines
along and across the field, the field wall, and goals:

p = q′landmarks · q′longitudinal lines · q′latitudal lines · q′field walls · q′goals. (7)

4 Results

[2] presented quantitative results on the precision of the localization approach
on an empty field using only lines and goals. The recent improvements clearly
target to achieving a good localization during actual RoboCup games, i. e. in
situations in which the main focus is on perceiving the ball and localization
information is recognized rather rarely. Therefore, the games of the GermanTeam
performed in Lisbon (videos at http://www.tzi.de/4legged) represent a good
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evaluation of how well the localization system works, because many parts of the
behavior description of the GermanTeam rely on correct localization, e. g. which
kick is selected at which position, and the placement of the defensive players,
especially the goal keeper. At RoboCup 2003, it was also demonstrated that the
GermanTeam can play soccer without the beacons.

5 Conclusions

This paper presents how beacons, goals, as well as points on edges between the
field and field lines or field walls are determined, namely features that are re-
quired to localize on a RoboCup field. It is also shown how the edge points are
augmented with the direction of the edge using a computationally cheap opera-
tion. All these features are used by a particle filter to determine the position of
the robot. Here, separate probabilities for different features are used per parti-
cle, because the features provide different information about the position of the
robot, and they are recognized with different frequencies.
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2. T. Röfer and M. Jüngel. Fast and robust edge-based localization in the sony four-
legged robot league. In Daniel Polani, Brett Browning, Andrea Bonarini, and Kazuo
Yoshida, editors, RoboCup 2003: Robot Soccer World Cup VII, number 3020 in
Lecture Notes in Artificial Intelligence, pages 262–273, Padova, Italy, 2004. Springer.

3. L.G. Roberts. Machine perception of three dimensional solids. Optical and Electro-
Optical Information Processing, pages 159–197, 1968.



Performance Evaluation of an Evolutionary
Method for RoboCup Soccer Strategies

Tomoharu Nakashima1, Masahiro Takatani1, Masayo Udo1,
Hisao Ishibuchi1, and Manabu Nii2

1 Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531, Japan
{nakashi, takatani, udo, hisaoi}@ie.osakafu-u.ac.jp

http://www.ie.osakafu-u.ac.jp/~hisaoi
2 University of Hyogo, Shosha 2167, Himeji, Hyogo 671-2201, Japan

nii@eng.u-hyogo.ac.jp

Abstract. This paper proposes an evolutionary method for acquiring
team strategies of RoboCup soccer agents. The action of an agent in
a subspace is specified by a set of action rules. The antecedent part
of action rules includes the position of the agent and the distance to
the nearest opponent. The consequent part indicates the action that the
agent takes when the antecedent part of the action rule is satisfied. The
action of each agent is encoded into an integer string that represents the
action rules. A chromosome is the concatenated string of integer strings
for all agents. We employ an ES-type generation update scheme after
producing new integer strings by using crossover and mutation. Through
computer simulations, we show the effectiveness of the proposed method.

1 Introduction

RoboCup soccer [1] is a competition between soccer robots/agents and its ulti-
mate purpose is to win against the human soccer champion team by the year
2050. Developing RoboCup teams involves solving the cooperation of multiple
agents, the learning of adaptive behavior, and the resolution to noisy data han-
dling. Many researchers have been tackling with these problems. An example of
them is the application of soft computing techniques [2].

In general, the behavior of the soccer agents is hierarchically structured. This
structure is divided into two groups. One is low-level behavior that performs
basic information processing such as visual and aural information. Basic actions
such as dribble, pass, and shoot are also included in the low-level behavior. On
the other hand, high-level behavior makes a decision from the viewpoint of global
team strategy such as cooperative play among the teammates.

For low-level behavior, Nakashima et al.[2] proposed a fuzzy Q-learning
method for acquiring a ball intercept skill. In [2], it is shown that the performance
of the agent gradually improves through trial-and-error.

Evolutionary computation has been used to evolve strategies of games. For
example, Chellapilla [3, 4] proposed a method based on the framework of evo-
lutionary programming to automatically generate a checker player without in-
corporating human expertise on the game. An idea of coevolution is employed

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 616–623, 2006.
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in [3, 4]. For RoboCup soccer agents, a genetic programming approach has been
applied to obtain the soccer team strategy in [5]. In [5], the idea of coevolution is
also employed. The evolution of team strategy from kiddy soccer (i.e., all players
gather around the ball) to formation soccer (i.e., each player maintains its own
position during the game) is reported.

In this paper, we propose an evolutionary method for acquiring the strategy of
RoboCup soccer teams. High-level behavior of soccer teams can be obtained by
the proposed method. The characteristic feature of the proposed method is that
the behavior of the soccer teams is represented by an integer string. The integer
strings is a concatenation of the behavior of ten players. A set of action rules
is encoded into the integer strings. The actions of soccer agents are specified by
the action rules when they keep a ball. The antecedent part of the action rules
is the position of the agent and its nearest opponent agent. The action to be
taken is indicated by the consequent part of the action rules that best describes
the agent’s condition. We examine the effectiveness of the proposed method
through computer simulation. The future research direction is also described in
this paper.

2 Team Setup

2.1 UvA Trilearn: Base Team

In this paper, we use UvA Trilearn for our evolutionary computation method.
UvA Trilearn won the RoboCup world competition that was held in Padua,
Italy in 2003. The source codes of UvA Trilearn are available from their web site
[7]. Low level behaviors such as communication with the soccer server, message
parsing, sensing, and information pre-processing are implemented. Basic skills
such as player’s positioning, ball intercept, and kick are also implemented in
the available source codes. High level behaviors such as strategic teamworks,
however, are omitted from the source codes.

UvA Trilearn players take rather simple actions as high level behaviors are
not implemented in the released source codes. We show the action tree of the
UvA Trilearn players in Fig. 1. There are two action modes: One is ball handling
mode, and the other is positioning mode. Each of the players uses one of these
two modes every time step depending on its situation in the soccer field. When
a player is the nearest one to the ball among the team, the ball handling mode is
carried out. On the other hand, when a player is not the nearest one to the ball
among the team, it takes the positioning mode. The following subsections explain
these two modes in detail. Note that this action is common for all players. Thus,
players follow the same action tree to determine the action every time step.
Since their conditions and home positions are different from each other, the
action taken at a time step is not necessarily the same for all players. Due to
the limitation of space, we describe the ball handling mode only in the following
section.
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Nearest to the ball?

Posit ioning modeBall handling mode

Kickable?

Yes No

Yes No

Action rule Intercept

Fig. 1. Action tree of UvA Trilearn players

2.2 Ball Handling Mode

The ball handling mode is employed when a player is the nearest one to the ball
among the team, In this mode, the player checks if it can kick the ball or not. A
kickable margin is defined by the RoboCup soccer server. A player can kick the
ball if the ball is in the kickable area of the player. Otherwise it is impossible to
kick the ball as the ball is out of its kickable area. In this case, the player moves
towards the ball until the ball is within its kickable area.

In the original UvA base team, the player always shoot the ball to the oppo-
nent goal if the ball is kickable. We modified this behavior for our evolutionary
computation. We use a set of action rules for determining the action of a player
that is kickable the ball. The action rule set represents the strategy of a soccer
team. In this paper, we evolve action rule sets to find a competitive soccer team
strategy.

The action rules of the following type are used in this paper:

Rj : If Agent is in Area Aj and the nearest opponent is Bj

then the action is Cj , j = 1, 2, . . . , N,
(1)

where Rj is the rule index, Aj is the antecedent integer value, Bj is the an-
tecedent linguistic value, Cj is the consequent action, and N is the number of
action rules.

The antecedent integer value Aj , j = 1, . . . , N , refers to a subarea of the soccer
field. We divide the soccer field into 48 subareas as in Fig. 2. Each subarea is
labaled an integer value. The antecedent value Aj of the action rule Rj is an
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integer value in the interval [1, 48]. The action of the soccer agent also depends
on the distance between the agent and its nearest opponent. The antecedent Bj

takes one of two linguistic values near or not near. The player that is kickable
the ball examines whether the nearest opponent is near the agent or not. We
use two linguistic values for the antecedent part Bj . The nearest opponent is
regarded as near if the distance between the agent and its nearest opponent is
less than a prespecified value. If not, the nearest opponent is regarded as not
near the player. The consequent action Cj represents the action that is taken
by the agent when the two conditions in the antecedent part of the action rule
Rj (i.e., Aj and Bj) are satisfied. In this paper, we use the following ten actions
for the consequent action Cj .

1. Dribble toward the opponent side. The direction is parallel to the horizontal
axis of the soccer field.

2. Dribble toward the opponent side. The direction is the center of the opponent
goal.

3. Dribble carefully toward the opponent side. The direction is the center of
the opponent goal. The dribble speed is low so that the agent can avoid the
opponent agent.

4. Pass the ball to the nearest teammate. If the nearest teammate is not ahead
of the agent, the agent does not kick to the nearest teammate. Instead, it
clears the ball toward the opponent side.

5. Pass the ball to the second nearest teammate. If the second nearest teammate
is not ahead of the agent, the agent does not kick to the second nearest
teammate. Instead, it clears the ball toward the opponent side.

6. Clear the ball toward the opponent side.
7. Clear the ball toward the nearest side line of the soccer field.
8. Kick the ball toward the penalty area of the opponent side (i.e., centering).
9. Perform a leading pass to the nearest teammate.

10. Shoot the ball toward the nearest post of the opponent goal.

Note that each player has a set of action rules. Since there are 48 subareas in
the soccer field and near and not near are available for the second antecedent
part in action rules (i.e., Bj), the number of action rules for a single player is
48× 2 = 96. There are 96× 10 = 960 action rules in total for a single team with
ten field players. Action rules for a goal keeper are not considered in this paper.

There is a special case where players do not follow the action rule. If a player
keeps the ball within the penalty area of the opponent side (i.e., if the agent is
in Areas 38 ∼ 41 or 44 ∼ 47 in Fig. 2), the player checks if it is possible to shoot
the ball to the opponent goal. The player decides to shoot the ball if the line
segment from the ball to either goal post of the opponent side is clear (i.e., there
are no players on the line segment). If the line is not clear, the player follows the
action rule whose antecedent part is compatible to the player’s condition.

If the ball is not kickable for a player that is in the ball handling mode,
the player’s action is to intercept the ball, that is, the player moves to catch the
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ball. In the intercept process, the player determines whether it dashes forward
or turn its body angle based on the relative distance of the ball to the player.

3 Evolutionary Computation

In this paper, we use an evolutionary method to obtain team strategies for soccer
agents that are effective for playing soccer. Specifically, our aim is to find the
best action rule sets for ten soccer players. Each player has its own set of action
rules that are used when it is in the ball handling mode (see Subsection 2.2).
We encode an entire team into an integer string. Note that we do not optimize
player’s individual behavior but a team strategy as a whole. Thus, we evaluate
the performance of a team strategy only from its match result, not from player’s
individual tactics. We show in our computer simulations that the performance
of team strategies successfully improves through the evolution. The following
subsections explain our evolurionary method in detail.

3.1 Encoding

As described in Section 2.2, an action of the agents is specified by the action
rules in (1) when it keeps the ball. Considering that the soccer field is divided
into 48 subfields (see Fig. 2) and the position of the nearest opponent agent (i.e.,
it is near the agent or not near) is taken into account in the antecedent part
of the action rules, we can see that there are 48 × 2 = 96 action rules for each
player. In this paper, we apply our evolutionary method to ten soccer agents
excluding a goal keeper. Thus, the total number of action rules for a single team
is 96 × 10 = 960. We use an integer string of length 960 to represent a rule set
of action rules for ten players. The task of our proposed evolutionary method
is then to evolve the integer strings of length 960 to obtain team strategies
with high performance. We show in Fig. 3 the first 96 bits of an integer string
in our evolutionary method. This figure shows an integer string for a single
agent. In Fig. 3, the first 48 bits represent the actions of an agent when the
nearest opponent agent is near the agent. The order of the integer bits is based
on the position of the agent in Fig. 2. On the other hand, the actions of the
agent in the case where the nearest opponent agent is not near the agent are
shown in the remaining 48 bits. The value of each integer bit ranges from an
integer interval [1, 10]. These integer values correspond to the index number of
ten actions described in Section 2.2.

1 2 3 4847 

Actions when the nearest opponent player is near 

49 50 51 96 95 

Actions when the nearest opponent player is not near 

Fig. 3. Integer string for a single agent
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3.2 Evaluation of Integer Strings

Generally, the main idea of evolutionary methods is to exploit the information
of those individuals whose performance is highly evaluated. In this paper, we
evaluate the performance of integer strings through the results of soccer games.
Specifically, we use the scores of the soccer games as performance measure in
our evolutionary method. We first check the scored goals by the soccer teams
that are represented by the integer strings. The more goals a soccer team scores,
the higher the performance of the integer string for the soccer team is. When
the number of the goals is the same among multiple soccer teams, the con-
ceded goals are used as a second performance measure. The soccer teams with
lower conceded goals are evaluated as better teams. We do not consider the
conceded goals at all when the goals are different between soccer teams to be
evaluated.

3.3 Evolutionary Operation

We use one-point crossover, bit-change mutation, and ES-type selection as evolu-
tionary operations in our evolutionary method. New integer strings are generated
by crossover and mutation and selection is used for generation update.

In the crossover operation, first we randomly select two integer strings. Then
latter part of both strings are exchanged with each other from a randomly se-
lected cut-point. Note that we do not consider any evaluation results when two
integer strings for the crossover operation are selected from the current popu-
lation. In the mutation operation, the value of each integer bit is replaced with
a randomly specified integer value in the interval [1, 10] with a prespecified mu-
tation probability. It is possible that the replaced value is the same as the one
before the mutation operation.

Generation update is performed by using ES-type selection in our method.
By iterating the crossover and the mutation operations, we produce the same
number of new integer strings as that of the current strings. Then the best
half integer strings from the merged set of the current and the new strings
are chosen as the next generation. The selection is based on the match re-
sults as described in Subsection 3.2. This generation update is similar to the
(μ + λ)-strategy of evolution strategy [6]. Note that the current strings are
also evaluated in this selection process. Thus, it is possible that a current inte-
ger string with the best performance at the previous generation update is not
selected in the next generation update because the performance of the inte-
ger string in the next performance evaluation is the worst among the merged
strings.

To summarize, our proposed evolutionary method is written as follows:

[Procedure of the proposed evolutionary method]

Step 1: Initialization. A prespecified number of integer strings of length 960 are
generated by randomly assigning an integer value from the interval [1, 10]
for each bit.
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Step 2: Generation of new integer strings. First randomly select two integer
strings from the current population. Then the one-point crossover and
the bit-change mutation operations are performed to generate new inte-
ger strings. This process is iterated until a prespecified number of new
integer strings are generated.

Step 3: Performance evaluation. The performance of both the current integer
strings and new integer strings generated by Step 2 is evaluated through
the results of soccer games. Note that the performance of current integer
strings is also evaluated every generation because the game results are
not constant but different game by game.

Step 4: Generation update. From the merged set of the current integer strings
and new ones, select best integer strings according to the performance
evaluation in Step 3. The selected bit strings form the next generation.

Step 5: Termination of the procedure. If a prespecified termination conditions
are satisfied, stop the procedure. Otherwise go to Step 2.

4 Computer Simulations

The following parameter specifications were used for all the computer simulations
in this paper:

– The number of integer strings in a population: 5,
– The probability of crossover: 1.0
– The probability of mutation for each bit: 1/96,
– Generation of initial integer strings: one hand-coded and the others randomly

generated.

The initial population was created by randomly assinging 1 ∼ 10 for each
integer bit. To evaluate the performance of integer strings, we use UvA Trilearn
base team [7] as a fixed opponent team. Thus, each integer string plays a soccer
game against the UvA Trilearn team for our ES-type generation update.

We performed the proposed evolutionary computation for 300 generations.
Table 1 shows the simulation results. We examined the scores of the best integer
string at 0-, 100-, 200-, and 300-th generations. Each elite integer string played
a soccer game against the UvA Trilearn basic team ten times. From Table 1, we
can see that the performance of integer strings becomes better as the number of
generations increases.

Table 1. Simulation results with five strings

Generation Win Lost Draw Average goals Average goals lost
0 1 9 0 0.3 2.8

100 2 4 4 1.1 1.5
200 3 5 2 1.1 1.2
300 7 2 1 1.5 1.0
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5 Conclusions

In this paper, we proposed an evolutionary method for acquiring team strategies
of RoboCup soccer players. The action of soccer players that keep the ball is
determined by the proposed method. The antecedent part of the action rules
includes the positions of the agent and its nearest opponent. The soccer field is
divided into 48 subareas. The action of the agent is specified for each subarea.
The candidate actions for the consequent part of the action rules consist in
a set of ten basic actions such as dribble, kick, and shot. The strategy of a
soccer team is represented by an integer string of the consequent actions. In
the evolutionary process, one-point crossover, bit-change mutation, and ES-type
generation update are used as evolutionary operators. The generation update is
performed in a similar manner to the (μ+λ)-strategy of evolution strategy. That
is, best integer strings are selected from a merged set of current integer strings
and new integer strings that are generated from the current integer strings by
the mutation operation.

In the computer simulations in this paper, we examined the performance of
our proposed method. The results of the computer simulations showed that the
offensive performance is improved during the execution of the proposed evolu-
tionary method.
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Abstract. This paper proposes a set of practical extensions to the vision-based
Monte Carlo localization (MCL) for RoboCup Sony AIBO legged robot soccer
domain. The main disadvantage of AIBO robots is that they have a narrow field
of view so the number of landmarks seen in one frame is usually not enough for
geometric calculation. MCL methods have been shown to be accurate and robust
in legged robot soccer domain but there are some practical issues that should be
handled in order to maintain stability/elasticity ratio in a reasonable level. In this
work, we presented four practical extensions in which two of them are novel ap-
proaches and the remaining ones are different from the previous implementations.

Keywords: Monte Carlo localization, Vision based navigation, mobile robotics,
robot soccer.

1 Introduction

Monte Carlo Localization (MCL) [1], [2] or particle filtering is one of the common
approaches to this problem. This approach has been shown to be a robust solution for
mobile robot localization; especially for unexpected movements such as ”kidnapping”
[3]. The practical steps needed to make MCL reliable and effective on legged robots
using only vision-based sensors, which have a narrow field of view, are presented in
this paper. Although it has been applied to legged robots using vision-based sensors in
the past [4], [5], [6], the works described in this paper contribute novel enhancements
that make the implementation of particle filtering more practical. This work is done as
a part of the Cerberus Project of Bogazici University [7] in the Sony four legged league
which is one of the subdivisions of the RoboCup [8] in which two teams each consisting
of four Sony AIBO robotic dogs compete against each other. The game area is 6m by
4m and four unique bi-colored beacons are placed in order to provide information for
localization. In this work, we have used Sony AIBO ERS-210 robots with 200 MHz
processor as our testbed. The organization of the rest of the paper is as follows: Brief
information about MCL is given in Section 2. In Section 3, the proposed approach is
explained in detail. Section 4 contains the results and we conclude with the Section 5.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 624–631, 2006.
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2 Monte Carlo Localization

The idea behind MCL is to represent the probability distribution function for posterior
belief about the position Bel(l) as a set of samples drawn from the distribution. The
samples are in the format (x, y, Θ), p where (x, y, Θ) is the position and orientation
of the sample and p is the discrete probability associated with the sample denoting
the likelihood of being at that position of the sample. Since Bel(l) is a probability
distribution, sum of all pi should be equal to 1. Belief propagation is done in terms
of two types of updates. When a motion update is performed, the new samples, based
on both the old ones and the provided motion estimation, are generated to reflect the
change in robot’s position. In the motion update, the samples are displaced according to
the relative displacement fed by odometry while taking the odometric error into account.
For the observation update, the p values of each particle (l, p) is multiplied by P (s|l)
which is the probability of receiving sensor reading s assuming that the robot is located
at l. Then, updated p values are normalized to maintaining

∑
pi = 1.

The second phase of MCL is the so-called resampling phase. In this phase, a new
sample set is generated by applying fitness-proportionate selection or the survival of the
fittest rule. The number of instances of a particle in the next generation is determined
by the formula

K =
N.pi∑

j pj
(1)

The particles with higher p values are more likely to be selected and copied to the
new sample set. As a result of this, the particles will eventually move to the locations
where the robot is more likely to be located at. In the second step of resampling, par-
ticles in the new sample set are moved according to their probabilities. The amount of
movement for a particle instance is determined with the formula

xT+1
i = xT

i .(1 − pT
i ).Rnd(−1, 1).Δtrans (2)

yT+1
i = yT

i .(1 − pT
i ).Rnd(−1, 1).Δtrans (3)

ΘT+1
i = ΘT

i .(1 − pT
i ).Rnd(−1, 1).Δrot (4)

where, Rnd returns a uniform random number in the range [−1, 1] and Δtrans and
Δrot are translational and rotational constants, respectively. The amount of movement
is inversely proportional to the probability so the particles with higher probabilities will
have a smaller move than particles with small probabilities.

3 Proposed Extensions

3.1 Considering the Number of Landmarks Seen

The number of landmarks used in the localization process has an important role in de-
termining the actual position and orientation of the robot accurately. The accuracy of
the estimated position and orientation of the robot increases with the increasing number



626 K. Kaplan et al.

of landmarks seen in a single frame. When calculating the confidence on each particle,
each landmark contributes to the confidence by its angle and distance similarity. How-
ever, this approach results in an undesired output as the number of landmarks increases.
For example, seeing a single landmark having a probability of 0.75 seems to provide a
better estimation than four landmarks each having 0.9 probability which results in 0.9
x 0.9 x 0.9 x 0.9 = 0.6561 confidence. In order to avoid this misinterpretation, confi-
dence is calculated in such a way that increasing number of landmarks increases the
confidence. The formula used for calculating the confidence is

confidence = p(5−Npercepts) (5)

where, Npercepts is the number of the percepts seen. Since the maximum number of
landmarks that can be seen in a single frame is 4, p5−4 = p assigns the current value of
the probability to the confidence which is the highest possible value.

3.2 Using Inter-percept Distance

In the Figure 1 w1 and w2 are the perceived width (in pixels) of the static objects.
Similarly h1 and h2 are the heights of the static objects. The distances d1 and d2 can
be calculated from these values by using a special function. This special function is
calculated by fitting one polynomial or partial polynomials on the top of the experi-
mental data. When the distances are known, the calculation of the orientation is rel-
atively simple. The angles α and β can be used to find the orientation of the robot.
Under ideal conditions, where there is no noise and the vision is perfect, d1, d2, α and
β values are enough to find the current configuration of the robot. However, there is
noise and it affects the distance calculations dramatically. In our case, where the res-
olution is 176x144, two-pixel error in the width of the static objects causes less than
one-centimeter distance error for near objects. But, for far objects, two-pixel error may
cause up to 50 cm distance error. As a solution, the distances between the perceived
static objects are used. This measure both reduces the sensitivity to noise and provides
additional information for localization. To use the distance between the static objects,
the difference of estimated and expected distances cannot be used directly, because of
perspective.

Fig. 1. Relative distances and orientations. (a) Classified image. (b) Recognized static objects.



Practical Extensions to Vision-Based Monte Carlo Localization Methods 627

Fig. 2. Calculation of Distance Projection

As shown in Figure 2 the estimated distance should be compared with a + b, but
not d3. As an example, suppose that the static objects are at (s1

x, s1
y) and (s2

x, s2
y).

For a given robot configuration (x, y, Θ), the following equations are used to calculate
a and b.

d1 =
√

(sx1 − x)2 + (sy1 − y)2 (6)

d2 =
√

(sx2 − x)2 + (sy2 − y)2 (7)

α = arcTan(
sy1 − y

sx1 − x
)− θ (8)

β = arcTan(
sy2 − y

sx2 − x
)− θ (9)

sd = cos(β).d2, d1 > d2; cos(α).d1, o/w (10)

a = tan(α).sd (11)

b = tan(β).sd (12)

where sd is the scene distance, which is the projection line (or plane in 3D) distance
to the robot. Furthermore, (a + b) is the distance between the two static objects on the
projection plane at sd. After those calculations, we have two values to compare. The
first one is the distance between two static objects, calculated from the captured image,
which is in pixels. The other one is (a + b) which is in mm. In our work, we used the
ratio of each distance to the width of the image, instead of, converting the units. The
first ratio is trivial.

visionRatio =
ds

wimg
(13)

where, ds is the distance between static objects and, wimg is the captured image width.
However the second ratio depends again on sd. In addition, horizontal field of view
(FoV) of the camera is also used to calculate the width of the projection line or plane.
For AIBO ERS-210’s horizontal FoV is 57.6 degrees. Finally, the effect of the dis-
tance between the static objects to the overall configuration probability is calculated as
follows,
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expectedRatio =
(a + b)

tan(FoV/2).2.sd
(14)

pd =
1

1 + e(−40.Δratio.0.875)
(15)

Δratio =
|min{visionRatio, expectedRatio}|
|max{visionRatio, expectedRatio}| (16)

At the end of each iteration of MCL, for each configuration these pd values, which
are calculated from distances, orientations and other possible sources, are multiplied to
find the final confidence of the configuration. Since the effects of rotation of the camera
and the orientation of the robot are handled in the object recognition subsystem, this
representation works well. However, we assume that the heights of the static objects
and the robot are equal. In addition, we only consider the horizontal difference while
estimating the distance between static objects.

3.3 Variable-Size Number of Particles

In MCL the number of particles, which are candidate configurations for current position,
is one of the most important parameters. If the unnecessarily large amount of particles
used, the process slows down dramatically. On the other hand, if the number of particles
is too small, the system converges to a configuration very slowly, or cannot converge at
all. One possible solution is to fix the number of particles to a constant for which the
processing speed is moderate and the localization converges in a reasonable amount.
But in this scenario, when the localization starts to converge, which means the candidate
configurations are similar to each other, most of the processing is unnecessary.

In our localization system, the number of particles is assigned to the maximum num-
ber of particles allowed. This maximum number is the lowest particle count for which
the localization system converges in a reasonable time, for nearly all cases. But still it is
a large number. During the execution of the localization system, the number of particles
is reduced if the confidence about the position of the robot increases. Which means,
the system searches fewer configurations if it is certain about its position, as shown in
Figure 3. Similarly, when the confidence about the current pose of the robot decreases,
the number of particles increases, which means the search for a better configuration
speeds up. This oscillation continues if the confidence for the current pose is above a

Fig. 3. Number of particles changes while (a) searching, (b) converging and (c) converged
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specific constant. Otherwise, which means the robot is lost, the confidence is set to zero
and the entire process is restarted. The overall process can be modeled by the following
equation,

Npar = K.p, p > T ; K, o/w (17)

where Npar is the number of particles, which are candidate configurations, K is the
maximum number of particles and p is the confidence of the current pose. Finally, T is
the threshold value for reseting the system to the lost state.

3.4 Dynamic Window Size Based on Pose Confidence for Resampling

In the earlier approaches, when the confidence on the current position decreases be-
low a threshold value, the positions and orientations of each particle are reset and the
particles are distributed over the entire field randomly. However, each reset operation
requires processing a large number of particles over a large area. In order to solve this
problem, a window, in which the particles will be distributed, is constructed around
the representative particle. The size of this window is inversely proportional with the
confidence value of the representative particle, and the number of particles that will be
distributed in this window is directly proportional to the size of the window. That is,
when the confidence on the representative is high, the window constructed around the
representative and the number of particles that will be used is small. If a reset operation
fails to include particles having significant probability values, the size and the number
of particles that will be used in the next reset operation are gradually increased. This
approach provides a faster convergence since a smaller number of particles in a smaller
area are processed. Figure 4 illustrates the situation in which the robot is kidnapped
from the blue goal into the yellow goal. Convergence is seen after 5 frames, and after
11 frames the robot finds its position and orientation.

Fig. 4. (a) Just after being kidnapped, (b) first frame after kidnapping, (c) after 2 frames, (d) after
3 frames, (e) after 4 frames, and (f) after 11 frames the robot finds its position
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4 Results

To test the efficiency of the extensions, we have performed two different experiments.
In both experiments, extended MCL is compared with the original implementation. To
test both the converge time and the estimation error, the robot is placed to the upper left
corner of the field in order to provide enough number of visual percepts. Localization
process is terminated if 95 percent confidence is achieved or the process iterates 200
times. The iteration counts for converging to a point and distance error of that point to
the actual position are given in Table 1.

Table 1. Convergence time and error ratios for Extended MCL vs. Standart MCL

Number of Iterations Distance Error
Standart MCL 69.80±89.90 20.47±10.17

Extended MCL 37.90±37.23 10.83±6.51

According to the results, extended MCL reduces the iteration count to converge a
configuration and the error of this configuration nearly by 50 percent. Since the standard
MCL fails to converge for some iteration, the iteration count is high than extended MCL
in average.

In the second experiment, we tested the convergence speed of the original and ex-
tended implementations in case of kidnapping. The robot is moved from where the
localization system is converged to a point farther away and the re-convergence time is
logged. The results can be seen in Table 2.

Table 2. Re-convergence time (number of frames) in case of kidnapping for Extended MCL vs.
Standart MCL

Kidnapping Distance (mm) Extended MCL Standart MCL
3̃550 26 35
2̃280 9 15
1̃760 11 39

5 Conclusions

Autonomous self localization is one of the key problems in mobile robotics research
and have been addressed many times with proposed many different approaches. Robot
soccer is a good test bed for many aspects of the mobile robotics research such as
multi-agent systems, computer vision, self localization and effective locomotion with
its highly dynamic and partially observable nature.

In this work, we have proposed four practical extensions to the vision-based MCL
for legged robots. Using variable number of particles is not a new approach, but our
implementation has no extra computational requirement as the other implementations
(i.e. determining the number of particles proportional to the variance of confidences in
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sample set). Using inter-percept distance in addition to distances and bearings to the
percepts is a novel approach and the results are quite satisfactory. Also, considering
the number of percepts seen while calculating the pose confidence is a novel approach
and allows the observations with high number of percepts have higher effect on the
confidence, in other words, the more number of percepts seen, the more reliable the
observation is. Again, using a subset of the state space for resampling when our belief
about the current pose is over a threshold is not a new idea but the our way of window
size and position determination for resampling is novel.

Acknowledgments
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Abstract. This is the fifth anniversary of the Robocup Rescue Simula-
tion Competitions and the tenth anniversary of the disaster that inspired
the Competitions. This is a good time to take stock of what milestones
have been achieved and what milestones we should be aiming for. Specif-
ically, this paper looks at the goals that led to the establishment of the
competition, the current status of the simulation platform and infras-
tructure, and finally suggests areas of the current simulation platform
which should be improved and parts of the Robocup Rescue technical
and social infrastructure which should be extended.

1 Introduction

2005 is the tenth anniversary of the devestating Hanshin-Awaji earthquake in
Japan which killed more than 6000 people in Kobe city. The Robocup Rescue
project was established in 2000 in response to this disaster in order to provide
a system for facilitating research into disaster mitigation and search and rescue
(SAR) problems [1]. The goal of Robocup Rescue is to ultimately help save lives
and provide an important public good, especially in the light of recent natural
disasters such as the Boxing Day tsunami, the 2004 Bam earthquake, and even
minor disasters such as the recent flooding in parts of New Zealand.

This paper is organised as follows. Section 2 revisits the goals stated when
the Robocup Rescue Simulation Competition was established. In Section 3, we
review the progress made towards those goals in the last five years and whether
the competition is moving in the right direction. We then consider extensions
that could be considered in order to move the project towards achieving those
goals. Section 4 discusses development of the simulator software. Section 5 con-
siders ways to improve the collaborative research effort of the Robocup Rescue
community and to link this research with real-world emergency services and
related industries. Section 6 concludes.

2 Goals

The Robocup Rescue Simulation project was started with several goals in mind.
The high-level objectives of the project are [1]:
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1. To apply agent technologies to social problems in a way that contributes to
human social welfare.

2. To provide a practical problem for development of novel research in multi-
agent systems and artificial intelligence.

3. To promote international research collaboration via the Robocup competi-
tion.

The Robocup Rescue Simulation project “aims to be a comprehensive urban
disaster simulator” [1] by modelling the state of roads, buildings and individuals
in a city after a disaster. Ultimately, this simulator could be used for training,
testing of emergency management plans and for real-time command and control
in a real emergency situation.

These are ambitious goals so it is unreasonable to expect them to have been
achieved in only five years, but we need to know how far we have come and
where to go next.

3 Progress to Date

The Robocup Rescue Simulation project has successfully implemented an agent-
based urban disaster simulator that allows researchers to experiment with dif-
ferent strategies for responding to the disaster. The software simulates an earth-
quake in an urban environment and handles building collapse, road blockage,
traffic flow, fire and civilian behaviour, as well as the response of the emergency
services 1. Unfortunately, the granularity of the simulation is still rather coarse.
Buildings are represented as polygons and classified as either wood, concrete or
steel rather than having different types of buildings (such as office blocks, resi-
dential housing, hazardous buildings (e.g. petrol stations), factories, warehouses
to name a few) with different features. Every fire brigade agent has exactly the
same capabilities, rather than having some fire trucks with ladders, some with
bigger water tanks and so on.

The scale of the simulation is also quite small at present. Maps are generally
limited to less than 1000 buildings, and there are usually no more than 100 civil-
ians and 50 emergency services agents. The communication model is simplistic
and does not reflect important characteristics of real-life communications.

Some of these limitations are due to computer processing requirements - in
order to add more civilians we need to be able to simulate their behaviour - which
will become less of a problem over time as computer power increases. However,
there are also some design limitations that need to be addressed. These are listed
in Section 4.4.

Despite the small scale and low level of detail in the simulation a great deal
of progress has been made in the last five years. The competition has been
succesfully run every year since it began and the size of the community is growing
steadily.

1 Currently limited to fire, police and ambulance teams.
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3.1 Simulation Platform

Development of the simulation platform has been fairly rapid, given the dis-
tributed nature of the community. The simulator kernel is fast and stable, and
simulator modules for traffic flow, fire spread, building collapse, road blockages
and civilian behaviour have all been implemented. Development is continuing in
most of these areas.

In 2004 a new fire simulator was developed by the ResQ Freiburg team [2].
This simulator is a vast improvement over the old one and models the spread of
fire much more accurately than before. It also increases the level of realism by
allowing fire brigades to “pre-extinguish” buildings by pouring water on them to
prevent a nearby fire spreading. In addition, buildings will re-ignite if left next
to another fire for too long.

Development of a library of communication functions and other useful tools
has started and will make maintenance of the system much easier in future.

3.2 Infrastructure

The most significant achievements have been in the community infrastructure.
Organising and technical committees run each year’s competition and steer the
direction of development of the league, and a manual [1] has been written which
describes the simulator and provides a guide for new developers.

In 2004 a secondary competition was added, the infrastructure competition,
to promote development of new simulator implementations and development
toolkits. This has already resulted in a new fire simulator developed by the ResQ
Freiburg team [2] and 11 teams have pre-registered for the 2005 infrastructure
competition.

An open source development model has been adopted for simulator develop-
ment and all simulator code is controlled by CVS [3] on sourceforge.net [4]. The
open source model allows for rapid development of interacting simulator com-
ponents and also gives teams the ability to verify that simulator components
perform as specified.

Finally, several development kits have been written that provide toolkits for
developers that want to write agents for use in the Robocup Rescue Simula-
tion competition. These include a C/C++ toolkit (the Agent Development Kit
(ADK) [5]), and two java implementations: YabAPI [6] and Rescuecore [7].

4 Proposed Future Simulation Platform Developments

The simulator platform still requires a significant amount of development before
it becomes a fast, fine grained, realistic simulation of an urban disaster environ-
ment. We have broken the simulator development into four modes: scale, detail,
information and communication, and design.

4.1 Scale

Currently the simulator operates on a small scale, in the order of 1km2 of urban
space composed of approximately 1000 buildings and a similar number of road
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segments. The number of civilians and emergency services are limited to around
100 and 50 respectively. This obviously does not simulate reality very closely.
The major difficulty with increasing the scale of the simulation is the increased
computation time required to perform calculations.

The scale of the simulation needs to be increased in future, in terms of the
size of the area simulated, the number of entities in the simulation, and in the
time scales involved.

4.2 Detail

The level of detail in the simulation is also somewhat limited. Currently there
are only three types of rescue agent - fire brigades, ambulance teams and police
forces - and every instance of a type is identical to every other agent of the same
type. In reality there are several types of fire truck, and agents have a diverse
set of capabilities.

The representation of the world is at a low level of detail. For example, there is
no way to specify that any building is more important than any other building.
In real life it is clearly more important to save the hospital from fire than a
single house. Similarly, there is no way to specify specific hazards such as petrol
stations. Since, in real life, we would want to prevent a large fire from engulfing
a petrol station it would be beneficial if this could be modelled in the simulation.

4.3 Information and Communication

The competition should attempt to move towards more realistic modelling of the
knowledge that can be expected to be available to emergency service planners.
Currently in the simulation, the emergency services have no a priori knowledge
about the distribution of the population at the time of the disaster. In real life,
there is a priori knowledge about how the population will be distributed at
particular times. For example, the business district will likely be heavily popu-
lated on a Tuesday afternoon and almost deserted early on a Sunday morning.
This sort of a priori knowledge would be useful for planning how to respond to
disasters and would be available to real-life emergency service planners.

Similarly, the competition should attempt to move towards more realistic
modelling of the communication environment. For example, in many large cities
there are large microwave towers that handle much of the emergency services’
communication channels. If those towers go out, much of the wireless communi-
cation disappears. Like hospitals, these towers would be important to save from
fire, etc. If our simulation platform is to be useful for reasoning about how to
respond to disasters, capturing these communicational dependencies would be
important.

Finally, additional available sources of information need to be considered.
Most modern cities have a large network of CCTV cameras for security or traffic
monitoring, fire alarms and (in industrial buildings) hazardous material sensors
and alarms. The addition of these and similar sources of information would
increase the realism of the simulation.
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4.4 Design

Compounding the limitations on scale, detail, information and communication
are issues with the design of the software. The architecture has some limitations
that make it difficult to add new features, and the quality of the code is quite
poor in many cases. This is slowly improving as people in the community replace
older modules with new ones, but there is a strong need for more quality control
and better managed development. The adoption of an open source model using
CVS [3] as a source control mechanism will hopefully improve matters in the
future.

A full analysis of the existing software and a detailed code review would be
highly beneficial as a large amount of code appears to be duplicated in each
module and could easily be put into a seperate library. This process has started
but is a long way from completion.

In the longer term, it would be useful to extend the software design in such a
way that descriptions of the world could be made using a modelling language of
some kind. Currently the abilities that agents have, the communication model
and the organisational structure are hard-coded. It would be beneficial if it was
possible to specify at runtime what kind of organisational structure to use, or to
allow dynamic structures, for example to allow the formation and dissolution of
teams during the course of the simulation. Similarly, being able to specify what
equipment and/or capabilities each agent possesses would be useful.

5 Proposed Future Infrastructure Developments

5.1 Community Development

The Robocup Rescue community is somewhat fragmented at present. Although
there are teams from all over the world competing there is little collaborative
research or development. A project has been established on sourceforge.net that
will hopefully encourage more participation in the development of simulator com-
ponents, but a spirit of cooperation needs to be fostered within the community.
The competitive nature of the simulation competition, while pushing researchers
to produce better solutions, has the unfortunate side effect of encouraging teams
to be secretive with their ideas and code.

Having a common “bulletin board” for the presentation of questions, ideas
and contacts would make it easier for new researchers to become involved in
the field and would also contribute to more of a “community feeling”. Having a
steering committee to guide the direction of development of the simulator and
production of useful tools would also help to build the community.

Finally, the establishment of a program track or workshop at the annual
Robocup symposium dedicated to Robocup Rescue would make it easier to con-
solidate the research that is being carried out at diverse institutions around the
world.
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5.2 Balancing Complexity and Accessibility

Improving the simulation so that it closely approximates reality raises an in-
teresting dilemma: how can we balance the increasing complexity of the system
with the need to keep it accessible enough for new researchers to become in-
volved? A beginning team already has difficulties developing the most basic of
agent implementations due to the complexity of the communication system and
problem domain. The learning curve will only become steeper as the simulator
becomes more realistic.

There is, therefore, a strong need to produce supporting code libraries at the
same time as new simulator developments appear, as well as continuing the exist-
ing practice of asking teams to release their source code after every competition.
The more tools that are available for teams, such as standard search algorithms,
useful abstractions of the simulated world and communication libraries, the eas-
ier it will be for a new team to enter the competition. Of course, documentation
will also be required if these tools are to be of any practical use.

5.3 Industry Development

Another area that needs development is the establishment of links with industry
and government organisations. Clearly developing a detailed urban disaster sim-
ulation will be of little practical use if the real emergency services cannot apply
it to their own activities. In addition, without input from the people who manage
disaster risk professionally it is unlikely that the Robocup Rescue community
will develop a simulator that is realistic. Discussions with the New Zealand Po-
lice [8] have already shown one popular misconception: after a disaster such as
an earthquake, most people do not panic and attempt to flee the city. Instead,
experience with real disasters has shown that survivors generally begin helping
with the rescue effort almost immediately [9].

Development of industry links serves two main purposes:

1. Input from industry will ensure that the software developed accurately re-
flects what goes on in the real world.

2. Developing tools based on the simulator that industry can use will be benefi-
cial to both the Robocup Rescue community and to real emergency services.

The ultimate goal of providing a system that can be used for training, testing
plans and provision of real-time command and control support will never be
realised unless the end users - the real emergency services - have an input from
early on.

5.4 Development of a Roadmap

As we have seen several times in the last few years, disaster can strike almost
anywhere and affect large numbers of people. Part of the appeal of the Robocup
Rescue project is that it has the potential to help people. The best way to
“contribute [to] human social welfare” [1] is for the competitions to help push
the research towards something we can offer to emergency services.
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The Robocup Rescue project could help in this respect by developing a
roadmap of agent-based technology advances that might make contributions to
emergency services. The roadmap could indicate milestones that would mark
our field’s progress towards points of advancement and would suggest how the
competition might be expected to evolve. These milestones might be in the form
of challenge problems.

The development of this roadmap should be a co-operative effort between re-
searchers and emergency service managers. Ideally the emergency service man-
agers would come from both national and international (e.g., the United Nations)
agencies. One suggestion is that the Robocup Rescue Simulation Organising
Committee look into the formation of a permanent Steering Committee whose
members would be involved in organising the development of the roadmap and
in monitoring the evolution of the competition according to that roadmap.

6 Conclusion

The Robocup Rescue Simulation League has come a long way since it was estab-
lished 5 years ago. The software has been developed from scratch to include sim-
ulators for traffic flow, fire spread, building collapse, road blockage and civilian
behaviour as well as the simulator kernel that binds these components together.
Development is continuing on all aspects of the simulator platform, including
new simulators and the development of libraries that will make development
and maintenance of the simulator components much easier in future. There is
still, however, a large amount of work to be done before the goal of provid-
ing a comprehensive urban disaster simulator can be achieved, most notably in
increasing both the scale and the level of detail of the simulations. The intro-
duction of the infrastructure competition in 2004 has encouraged development
of high-quality simulator components and toolkit implementations.

The Robocup Rescue Simulation community is steadily growing in size. The
main challenge at present is to provide a collaborative environment that makes
it easier for researchers in different parts of the world to share information, find
out what other researchers are doing, and to get help when they need it. The
provision of a permanent website with “bulletin boards” and forums would go a
long way towards meeting this challenge.

To help move the Robocup Rescue project effectively towards its goal of being
able to help society better deal with large-scale disasters, we make the following
suggestions:

– The Robocup Rescue Organising Committee set up a Steering Committee.
– The Robocup Rescue Steering Committee be responsible for developing

a roadmap for how the competition should evolve in order to realise the
Robocup Rescue goals.

– The roadmap should be developed as a joint effort between researchers and
emergency service agencies.

– Ideally the emergency service agencies would include both national and in-
ternational agencies.
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– The roadmap milestones might be a series of challenge problems that would
represent different points in the evolution of the competition.

– The Steering Committee would be responsible for monitoring the evolution
of the competitions with respect to the roadmap.

In another five years, it would be good to report that the Robocup Rescue
Simulation platform and the research arising from the competition had led to
technology that enabled emergency service agencies to better cope with some
classes of large-scale disasters. It would be nice to be able to say that lives had
been saved because of our work!
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Abstract. One of the most formidable issues of RL application to real
robot tasks is how to find a suitable state space, and this has been
much more serious since recent robots tends to have more sensors and
the environment including other robots becomes more complicated. In
order to cope with the issue, this paper presents a method of self task
decomposition for modular learning system based on self-interpretation
of instructions given by a coach. The proposed method is applied to a
simple soccer situation in the context of RoboCup.

1 Introduction

Reinforcement learning (hereafter, RL) is an attractive method for robot be-
havior acquisition with little or no a priori knowledge and higher capability of
reactive and adaptive behaviors [1, 2]. However, a simple and straightforward ap-
plication of RL methods to real robot tasks is difficult because of the enormous
time for exploration that scales exponentially with the size of the state/action
space. The recent robots tend to have many kinds of sensors like normal and
omni-vision systems, touch sensors, infrared range sensors, and so on. They can
receive a variety of information from these sensors, especially vision sensors. This
fact indicates that the difficulty of RL application to real robot tasks becomes
more serious.

Fortunately, a long time-scale behavior might often be decomposed into a
sequence of simple behaviors in general, and therefore, the search space can be
divided into smaller ones. In the existing studies, however, task decomposition
and behavior switching procedures are given by the designers (ex. [1, 3, 4]). Oth-
ers adopt the heuristics or the assumption that are not realistic from the view
point of real robot application (ex. [5, 6, 7, 8]).

When we develop a real robot that learns various behaviors in its life, it
seems reasonable that a human instructs or shows some example behaviors to
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the robot to accelerate the learning before it starts to learn (ex. [9, 10]). This idea
was applied to a monolithic learning module. To cope with more complicated
tasks, this idea can be extended to a multi-module learning system. That is, the
instruction will help a learner to find useful subtasks.

In this paper, we introduce an idea that the capability of a learning mod-
ule defines the size of subtasks. We assume that each module can maintain a
few number of state variables and this assumption is reasonable for real robot
applications. Then, the system decomposes a long-term task into short-term sub-
tasks with self-interpretation of coach instructions so that one learning module
with limited computational resources can acquire a purposive behavior for one
of these subtasks. We show experimental results with much more sensors such
as normal and omni-vision systems and 8 directions infrared range sensors.

2 Basic Idea

There are a learner and a coach in a simple soccer situation (Fig. 1). The coach
has a priori knowledge of a task to be played by the learner while s/he does not
have any idea about the system of the learner. On the other hand, the learner just
follows the instructions without any knowledge of the task. After some instruc-
tions given by a coach, the learner decomposes the whole task into a sequence of
subtasks, acquires a behavior for each subtask, and coordinates these behaviors
to accomplish the task by itself . In Fig. 1, the coach instructs an shooting a
ball into a yellow goal with obstacle avoidance. Fig. 2 shows an example that
the system decomposes this task into three subtasks and assigns them to three
modules that maintain state spaces consist of ball variables, opponent and goal
ones, and goal ones, respectively.

Fig. 1. A coach gives instructions to a
learner

Fig. 2. The learner follows the instruc-
tions and finds basic behaviors by itself

Fig. 3 show a rough sketch of the idea of the task decomposition procedure.
The top of the Fig. 3 shows a monolithic state space that consists of all state
variables (x1, x2, · · · , xn). The red lines indicate sequences of state value during
the given instructions. As we assume beforehand, the system cannot have such
a huge state space, then, decomposes the state space into subspaces that consist
of a few state variables. The system regards that the ends of the instructions
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Fig. 3. Rough sketch of the idea of task decomposition procedure

represent goal states of the given task. It checks all subspaces and selects one
in which the most ends of the instruction reach a certain area (Gtask in Fig. 3).
The system regards this area as the subgoal state of a subtask which is a part
of the given long-term task. The steps of the procedure are as follows:
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1. find module unavailable areas in the instructions and regard them as un-
known subtask.

2. assign a new learning module.
(a) list up subgoal candidates for the unknown subtasks on the whole state

space.
(b) decompose the state space into subspaces that consist of a few state

variables.
(c) check all subspaces and select one in which the subgoal candidates reach

a certain area best (Gsub in Fig. 3).
(d) generate another learning module with the selected subspace as a state

space and the certain area as the goal state.
3. check the areas where the assigned modules are available.
4. exit if the generated modules cover all segments of instructed behaviors. Else

goto 1.

3 Robot, Tasks, and Assumption

Fig. 4 shows a mobile robot we have designed and built. The robot has a normal
camera in front of body, an omni-directional camera on the top, and infra red
distance sensors around the body. Fig. 5 show the images of both cameras. A
simple color image processing is applied to detect the ball, the goal, and an
opponent in the image in real-time (every 33ms). The robot has also 8 directions
infrared range sensors. The robot has totally 39 candidates of state variables.
The details of the candidates are eliminated because of space limitations. The
mobile platform is an omni-directional vehicle (any translation and rotation on
the plane). The tasks for this robot are chasing a ball, navigating on the field,
shooting a ball into the goal, and so on. We assume that the given task has
some absorbing goals, that is, the tasks are accomplished if the robot reaches to
certain areas in state spaces which consist of a few state variables.

Fig. 4. A real robot Fig. 5. Captured camera images



644 Y. Takahashi, T. Nishi, and M. Asada

4 Availability Evaluation and New Learning Module
Assignment

The learner needs to check the availability of learned behaviors that help to
accomplish the task by itself because the coach neither knows what kind of
behavior the learner has already acquired nor shows perfect example behaviors
from the learner’s viewpoint. The learner should suppose a module as valid if
it accomplishes the subtask even if the greedy policy seems different from the
example behavior. Now, we introduce AE in order to evaluate how suitable the
module’s policy is to the subtask:

AE(s, ae) =
Q(s, ae)−mina′ Q(s, a′)

maxa′ Q(s, a′)−mina′ Q(s, a′)
, (1)

where ae indicates the action taken in the instructed example behavior. AE be-
comes larger if ae leads to the goal state of the module while it becomes smaller
if ae leaves from the goal state (see Fig. 6). Then, we prepare a threshold AEth,
and the learner evaluates the module as valid for a period if AE > AEth. If there
are modules whose AE exceeds the threshold AEth, the learner selects the mod-
ule which keeps AE > AEth for longest period among the modules (see Fig. 7).
In Fig. 3, ”Module Available Area” indicates the one in which AE > AEth.

If there is no module which has AE > AEth for a period, the learner creates
a new module which will be assigned to the subtask (see procedure 2 in 2). To
assign a new module to such a subtask, the learner identifies the state space and
the goal state. The system follow the two steps to select an appropriate state
space and the goal state for the subtask:

– selection of one state variable that specifies the goal state, and
– construction of a state space including the selected state variable.

In order to find one state variable that specifies the goal state best, the system
lines up the candidates for a goal region in term of state variables. On the other

Fig. 6. Sketch of state value function and
action value

AE

AEth

t

an existing learning module is available

new learning modules are needed

ignore

Fig. 7. Availability identification during
the given sample behavior
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hand, in order to select another state variable, the system evaluates performance
of Q value estimation.

The details of the procedure are eliminated because of space limitations.

5 Experiments

We have instructed the robot from a simple behavior (ball chasing) to a com-
plicated one (shooting a ball with obstacle avoidance) in [11], however, there is
a criticism that the step-by-step instruction implies task decomposition to the
robot. Therefore we adopt only shooting behavior for the task decomposition
and the coordination. Fig. 8 shows four examples of the behaviors instructed by
the coach. The total number of instruction is 21 for this experiment.

According to the learning procedure, the system produced four modules for
the instructed behaviors. The modules are LM1(Apb, Xpb), LM2(θog), LM3(Yob,
Xob), and LM4(Aob, θob). For example LM1(Apb, Xpb) indicates that the modules

Fig. 8. Examples of Instructed behaviors
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Fig. 9. Sequences of the selected module, availability evaluations and goal state acti-
vations of modules through an instruction
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Fig. 10. Acquired hierarchy for the shooting behavior

Fig. 11. Acquired behaviors for shooting task

has a state space that consists of the area of ball on the normal camera image
(Aob) and the x position of the ball on the normal camera image (Xpb). Fig. 9
shows sequences of the selected module, availability evaluations and goal state
activations of modules through an instruction.

Fig. 11 shows the learned behaviors. The start positions of the behaviors are
the same ones of the instructions for comparison. The trajectories of learned
behaviors are different from the instructed behaviors. This fact indicates that
the learner recognizes the subtasks based on its own modules, understands the
objectives of the subtasks, and executes appropriate actions for them.

6 Conclusion

We proposed a hierarchical multi-module learning system based on self-
interpretation of instructions given by a coach. We applied the proposed method
to our robot and showed results for a simple soccer situation in the context of
RoboCup.
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Abstract. This paper presents the specifications and the design of a
simple graphical interface for building hierarchical finite state machines.
This kind of tool can prove very useful for quickly designing hierarchical
behaviors. It can be used in the frame of RoboCup to develop deter-
ministic complex behaviors without focusing on C++ coding because
source code can be generated from the interface. It is also possible to
use it to generate hierarchical finite state machines for whatever purpose
needed. The user can create state diagrams by drawing boxes for states
and specifying transitions between states. A state diagram can represent
a behavior and be considered as a metastate. Diagrams of metastates are
possible to constitute several levels.

1 Introduction

In the field of autonomous robotics it is necessary to design the decision mak-
ing system that is to be implemented into the robots. When the behavior is
deterministic, finite state machines (FSM) are often used. But there is no com-
mon behaviour design technique that is employed by a majority of teams that
participate in robotics competitions. Since C code is generally used to compile
binaries it is necessary either to write C code, or to generate this code from
other software or from some kind of high level pseudocode.

The solution of writing C code for FSM was used in the early years of
RoboCup. One of the big problem was that it was very difficult to upgrade the
code quickly without errors. Developers had to be very good at programming
and know how to code FSM properly. And even with good programmers, writing
or changing FSM source code is very time-consuming and not error prone. In
addition it is often a repetitive and tedious task .

A lot of research about the theory of states and events representation has been
conducted so far. FSM can be represented formally by Petri nets for example [5].
There exist some graphic interfaces that can simulate the evolution of the FSM
but none of them include all the features needed for implementation such as C
code generation. In most of the cases the solution is built to solve a particuliar
problem.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 648–655, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Some companies propose software products that include graphical interface
to help design FSM [12] [13] [14] but these softwares do not offer all the features
related to FSM such as assigning priorities to transitions or inserting instructions
in transitions. Also it is not possible to modify any of the features that could be
useful for the behavior design.

Consequently each team participating in RoboCup uses its own recipe. There
is no off-the-shelf solution that may be used as is for robotics applications. Some
teams have decided to develop their own high level language to describe the behav-
ior architecture. For example the german team has developed an extensible speci-
fication language XABSL [2] [3] based on XML to describe the behaviours, change
them and incorporate them among others. It helps a lot to develop behaviours in
parallel. The german team used it with success in the RoboCup competition in
the legged league. However the developer must have solid knowledge in computer
sience. He must know the concept of pseudo code, learn the XML and XABSL
languages. He must also master the whole chain from writing XABSL code until
generating the binaries. It is possible to display the charts using XML editors for
checking, but the design is made by writing pseudo-code and not graphically. The
use of XABSL is a real progress but it would be more helpful if it would be possible
to make any behaviour design using a graphical interface.

This paper presents the specifications and the design of a very simple graphical
interface for the design of hierarchical finite state machines (HFSM). This tool
enables the user to create states, metastates that include state or metastate
subdiagrams and transitions between them. The number of state levels is not
limited. The validity of the FSM can be checked and C++ source code can be
generated automatically. The code can then be compiled directly using the cross-
compiler. Anybody not familiar with C programming could use it and would not
waste time focusing on finite state machine coding. This interface was used to
design state and event driven diagrams to represent the robots’ behaviours in
the RoboCup legged league soccer games and challenges in 2004.

2 Specifications

The idea to use a graphical tool to develop behaviors is not new but was never
concretized really. This was due to portability and maintenance concerns, and to
the big amount of time it was thought it would be needed to develop such an in-
terface. In addition neither commercial solution nor research beta-test softwares
did meet all the requirements.

The experience of the French team in RoboCup conducted its members to
really tackle this problem in 2004. Before that date everything related to behavior
was coded in C directly, and it was clear that it was not possible to keep on that
way any more because of the lot of time lost in coding, testing and correcting.
Since the coding of FSM follows some strict rules it is possible to automatize the
task. Consequently a set of rules have been defined to the generation of C code.
From these rules, specifications have been elaborated that lead to the design of
the graphical tool.
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The specifications required for the interface are very simple so that any trainee
not very familiar with computer science can design behaviours. Specifications are
detailed in the following section where the concepts of states, metastates and
transitions are given. The functionalities the interface offers are also presented.
The next section focuses on the design.

2.1 States

– A state represents a situation where the robot can be, or an action it is
being executing, for example waiting-for-start or going-to-the-ball. It can be
a temporary state or a state that lasts a certain amount of time. It helps
describe the different behaviors a system can adopt. There is no real time
consideration here, in contrast to research study on synchronous charts like
in [11]. The HFSM update function is called periodically. The calling time
period is adjusted according to the processing power at disposal and the
time consumption of other tasks running on the robot.

– A state must be represented by a resizeable box and given a name.
– Actions can take place inside states. The related instructions must be in-

cluded in a specific function whose name should be codified like
what to do in state s1(), where s1 is the name of the state. The Code button
permits to get access to the code of this action function and modify it.

2.2 Metastates

– Several levels of states are possible. A metastate represents a higher level of
states, and includes a sub-state diagram (see paragraph on diagram below).
A metastate can be seen as a behaviour of a certain level. Each metastate
should incorporate an entry state that plays the role of the starting state.
For example, a metastate could be given the name of a behaviour ”role” like
attacker1, assistant1, defender1, etc. If possible the generalization of state
as metastate should be used so that several levels of metastates are possible.

– A metastate must be represented by a resizeable box and given a name.
– States and metastates can cohabitate in the same metastate.
– There is no action associated with a metastate because it is a high-level

behavior in itself. The actions will be determined inside the sub-diagram it
represents.

– It should be possible to import subdiagrams into an empty meta-state.

2.3 Transitions

– A transition joins a departing (meta)state to a destination (meta)state. So
transitions can exist between metastates. A transition can also join a state
to a metastate or vice-versa. This means that transitions can occur between
states and metastates in the same state-metastate diagram. It can be seen
as an event or a change in the environment conditions that triggers a switch
of the current (meta)state to another (meta)state. In the following of the
paper, the term state will refer to state or metastate indifferently except
where explicitly mentioned.
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Fig. 1. One metastate called ms1, and one state called s1

Fig. 2. Transition between 2 metastates

– Transitions between states must be represented graphically, with a transition
box and two arrows, one joining this transition box to the arrival state, and
the other linking the departure state to this box.

– Transitions must be named according to the departure and arrival states.
– There can be several transitions departing from a state. Therefore these

transitions must be arranged by order of priority. This is also a specification
that is rarely observed in the available commercial products. As a matter
of fact we do not want the transitions from the same state to be strictly
exclusive. It may happen that two transitions of the same origin could be
validated. In this case the priority must be used to decide whether to activate
the one or the other transition. For example, transitions must be checked
starting with the one of highest priority. The transition of highest priority
that is validated can then be executed.

– Actions can take place inside transitions between states. Strangely, this is a
specification that is also rarely found in the available commercial products.
But incorporating instructions inside transitions - to be executed before the
instructions of the next state, can be very useful to trigger some behaviors.
For example from the state searching-for-ball to the state tracking-ball the
transition instructions can trigger a scanning head procedure. The head-
position updating function of the head class instance that manages all head
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joint motions is called regularly in the joint update module specific to the
robot’s hardware. In the head scanning state there is no function call of
updating joint. This is a way of simplifying the code implementation.

– Transitions must involve two kinds of functions (see fig. 3):
• one function called test function that returns a boolean to indicate

whether the transition can be activated or not.
• one function called action function that executes specific actions in case

the transition is activated.
– All transitions from a current state must be checked. Instead of investigating

the transitions in their order of priority until one returns true, it is preferable
to run all the checkings because they could be used for debug.

– After all transitions have been tested and there exists at least one that re-
turns a true value, only the action function related to the transition activated
of highest priority must be executed. If there is no transition that can be
activated, the action function related to the current state is executed. In
case of a metastate the actions of the initial state of the sub-diagram are
executed.

2.4 State Or Metastate Diagrams

– States, metastates and transitions between them on the same level constitute
a diagram. States and metatstates can cohabitate inside the same metastate
diagram. A diagram can be composed of one state only. If the state is a simple
state, it must be defined as the starting state. If the state is a metastate it
must contain a simple starting state at least.

2.5 Functionalities

– Transformation state-metastate. It must be possible to transform an
existing state into a metastate. This is very useful to decompose a state
into a substate diagram when the initial diagram of states becomes too
complicated. The reverse operation is also possible.

– Importation of subdiagram. Since a metastate can represent a behaviour,
the interface should offer the option to import a complete behaviour as a
metastate. This metastate must be compatible and can itself be a hierarchical
finite state machine.

– Source code generation. The option of source code generation must be
available. Regarding source code generation, there should be one file for every
level of finite state machine definition. This file describes the information
about the FSM such as number and list of states, transitions, metastates,
connections between states through transitions, etc. There is also one file
for every state of the FSM that contains the action function, and one file
for every transition that includes the code related to both test and action
functions. This is a requirement to simplify compilation. Source code that
is specific to the robot can be included inside test and action transition
functions, and also inside state action functions. Specific code means for
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Fig. 3. Function prototypes appear in the editor after pushing the Code button of a
simple state or a transition box. Function code is stored inside C files. For example
here the What to do code for the action function of state 1 is stored inside file called
state 1.cc. The test and action function source codes of the transition from state 1
to state 2 are stored in the file state 1 to state 2 1.cc. The last number indicates the
priority of the transition, which is 1 by default.

example accessing the data resulting from image acquisition and treatment.
To include code inside these functions it must be possible to edit the file by
clicking somewhere on the state or transition box.

– Debugging. A log procedure must be incorporated to help the debug. This
means that a log file can be updated at execution if the log option was
selected for the source code generation. Also some coherence checking must
be available to check whether the graphical design of the finite state machine
is correct. For instance, there should be no state without transition, all states
should be given a name, there should not be several transitions from the same
state with the same order of priority, etc.

3 Design and Example of Application

For portability reasons, Java has been used to design the interface. Therefore
FSM source code for the robot can be generated using Windows, Linux or other
operating systems where the cross-compiler is available. The interface designed
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looks like a colored state-event diagram, where states appear as rectangular
boxes and transitions as arrows associated with boxes.

A typical example where the interface proves very useful is the design of
the first level of metastate that deals with the different gamecontroller states
when it comes to define game player programs. This first level is composed of 6
metastates: gc initial, gc set, gc ready, gc playing, gc penalized, and gc finished.
Each of them contains a sub-diagram that can be accessed graphically by clicking
on the sub button. In this example if the robot is in the metastate of gc playing, it
means that it is playing, it can have falled down and be standing up, or it can be
playing as an attacker or as a goalkeeper. The state of standing up because of fall
can be implemented at a higher level here. If the robot falls down the state
standing up because of fall is the current state until the movement of recovering
is finished. And if the robot detects it has falled down whatever the current state
(players or goal) it enters this state.

Under the level of the players metastate there is a metastate called attacker
that itself contains a sub-diagram of states. But it is possible to imagine other
metastates at the same level as the attacker metastate.

4 Conclusion and Future Developments

This interface can be used to design multi-layered behaviours based on finite
state machines. It is also possible to import some other FSM describing other
behaviours. A special option is available for generating AIBO code that can be
directly cross-compiled with the other files of the project.

However it is also possible to generate code related to the designed HFSM only.
This can be very useful for educational purposes. A first version can be down-
loaded from http://www.lrv.uvsq.fr/research/legged/software/aibo tamer.tgz.

In the current version of implementation the HFSM updating function per-
forms only one pass at every time period onboard. This means that the current
state can only switch to one of the next states it is connected to. It can be useful
to run several passes until reaching a stable state. This is also a way to check
that the FSM is correct and that it does not contain any deadlock or infinite
loop.
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Abstract. In this paper, three mechanisms for task allocation among police force 
agents in the rescue simulation environment are presented. Three different 
approaches namely full auction-based, partitioning-based and hybrid approaches 
are briefly described. The empirical results of using the hybrid approach show a 
significant improvement in performance over the other two approaches. By using 
the hybrid mechanism for the police forces, our agents together with other types 
agents ranked third in the RoboCupRescue 2004 simulation competitions. 

1   Introduction 

The rescue simulation environment is a multi-agent environment in which fire 
brigades, ambulance teams and police forces work together to mitigate a simulated 
disaster [1][2][3]. Extinguishing a spreading fire, saving civilians lives, and clearing 
blocked roads are the responsibilities of these agents respectively. In this paper we 
investigate the use of task allocation algorithms in this domain. In a disaster 
mitigation problem, agents are not aware of the tasks in advance and the priority of 
tasks change over time. Agents of each type are responsible for their own duties. The 
problem is then how to assign agents to these tasks dynamically. We have introduced 
three approaches namely full auction-based mechanism [4][5][6][7], partitioning-
based mechanism, and a hybrid mechanism which merges the benefit of the other two  
approaches. The auction-based mechanism has been used by Caspian 2004 Rescue 
Simulation team during the German Open 2004 competitions in which we ranked 
fourth. The hybrid mechanism also was exploited during RoboCupRescue 2004 
simulation competition where we won the third place.  

In the next section the characteristics of the rescue simulation environment is 
briefly described. Section three describes the usage of task allocation mechanisms in 
this domain. In the first part of section three, the fully auction-based mechanism is 
introduced followed by the partitioning-based approach. After that, in the third part, 
our hybrid approach is presented. The fourth section is devoted to empirical results of 
using these approaches, and makes a comparison between them. 

2   The Rescue Simulation Environment 

The rescue simulation environment is a multi-agent environment in which three types 
of agents are defined to cooperate with each other with the goal of mitigating a 
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simulated disaster. Fire Brigades are responsible for extinguishing a spreading fire. 
Ambulance Teams are responsible for saving the lives of the civilians who need help 
and Police Forces are in charge of clearing blocked roads. Fire Station, Ambulance 
Center, and Police Office help corresponding agents accomplish their tasks. In such 
an environment the problem of disaster mitigation can be considered as a task 
allocation problem, where each type of agent is responsible for its own defined duties. 
The agents are not aware of the tasks in advance. Indeed, as the simulation continues 
new tasks emerge, and the fact that the priority of tasks change over time, makes the 
situation even worse. Sometimes there’s a need to explore the world for 
accomplishing a task (e.g. finding civilians who need help), and sometimes the tasks 
are reported by other agents who faced them (e.g. clearing a road through which 
another agent needs to pass). The problem is then how to assign agents to these tasks 
dynamically. 

3   Task Allocation 

The focus of this research is on the development of a dynamic task-allocation 
algorithm for the Police Force Agents. Police Forces are the agents that help other 
agents accomplish their tasks better. These agents will be informed about new tasks 
either by themselves exploring the world or by other agents who faced the obstacles. 
To address the problem of dynamic task allocation among police forces we have 
developed three approaches which will be explained in later sections in more detail. 

3.1   Full Auction-Based Mechanism 

Auction mechanism is a market-based paradigm which consists of an auctioneer 
(seller) and potential bidders (buyers) in which items are sold to a buyer who 
suggested the highest (or lowest) price [6][7]. Once the auctioneer wants to sell an 
item, he will notify the bidders of the item. The auctioneer receives all the bids and 
determines the best suggestion, and notifies the bidders about the winner. One of the 
main advantages of auction-based mechanisms is that they are distributed in the sense 
that each agent performs a local computation regarding its own bidding strategy. 

In our approach, the police office takes on the role of an auctioneer, and the police 
forces take on the roles of the bidders. The items that are bid for are the tasks or, in 
this environment, the blocked roads. In an auction algorithm, both single and 
combinatorial mechanisms can be used. In our approach we used a single method. 
The following scenario is applied:  

1. Fire brigades and ambulances send a request for clearing the obstacles in a 
blocked road to the fire station or the ambulance center respectively. 

2. Fire station and ambulance center collect the received requests and send a 
request to the police office. 

3. The police office notifies police forces about the received requests. The real 
auction starts here. 

4. Police forces receive the requests and make bids on them, and send their bids 
to the police office. 



658 M.N. Sedaghat et al. 

5. The police office collects all the bids and determines the winner. 
6. All the police forces will be notified about the winner by the police office. 
7. After accomplishing the task, the police force who won the auction will 

notify the center that he is free, so that he can participate in coming auctions. 

In addition to the above scenario, at the beginning of each cycle the police forces bid 
for the tasks which are remained unassigned yet. To complete our discussion, more 
detail about the bidding strategy and winner determination is given below. 
 
• Bidding Strategy: Once a free police force is informed about a new task he will 

make a bid for it. To this end, the agent uses a cost function to calculate the cost 
of performing that special task. This cost depends on some parameters, like the 
distance to the destination route, distance of the destination from the refuges, the 
distance of the destination from fiery buildings, and some other parameters. In an 
auction-based mechanism an agent can use any kind of bidding strategy for 
calculating the cost of accomplishing a special task. It does not matter what the 
strategy exactly is while it is proportional among other agents. For these reasons 
we do not discuss the bidding strategy in more detail here. 

As another point, we assume that each task is performed by a single agent. 
Considering that removing a blockade is not too costly, this assumption does not 
affect the whole problem. 

• Winner Determination: The police office receives all the bids and determines 
the least costly proposal as the winner. Since we assume that each free agent 
makes bids on all tasks, the winner determination procedure is straightforward. 
The auctioneer assigns the first task to the agent who made the least costly bid for 
it. Then the agent and the other bids it had made are removed from the list of 
suggested bids. The auctioneer continues his work by finding the next least costly 
bid and so on. This means that in this approach the least costly bid is preferred 
over the others.  

 
Empirical results show that using full auction-based mechanism has the following 
advantages: 

• Different Bidding Strategies: Bidders are allowed to implement different 
bidding strategy, which leads to a more flexible structure. We can assume 
different responsibilities for police forces, for example consider a police force 
which is more inclined to help fire brigades or ambulances. Therefore it is 
possible to assign different responsibilities in this level. However note that the 
final task-allocation is made by the police office and all the received bids are 
assumed to be made by identical agents, and the least costly bidder will win the 
auction. 

• Efficient Task Allocation: Auction-based task allocation ensures that each 
request (task) will be assigned to a bidder (police force). This leads to the fact that 
no tasks remain unassigned. 

Besides the mentioned advantages, there are several shortcomings: 
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• Large Number of Communicated Messages: In the auction-based mechanism, it 
is necessary to transmit a number of messages to set up an auction. In our 
approach, the first message is an announcement of a new task. The second type of 
message is the bids that agents send to the police office. The third message is the 
winner notification. All of the above messages should be transmitted in order to 
assign one task to an agent. Considering that in a typical disaster situation the 
number of police forces involved in the environment varies from 10 to 15, and all 
of the free agents bid on a task, the number of communicated messages is too 
large. Event if we encapsulate information in one message, the number of 
communicated messages would be still significant. 

• Delay in Task Execution: As mentioned above three types of messages should be 
transmitted in order to assign a task to an agent. It will take at least 3 cycles for a 
task that is requested to the police office to be assigned to a police force (actually 
this is because of the limitations in the simulated environment). However, by 
using a proper algorithm, the police force can remove the obstacle in fewer cycles. 

To address the above shortcomings, we have mixed the auction algorithm, with a 
partitioning-based task allocation mechanism to build a hybrid approach. The basis 
of the partitioning-based approach is given in the following section, and the hybrid 
approach is introduced later. 

 

Fig. 1. The partitions made and the assigned police forces to each partition. White circles 
represent police forces. 

3.2   Partitioning-Based Task Allocation 

Partitioning-based approach is another way of simply allocating tasks between the 
police force agents. In this way the map of the city is partitioned into several regions, 
resembling a grid. Note that the number of partitions is less than the number of police 
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force agents. The police office is responsible for partitioning the disaster space and 
assigning the police forces to these partitions. Also there might be a need to change 
the activity region of an agent from one partition to another.  

More details about these steps are given below: 

• Partitioning the Disaster Space: Efficient partitioning the disaster space is 
one of the open challenges in the rescue simulation domain. In our approach 
the disaster space is statically partitioned into a number of regions. This was 
carried out in the beginning of the simulation and did not change till the end. 
The number of partitions must be less than the number of police force agents. 
A better solution to this problem is to dynamically partition the disaster space 
with respect to the density of the blockades in different parts of the city, and 
the degree to which other types of agents are busy in a special region. 
However, this is yet an open issue in this approach needing further research. 

• Assigning Police Forces to the Partitions: Assigning police forces to 
different partitions is carried out both statically and dynamically. Meaning that 
in the beginning of the simulation one police force is assigned to each 
partition. Since the number of partitions is less than the number of police 
forces, there are always some free police forces available that can be assigned 
to more busy regions with more requests dynamically. 

• Changing the Activity Region of a Police Force: The disaster space is a 
dynamic space, in which no preliminary information about the potential tasks 
of an agent is available. This makes it impossible to define a planning for 
clearing the roads in advance. The change in activity area of the fire brigades 
and the ambulances makes the need for clearing the roads in different parts of 
the disaster space change over time. It may be necessary to assign more police 
forces to a special region than the usual number. To this end the police office 
changes the activity region of one or more police forces according to the rate 
of requests in different regions. Note that after all the roads of a partition are 
cleared, the police forces assigned to that region are considered as free agents. 

In contrast with the fully auction-based mechanism, the advantages of this 
approach are: 

• Faster Task Assignment: In the fully auction-based approach it took 3 
simulation steps for the police office to assign a task to a police force. But in 
this approach each task that arises in a region is immediately added to the 
agent’s list of tasks. In some situations (not all) this leads to a better 
performance for the police team. 

• No Permanent Need to the Police Office: One of the fundamental 
capabilities of a rescue team should be its ability to operate well in absence 
(failure) of the decision-making centers. In this approach since the disaster 
space is partitioned into several regions, in the case of police office failure, the 
police forces will explore the whole area and find and remove the obstacles on 
their way. Although it is inefficient, the police office failure does not cause the 
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police forces to cease operating, which was not possible in the full-auction 
model. 

• Less Communication Messages: The communication messages in this 
approach are reduced to the messages through which the police office notifies 
the police forces about the tasks. This is much less than what was seen in the 
auction-based approach. 

Besides the aforementioned advantages this approach has several disadvantages. 
The most important shortcoming of this approach is that the agents perform the tasks 
inefficiently – just contrary to the auction approach. In this approach all the tasks in a 
partition are considered altogether, and the agent(s) assigned to that region are 
responsible for carrying them out. If the agents are busy, there’s a possibility that a 
task be carried out too late. 

3.3   Hybrid-Method for Task Allocation 

In the hybrid approach we have tried to combine the benefits of the two methods, and 
avoid common shortcomings as far as possible. For this method, two types of requests 
have been defined; one the urgent requests that must be dealt with as soon as possible, 
and the other the normal requests, for which there’s no emergency in handling them. 
The urgent requests are made by the other types agents when thy need an obstacle to 
be removed as soon as possible. Examples are, when the only path to the fire refuge is 
blocked, or an agent is trapped in a road that is blocked on both heads. In the 
beginning of the simulation the police office partitions the disaster space and assigns 
one or more police forces to each partition. The agents operate and react to the normal 
requests in the same way as the second approach. When there’s an urgent request 
made, the police office holds an auction for it. All the police forces in all parts of the 
disaster space participate in the auction, and bid for the urgent task. It does not matter 
which region the task belongs to, any agent belonging to any region may win the 
auction. After accomplishing the task, the winning agent returns to the partition to 
which he was originally assigned to. 

The advantage of this hybrid approach is that the police forces operate in the whole 
disaster space, while some of them are dealing with urgent tasks. In this way fire 
brigades and ambulances can change their activity area with less performance loss. 

4   Empirical Results 

In order to measure the performance of the three methods discussed above, we 
conducted 5 sets of experiments. The different setups used to perform the experiments 
are as follows: 

1. Full auction mechanism is used for the police force agents. 
2. The partitioning-based method is used for the police force agents. 
3. The hybrid method is used for the police force agents. 
4. While using the hybrid approach the police office is not running. 
5. The blockade simulator is not running. 
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Note that other types of agents are identical in our experiments. For all the 
experiments the score of the whole rescue team is used to measure the performance. 
Although the score is achieved by all types of agents involved in the simulation (not 
the police forces alone), the difference in the score helps evaluate the different 
methods used for the police forces. The 5 sets of experiments were performed using 4 
different maps, which were used in the RoboCup 2004 final round, namely Kobe, VC, 
Random Map, and Foligno. Each experiment was performed 10 times, and the 
average of the scores gained is presented. 

In the first set of experiments the full auction mechanism was used. This method 
was used by the police agents in the Caspian rescue simulation team during German-
Open 2004 competitions. The second set shows the scores gained while using the 
partitioning-based approach. In the third set of experiments the hybrid-method which 
makes use of the advantages of the other two methods is tested. This method was used 
by the Caspian rescue simulation team during the RoboCup 2004 competitions. In the 
set of experiments in which the police office is not running, there’s no auction, and no 
clearing requests will be sent to the police forces either. The police forces discover the 
tasks by themselves. The result of the experiment in which the blockade simulator is 
not running shows the overall score of the rescue team in absence of the blockades. 
This helps to take into consideration the maximum possible score of the rescue team. 

Comparing the auction mechanism to the hybrid-method shows that in the 
beginning of the simulation the police forces using the auction mechanism scored 
better than those using the hybrid-method. But the situation changes over time, and the 
hybrid-method ends with a higher score. That is because in the auction- mechanism the 
 

 

Fig. 2. The average scores of the experiments using the 3 methods in 4 different maps 
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police forces deal with the blockades in the region of the fire brigades and 
ambulances focus. As the simulation continues, these agents need to change their 
activity area, but other parts of the city are remained full of blockades. In the hybrid-
method one or more police forces are assigned to each partition, and other police 
forces deal with the urgent requests. That causes the city be cleared from blockades, 
while the urgent requests by the fire brigades and ambulances are handled. 

The scores gained through the experiments are illustrated in figure 2. In this figure 
it is shown that the hybrid-method had a higher performance over other methods in all 
the maps used. Police forces using the partitioning-based mechanism scored higher 
than those using the auction mechanism. One point to be clarified in fig. 2, is that the 
team scored less in the Kobe map when no blockades were running, with respect to 
the situation where the hybrid-method was used. The reason behind such facts is that 
the score of the team is highly dependant to the map configuration, and special 
situations happening in each run, and facts such as which fire do the fire brigades 
choose to extinguish first. 

5   Conclusion and Future Work 

In this paper, the usage of task allocation mechanisms for police force agents in the 
disaster mitigation environments has been described. Three different approaches have 
been presented. The empirical results of using these approaches show that the fully 
auction-based mechanism looks promising in situations where there is an urgent need 
to reply. However, in rescue simulation domain where the agents change their 
working area rapidly, using this approach will lead to a significant performance loss, 
because other parts of the disaster space were not considered. By using the second 
method, partitioning-based approach, we have noticed that all parts of the disaster 
space are cleared simultaneously, but the urgent requests are handled too late. The 
third method combines the advantages of the other two. In this method the urgent 
requests are handled as fast as possible, while other agents are distributed in other 
partitions and serve other parts of the city monotonically. 

By using the hybrid method in the Caspian 2004 Rescue simulation team, our 
agents together with other type agents succeeded to rank third. 

In our research work we are going to enhance the performance of the system by 
adding the ability for the fire fighters and ambulance teams to report the priority of 
their requests. Partitioning the disaster space dynamically based on the observed 
priority of each region, is another work to do. 
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Abstract. We report a cognitive modeling experiment where the RoboCup 
simulation environment was used to study the advantages provided by signals. 
We used the passing problem in RoboCup as our test problem and soccer-
players' 'yells' of their 'passability' values as the task-specific signals. We found 
that yells improve pass completion – using yells to decide the best player (to 
pass the ball) led to a 8-17 percentage points increase in performance compared 
to a centralized calculation of best pass. However, the passability values 
themselves did not make a difference, indicating that the advantage of signals 
come from their different perspective in identifying a pass, the actual content of 
signals do not matter. We present some problems we faced in using Robocup as 
a modeling environment, and suggest features that would help promote the use 
of RoboCup in cognitive modeling. 

1   Introduction 

Many organisms generate stable structures in the world to reduce cognitive 
complexity, for themselves, for others, or both. Wood mice distribute small objects, 
such as leaves or twigs, as points of reference while foraging. They do this even under 
laboratory conditions, using plastic discs. Such "way-marking" diminish the 
likelihood of losing interesting locations during foraging [1]. Red foxes use urine to 
mark food caches they have emptied. This helps them avoid unnecessary search [2]. 
The male bower bird builds colorful bowers (nest-like structures), which females use 
to make mating decisions [3]. Such epistemic structures (ES), usually termed signals, 
are used widely, and form a very important aspect of animal life across biological 
niches. These structures allow organisms to hive off a part of their cognitive load to 
the world [5]. How much cognitive advantage do such structures provide in noisy, 
dynamic and adversarial environments? How robust is this advantage? What are its 
components? These are the problems addressed in this paper. We used RoboCup to 
study the cognitive advantages provided by the signaling strategy. 

2   Agent Design Taxonomy 

The section below develops a framework to understand how signaling (or the ES 
strategy, where the environment is changed in a way that it contributes task specific 
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structures for decision-making), fits in with other agent-environment relationships. 
We categorize agent-world relations into four strategies, and use the design problem 
of providing disabled people access to buildings to illustrate these strategies.  

Strategy 1: This involves building an all-powerful, James Bond-style vehicle that can 
function in all environments. It can run, jump, fly, climb spiral stairs, raise itself to 
high shelves, detect curbs etc. This design does not incorporate detailed environment 
structure into the vehicle, it is built to overcome the limitations of all environments.  
Strategy 2: This involves studying the vehicle's environment carefully and using that 
information to build the vehicle. For instance, the vehicle will take into account the 
existence of short curbs, stairs being non-spiral and having rails, level of elevator 
buttons etc. So it will have the capacity to raise itself to short curbs, climb short flight 
of straight stairs by making use of the rails etc. Note that the environment is not 
changed here.  
Strategy 3: This involves adding structure to the environment. For instance, building 
ramps and special doors so that a simple vehicle can have maximum access. This is 
the most elegant solution, and the most widely used one. Here structure is added to 
the environment, the world is “doped”, so that it contributes to the agent's task.  
Strategy 4: This strategy is similar to the first, but here the environment is all-
powerful instead of the vehicle. The environment becomes “smart”, and the building 
detects all physically handicapped people, and glides a ramp down to them, or lifts 
them up etc. This solution is an extreme case of strategy III, we will ignore it in the 
following analysis.  

The first strategy is similar to the centralized AI one, which ignores the structure 
provided by specific environments. The environment is something to overcome, it is 
not considered a resource. This strategy tries to load every possible environment on to 
the agent, as centrally stored representations. The agent then tries to map the 
encountered world on to this internal template structure. The second strategy is 
similar to the situated AI model promoted by Rodney Brooks [6]. This strategy 
recognizes the role of the environment as a resource, and analyses and exploits the 
detailed structure that exists in the environment to help the agent. Notice the 
environment remains unchanged, it is considered a given. The third strategy is similar 
to one aspect of distributed cognition, where task-specific structures are generated in 
the environment, allowing the agent to hive off part of the computation to the world. 
Kirsh [7] terms this kind of “using the world to compute” active redesign. This 
principle is at work in the “intelligent use of space” where people organize objects 
around them in a way that helps them execute their functions [8].  

3   Using RoboCup to Study Epistemic Structure 

RoboCup provides an interesting dynamic and adversarial environment to study the 
efficiency of the ES strategy. However there is not much scope to add task-specific 
structure to the environment. The only structure that can be added is ‘yells’, or signals 
from teammates. We chose to use this structure, and studied the passing problem (i.e. 
how an agent in control of the ball can decide whom to pass the ball) to test the 
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efficiency of this structure. We developed RoboCup teams that used three different 
approaches to passing. The teams were based on the UvA TriLearn 2002 code [9]. 

3.1   Team 1: Centralized Passing 

This team (A1) uses approach 1 in our agent design taxonomy. A1 does not depend 
on task-specific information from other agents. In A1, when an agent has possession 
of the ball (i.e., the ball is within a kickable margin), it calculates the pass suitability 
(passability) for each teammate, and passes the ball to the teammate with the highest 
passability. If no teammate has passability above a fixed threshold value, the agent 
will dribble the ball toward the opponent goal. The goalie in this team is based on the 
original UvA algorithm, except for one modification: in a goal kick or free kick, the 
goalie will use A1 to calculate the best receiver for a pass and kick the ball to that 
teammate.  

3.2   Team 2: Passing with Yells 

This team (A2) is an implementation of the Active Design approach. Here every agent 
calculates its own passability. This calculation is done for every cycle a teammate has 
control of the ball. The fastest player in a set who can reach the ball is determined to 
have control of the ball. Once the passability value is calculated, each player uses the 
‘say’ command to communicate this number to teammates. When updating the world 
model, every agent uses incoming aural messages from teammates to track the best 
passability at a given time. If a message arrives announcing a higher passability, then 
the sender of the message becomes the new best pass receiver. Every five cycles, the 
best passability is reset to the minimum threshold, to ensure that old information is 
not used to make the passing decision. As in centralized passing, the goalie uses A1 to 
calculate the pass receiver, but unlike its teammates, the goalie uses the centralized 
approach with no input from teammates. This ensures that the goalie always passes to 
someone.  

3.3   Team 3: Passing with Filtered Yells 

This team (A3) is also an implementation of Active Design, but it has some properties 
of the Brooksian approach, in the sense that it takes into consideration the limitation 
of the communication channel, which is a significant property of the environment. In 
A3,  instead of agents saying their passability every cycle, agents listen to others’ 
yells and compare their passability with the ones they hear. They announce their 
passability only if it is better. This lowers the load on the communication channel, by 
allowing only the best messages through. Once again, the goalie uses the centralized 
approach to passing.  

4   Experiments 

Each modified UvA team was pitted against the original UvA team to test the passing 
algorithms. Each team played 10 games. Logs of individual agents' decision-making 
were collected and analyzed to extract the successful and unsuccessful passes, and the 
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passability values1. Note that even though A1 uses centralized decision-making to 
pass, the other agents in A1 calculate their own passabilities and store these values. In 
effect, all agents in all the three conditions calculate their passabilities when a 
teammate has the ball. In A2 and A3, this information was ‘yelled’, and the passing 
agent’s decision to pass was based entirely on this information. In A1, there was no 
yelling by individual agents, they just stored their passability values, calculated in a 
centralized manner.  

5   Results 

5.1   Pass Completion 

We analyzed the log files of games played by the three algorithms, and checked who 
next kicked or caught the ball after a player made a pass. If it was the intended 
recipient, the pass was completed, otherwise it failed.  Table 1 shows the results of 
running the three modified teams against the original UvA team, and testing over ten 
games for each team.  

Table 1. Number of passes completed 

Team Total Passes Passes Completed Percentage 
A1 2091 789 37.7% 
A2 1534 401 28% 
A3 3426 960 26.1% 

 
The number of passes are lower in the case of A2 than A1 because agents in A2 

wait to hear yells, and if they don’t hear a yell, they will dribble, instead of passing. 
The number of passes in A3 is higher in the case of A3 than A1 because A3 hears 
more yells. The above values show the performance of the three algorithms, given the 
narrow width of the communication channel (default, 1 message per cycle). Since the 
communication channel could not be broadened easily, we used two techniques to 
filter out the bottleneck effect of the communication channel, and capture the 
performance of the ES strategy better. 

 
Technique 1: This involved potential receivers of the ball calculating their 
passabilities and logging them, even as the agent in control of the ball was calculating 
passabilities using the centralized algorithm. This means when an agent (say X) had 
control over the ball, all agents who could see X (say agents C, F, G, H) calculated 
their passabilities and stored their values. X calculated its passability in a centralized 
fashion and logged that value. Our first filtering technique involved using these stored 
values to filter out only those passes where the agent in control of the ball (say X) 
decided to pass to the agent with the highest passability (say F) among the possible 
receivers, according to the estimates of the receivers. For example, let’s say X had the 
ball and Agents C, F, G and H could see X. In the first team (centralized algorithm, 
A1), X calculated the passabilities of agents C,F,G and H in a centralized manner. At 
                                                           
1 We thank Neal Arthorne for implementing this algorithm and a log analysis tool. 
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the same time, agents C,F,G and H calculated their own passability values with regard 
to X. In A2 and A3 (the ES algorithms), X waited to hear the messages announcing 
passability from C,F,G and H.  

Consider the first case (algorithm A1). Let’s say according to X’s centralized 
calculation, C was the best pass. But according to the calculations of C,F,G and H, 
agent G was the best pass. Here the passing agent and potential receivers disagree. 
But in some other instances, both the centralized calculation (passing agent) and the 
calculation by potential receivers agree (say they both calculate C as the best pass). 
Considering only passes of this latter kind is gives the same result as finding out 
situations where all the messages get through. The agreed situations pick out the 
instances where the passing agent decides to pass to the agent considered best by 
potential receivers. Note that this is true for all the three algorithms (A1, A2 and A3). 
This leads to a subset of the total passes being considered for analysis. These 
idealized passes (termed Agreed Passes) present the situation where the teammates’ 
decision was communicated to the passing agent, and these passes incorporate their 
different perspective from the centralized agent. The following table presents the 
results from this analysis. 

Table 2. Number of Completed Passes among Agreed Passes 

Team Total Passes Passes Completed Percentage 
A1 803 369 45.9% 
A2 566 210 37.1% 
A3 1536 518 33.7% 

 
These results show that the performance is significantly higher for agreed passes. 

This means receiving information from teammates (incorporating their perspective) 
leads to an increase in performance. There is an anomaly, however. The performance 
of A2 and A3 are still much below that of A1, with A2 barely matching A1’s 
performance from the first analysis, and A3 performing 4 notches below that. Since 
agreement essentially takes away the limitations of communication, and considers 
only the scenarios where the signal is available to all the three algorithms, A2 and A3 
should perform at least at the same level as A1, because they are all now using the 
same information (the potential receivers’ assessment), and the same base level skills. 
Why is their performance lower? 

One reason for the lower performance of A2 and A3 could be that the agents in 
control of the ball in A2 and A3 receive messages from potential receivers they can’t 
see, like agents behind them, or at an angle to them. Passing to these invisible agents 
would be difficult, and the probability of such passes being completed is quite low. 
On the other hand, since A1 calculates only passabilities for agents it can see, agreed 
passes in A1 automatically leaves out agents it cannot see. This raises the power of its 
kicks and lowers randomness in the direction of the ball once it is kicked, raising the 
probability of completing the passes. This interaction between perspective and 
performance presents a trade-off in using the ES strategy in dynamic environments. 
On the one hand, the ES strategy can provide information from another perspective, 
and this is information an agent cannot get by using the centralized strategy. But on 
the other hand, given the physical limitations imposed by their perspectives, agents 
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receiving this information may not be able to use it always. This means the ES 
strategy would be most effective in situations where the physical limitations of the 
agent are used to filter the information provided by the ES. To weed out the 
perspective-performance interaction, we analysed the data again from another angle. 

 
Technique 2: This technique tries to filter out the perspective problem involved in a 
pass and focus entirely on the quality of information, i.e. the correlation between 
completion of passes and agreement. This is done by examining only the set of 
completed passes, and seeing how many of them were agreed passes. The chart below 
captures this.  

Table 3. Number of agreed passes within completed passes 

Team Total Passes Passes Completed Percentage 
A1 789 369 46.7% 
A2 401 210 52.3% 
A3 960 518 53.9% 

 
The analysis shows that agreement predicts completion almost 48% of the time for 

A1, similar to the last analysis. This is expected, because A1 is not limited by 
perspective constraints, it calculates only those passes it can execute. On the other 
hand, the performance for A2 and A3 increases to around 52 and 54%. If the passes 
can be executed well, the information provided by the ES strategy predicts completion 
better than the information provided by the centralized strategy (around 17 percentage 
points increase). 

5.2   Robustness Experiments 

To examine the robustness of the ES strategy, we manipulated two variables -- noise 
and time taken to calculate the pass. These variables approximated variations in the 
environment and the processing capabilities of organisms. The noise was varied by 
changing the player_rand parameter of the soccer server from 1 to 10. The ES 
strategy outperformed the centralized strategy at all noise levels. The time taken to 
calculate the pass was varied by adding a sleep parameter to the passability function, 
and then varying the amount of sleep. The ES strategy once again performed better 
than the centralized decision-making strategy. These results show that the ES strategy 
is quite robust.  

5.3   Analysis of Passability Values 

From the previous analysis, we know that the passability calculation done by the 
potential receivers provides a better predictor of completion. But this analysis only 
compares the agent identified by the yelling agents and the passing agents (best 
passability), and not the passability values generated by the passing agent and the 
potential receivers. Is there a minimum value below which completion rates are low, 
and above which they are high? To understand this, we looked at the best passability 
values calculated by the yellers and the centralized agents, and then broke them down 
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into 12 categories (10-20, 20-30 etc.), and looked at the total number of passes, 
completed passes and agreed&completed passes. For a clearer picture on this, we 
looked at the total number of passes in each band of passability values (10-20, 20-30 
etc.), and then looked at the average completion for each band. There was a slight 
increase in the completed passes as passability values increased, but the difference 
was not significant between the yells and centralized calculations. The similar 
completion rates (for yells and centralized) seem to indicate that the passability value 
does not differentiate between the two approaches (centralized, yells). One possible 
reason for this could be that the passability calculation is wrong, and does not make 
any difference at all. This can be ruled out, because agreement makes a significant 
difference in pass completion. A more plausible reason could be limitations imposed 
by the physical states of the agents (like stamina, view etc), which influences the 
strength of the kick, direction of the kick etc. The physical constraints set an upper 
limit to the completion of passes. The similar pattern of completion for different 
values, compared to the better completion rate seen in the earlier analysis for agreed 
passes, taken together indicate that having a higher passability value does not lead to 
better passes, but identifying the best agent makes a difference. That is, if both the 
yells and the centralized calculation identify agent C as the best pass, that improves 
the chance of the pass being completed. But yells or the centralized calculation 
deriving a 70-80 passability value for Agent C does not improve the chance of 
completion. This means the passability value is useful only for its relative perspective 
information, helping determine who is better among possible receivers. It is not a 
good indicator for pass completion. The ES strategy is better because of its 
perspective, and not because of its accuracy in calculating the passability value.  

6   Limitations and Future Work 

One of the major limitations of the study is the indirect way of assessing the 
effectiveness of the ES strategy. This is a direct result of the narrow communication 
channel. If the server parameters had allowed us to manipulate the hear_max value 
beyond 2 messages per cycle, we would’ve been able to judge the effectiveness of the 
strategy better. This would’ve also provided a way to better understand the 
relationship between channel-width and signal effectiveness in a dynamic 
environment. The freedom to change parameters, and a more user-friendly way of 
doing this, could lead to the RoboCup environment being used more widely by 
disciplines like cognitive science.  

In this study, the opponent team was the same one for all the games. Even though 
this could be considered as providing a standardization for the results reported here, it 
is desirable to test a cognitive strategy in a variety of situations. Similarly, tests need 
to be done to determine the optimal number of waiting cycles used by a player in A2 
and A3 before deciding on whom to pass. A further limitation is that the opponent 
team was not designed to intercept the passability messages, or to manipulate them. 
So the adversarial nature of the environment was limited to pass interception. In 
future work, we plan to use different teams against our teams. We also plan to 
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investigate how unreliable messages affect the ES strategy. This is the equivalent of 
mimicry in biological systems.  
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Abstract. Color calibration is a time-consuming, and therefore costly
requirement for most robot teams at RoboCup. This paper presents an
approach for autonomous color learning on-board a mobile robot with
limited computational and memory resources. It works without any la-
beled training data and trains autonomously from a color-coded map
of its environment. The process is fully implemented, completely au-
tonomous, and provides high degree of segmentation accuracy. Most im-
portantly, it dramatically reduces the time needed to train a color map
in a new environment.

1 Introduction

Upon arrival at RoboCup competitions, one of the first steps for most teams
in any of the real robot leagues is color calibration: the process of mapping raw
camera pixel values to color labels, such as green or orange. Due to differences in
lighting conditions and object colors between the teams’ labs and the competition
venue, pre-trained vision modules are unlikely to work “out of the box.”

The time required for color calibration contributes in large part to the need
for multiple days of setup time before each competition, a costly proposition
both from the perspective of reserving the venue and from the perspective of
individual travel expenses. In addition, both soccer-playing and rescue robots
must eventually be able to operate in natural, changing lighting conditions.
Rescue robots in particular must be operational as soon as possible after arriving
at a disaster site.

Though events, to date, have all been held under constant, bright lighting
conditions, it takes an hour or more to train the robot to recognize the desired
colors in its environment. One way to dramatically reduce this time is to enable
the robot to autonomously learn the desired colors from the environment using
the inherent structure. Doing so may also enable them cope more easily with
changing lighting conditions.

In the abstract, automatic color segmentation can be characterized by the
following set of inputs, outputs and constraints:

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 673–681, 2006.
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1. Inputs:
∗ A color-coded map of the robot’s world. This contains a representation of

the size, shape, position, and colors of all objects of interest.
∗ A stream of limited-field-of-view images that present a view of the struc-

tured world with many useful objects, and many unpredictable elements.
∗ The initial position of the robot and its joint angles over time, particularly

those specifying the camera motion.
2. Output:

∗ A Color Map that assigns a color label to each point in the color space.
3. Constraints:

∗ Limited computational and memory resources with all processing being
performed on-board the robot.

∗ Rapid motion of the limited-field-of-view camera with the associated noise
and image distortions.

This paper presents an approach for autonomous color learning on-board a
mobile robot with limited computational and memory resources. It works with-
out any labeled training data and trains autonomously from a color-coded map
of its environment. The process is fully implemented, completely autonomous,
and provides high degree of segmentation accuracy. Most importantly, it dra-
matically reduces the time needed to train a color map in a new environment.

2 Background Information

The SONY Aibo, ERS-7, is a four legged

Fig. 1. An Image of the Aibo and the
field

robot whose primary sensor is a CMOS
camera with a field-of-view of 56.9o (hor)
and 45.2o (ver), providing the robot with
a limited view of its environment. The im-
ages are captured in the YCbCr format at
30Hz and an image resolution of 208 ×
160 pixels. The robot has 20 degrees-of-
freedom (dof). It also has noisy touch sen-
sors, IR sensors, and a wireless LAN card
for inter-robot communication. The cam-
era jerks around a lot due to the legged
locomotion modality, and images possess
common defects such as noise and distortion. Figure 1 shows a picture of the
robot and the 4.4m× 2.9m playing field.

On the robot, visual processing typically occurs in two stages: color segmen-
tation and object recognition ([3] presents our implementation). Color segmen-
tation is a well-researched field in computer vision with several good algorithms,
for example [2, 12]. But these involve computation that is infeasible to perform
on autonomous robots given the computational and memory constraints. In the
RoboCup domain too, several methods have been applied, from the baseline ap-
proach of creating mappings from the YCbCr values to the color labels [4], to the
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use of decision trees [13] and axis-parallel rectangles in the color space [14]. All
of them involve an elaborate training process wherein the color map is generated
by hand-labeling several (≈ 20− 30) images over a period of at least an hour.

The color map is used to segment the image pixels to one of the desired
colors and construct connected constant-colored blobs. The blobs are used to
detect useful objects (e.g. markers and the ball). The robot uses the markers
to localize itself on the field and coordinates with its team members to score
goals on the opponent. All processing, for vision, localization, locomotion, and
action-selection, is performed on board the robots, using a 576MHz processor.

Though games are currently played under constant and reasonably uniform
lighting conditions, a change in illumination over several days forces teams to
re-calibrate the vision system. Also, the overall goal of eventually playing against
humans in natural lighting puts added emphasis on the ability to learn the color
map in a very short period of time. Attempts to automatically learn the color
map have rarely been successful. One such instance is [7]), wherein the author
presents a method to learn the color map using three layers of color maps with in-
creasing precision levels. But the generated map is reported to be not as accurate
as the hand-labeled one and other domain specific constraints are introduced to
disambiguate between object colors, during the object recognition phase. In [9],
colors are estimated using a hierarchical Bayesian model with Gaussian priors
and a joint posterior on robot position and environmental illumination.

This paper presents a novel approach that enables the robot to autonomously
learn the entire color map, using the inherent structure of the environment and
about seven images, in less than five minutes. It involves very little storage and
the resultant segmentation accuracy is comparable to that obtained by the color
map generated by the hand-labeling process.

3 Problem Specification

Here, we formally describe the problem of generating a color map for the robot.
To be able to recognize objects and operate in a color-coded world, a robot

generally needs to recognize a certain discrete number (N) of colors (ω ∈ [0, N−
1]). A complete mapping identifies a color label for each possible point in the
color space [5] under consideration:

∀p, q, r ∈ [0, 255] {C1,p, C2,q, C3,r} �→ ω|ω∈[0,N−1] (1)

where C1, C2, C3 are the three color channels (e.g. RGB or YCbCr), with the
corresponding values ranging from 0− 255.

We represent colors using a Three-Dimensional (3D) Gaussian model (rea-
sonably approximates actual distributions) with the assumption of mutually
independent color channels. In practice, the independence assumption, which
implies a lack of correlation among the three color channel values for any given
color, does not hold for all colors. Nonetheless, it closely approximates reality
and greatly simplifies the calculations — computationally expensive operations
such as inverting a covariance matrix need not be performed.



676 M. Sridharan and P. Stone

Each color ω ∈ [0, N − 1] can then represented by the density distribution:

p(ω|c1, c2, c3) =
1√

2π
∏3

i=1 σCi

· exp−1
2

3∑
i=1

(
ci − μCi

σCi

)2

(2)

where, ci ∈ [Cimin , Cimax ] represents the value at a pixel along a color channel
Ci while μCi and σCi represent the corresponding means and variances.

Under this model, the means and variances of the distributions are the only
statistics that need to be collected and stored for each color that is to be learnt,
making the learning process fast and feasible to execute on the robot. Next, we
describe the learning setup and the actual process that the robot goes through
to learn the color map.

4 Learning Setup

In this section we describe the algorithm (summarized in Algorithm 1) that the
robot executes to autonomously learn the color distributions.

Algorithm 1. General Color Learning
Require: Starting Pose Known, Map of the robot’s world.
Require: Empty color map.
Require: Array of poses for learning colors, Pose[].
Require: Array of objects, described as shapes, from which the colors need to be

learnt, Objects[].
Require: Ability to move to a target pose.
1: i = 0, N = MaxColors
2: T imest = CurrT ime
3: while i < N and CurrT ime − T imest ≤ T imemax do
4: Motion = RequiredMotion( Pose[i] )
5: Perform Motion {Monitored using visual input}
6: if LearnGaussParams( Colors[i] ) then
7: Learn Mean and Variance of color from candidate image pixels
8: UpdateColorMap()
9: if !Valid( Colors[i] ) then

10: RemoveFromMap( Colors[i] )
11: end if
12: end if
13: i = i + 1
14: end while
15: Write out the color statistics and the color map.

The algorithm can be described as follows: The robot starts off at a known
position in its map of its world. It has no initial color information, i.e. the means
and variances of the colors to be learnt are initialized to zero. It also has three
lists: the list of colors to be learnt (Colors), a list of corresponding positions that
are appropriate to learn those colors (Pose), and a list of corresponding objects,
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defined as shapes, that can be used to learn the colors. Using a navigation
function (RequiredMotion()), the robot determines the motion required, if any,
to place it in a position corresponding to the first entry in Pose, and executes
the motion command. The object shape definition – the corresponding entry in
the Objects array – leads to a set of constraints (heuristic candidacy tests) that
are used to select the candidate blob. The robot stops when either a suitable
blob is found or it thinks it has reached its target position. Further details of
the candidacy tests can be found in a technical report [3].

Once in position, the robot executes the function LearnGaussParams() to
learn the color. If a suitable candidate blob of unknown color (black in our case)
exists, each pixel of the blob is examined. If the pixel value is sufficiently distant
from the means of the other known color distributions, it is considered to be a
member of the color class under consideration. When the entire blob has been
analyzed, these pixels are used to arrive at a mean and a variance that then
represent the 3D Gaussian density function of the color being learnt.

The function UpdateColorMap() takes all the learned Gaussians as input and
generates the complete mapping from pixel values to the color labels. This pro-
cess of assigning color labels to each cell in the 128 × 128 × 128 cube is the
most intensive part of the learning process. Hence, it is performed only once
very five seconds or so. Each cell is assigned a color label corresponding to the
color whose density function (Equation 2) has the largest probability value. The
updated color map is used to segment all subsequent images.

The segmented images are used for detecting objects, which are in turn used
to validate the colors learnt (Valid()). The entire learning procedure is repeated
until all desired colors are learnt and/or the predecided learning time (T imemax)
has elapsed. A more detailed description can be found in [11].

5 Experimental Setup

A line drawing of the legged league field,
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Fig. 2. The Learning positions

with its color coded goals and markers,
is shown in Figure 2. We present the re-
sults when the robot always starts off in
Position-1 and moves through a determin-
istic sequence of positions (the elements of
the array Pose[]).

The steps involved in the algorithm can
be presented as an ordered list of positions,
colors (to be learnt) and objects:

1. Step-1: Position1 with head tilted down, white and green, Field line and center
circle.

2. Step-2: Position-2, yellow, Yellow goal.
3. Step-3: Position-3, pink, Yellow-pink marker.
4. Step-4: Position-4, blue, Blue goal.
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5. Step-5: Position-5, blue (Disambiguate green and blue), Pink-blue marker.
6. Step-6: Position-6 with head tilted down, ball color (orange), Ball.
7. Step-7: Position-6 with head horizontal, opponent’s uniform color, Opponent.

The robot then writes out the color map and the statistics to the memory stick.
A few important points are to be noted with regard to the learning process. In
Position-1, learning is performed based on the fact that a large portion of the
image (in that position) consists of green. The algorithm is entirely dependent
on inherent structure of the environment and not on the particular color that is
being learnt. The positions for learning the ball and opponent colors are set so as
to minimize the movement. Currently we only learn red for the opponent uniform
color, though the process could be used to learn darkblue too. The video of the
learning mechanism, as seen from the robot’s camera, can be viewed online [1].

6 Experimental Results

We tested the accuracy of the color maps that were learned autonomously on the
robots by comparing their segmentation accuracy with a color map generated
by the prevalent approach of hand-segmenting a set of ≈ 25 images. We refer to
this color map as the Hand Labeled (HLabel) color map. This map corresponds
to a fixed illumination condition. Here, an intermediate map (IM) of the same
size as the overall color map is maintained for each color. Each cell of an IM
stores a count of the number of times an image pixel that maps into that cell was
labeled as the corresponding color. Each cell in the final color map is assigned
the label corresponding to the color whose IM has the largest count in that cell.

Based on results [6, 8, 10] that the LAB color space could be reasonably robust
to illumination variations, we trained a color map each in LAB and YCbCr.
Since the colors of the ball and the opponent overlap with the marker colors, we
performed the analysis in stages: first with just the fixed marker colors and then
with all the colors included.

On a set of sample images of the markers (15) captured using the robot’s
camera, we first compared the performance of the three color maps with the
color labeling provided interactively by a human observer, the Ground Truth
(GTruth). We are interested only in the colors of the markers and other objects
on the field and/or below the horizon. Also, the correct classification result is
unknown (even with HLabel) for several background pixels in the image. There-
fore, the observer only labels pixels suitable for analysis and these labels are
compared with the classification provided by the three color maps. On average,
≈ 20% of the pixels in the image get labeled by the observer. The average clas-
sification accuracies are 87.8± 3.18, 97.9± 0.76, and 98.8± 0.44 for the YCbCr,
LAB and HLabel color maps respectively, as compared to GTruth.

The color labeling obtained by using the HLabel color map or the map gener-
ated in the LAB color space is almost perfect in comparison to the human color
labeling. There is not much difference in the qualitative performance between
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these and the YCbCr map. Sample image results are available in [11, 1] – the
robot is able to learn a reasonable color map in both color spaces when only the
marker colors are considered.

Next, we let the robot learn the ball

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Sample Images with Ball. (a)-(c)
Original, (d)-(f) YCbCr, (g)-(i) LAB

color (orange) in addition to the marker
colors. The average classification accu-
racies are 74.8 ± 9.2%, 94 ± 5.6% and
98.5 ± 0.8% for the YCbCr, LAB and
HLabel color maps respectively, as com-
pared to GTruth. Figure 3 show the
segmentation results over a set of im-
ages.

In the YCbCr color space, the inclu-
sion of orange causes the segmentation
to degrade even over the colors (pink
and yellow) that it could classify well
before. This is not the case in LAB –
the object recognition procedure is able
to find the ball without any additional
constraints (the ball is rarely found in
YCbCr). Therefore the color of the opponent’s uniform (red) is learnt only in
the LAB color space. Images illustrating this can be seen at [11, 1].

While operating in the LAB color space, we still do not want to transform each
pixel in the test image from YCbCr to LAB due to computational constraints.
So, during the color map update, we assign the color label to each discrete cell
in the YCbCr color map by determining the label assigned to the corresponding
pixel values in LAB. The pixel-level transformation increases in the training time.
The learning process takes ≈ 2.5minutes in YCbCr while it takes ≈ 4.5minutes
in LAB, still much smaller than the time taken to generate HLabel, an hour or
more.

When the illumination changes within a range of illuminations, the original
color map does not perform well. But the robot is able to learn a new color map
in a few minutes.

Finally, we tested the hypothesis that the algorithm is robust to color re-
mapping. We changed the field setting by moving a goal to a carpet that has
a non-uniform blue design and we placed a small piece of white paper on it
instead of the field lines. The robot still learnt the carpet color as green and
proceeded to learn other colors. Next, we started the learning process with the
robot in Position-2, facing the blue goal (Figure 2). The robot ended up learning
the color blue as yellow and vice versa. This confirms our hypothesis that the
process is dependent only on shape and size and not on the particular color that
is being learnt.

Sample image results for all experiments can be seen in [11] or on the team
web-site [1].



680 M. Sridharan and P. Stone

7 Discussion and Conclusion

We have presented an approach to automating the color learning and segmen-
tation process on-board a legged robot with limited computational and storage
resources. In spite of the relatively low-resolution images with inherent noise and
distortion, the algorithm enables the robot to autonomously generate its color
map in a very short period of time. The corresponding segmentation accuracy is
comparable to the that obtained by hand-labeling several images over a period
of an hour or more. This could result in a substantial reduction in the setup time
before the games can begin at RoboCup competitions.

Though we have tested our approach only in the legged league environment,
it applies to the other leagues where the vision is done on-board a mobile robot
in a known, color-coded environment. Color-calibration in the small-size league
is currently more straightforward because vision is often done with a stationary
overhead camera. However, as teams move towards on-board vision, they will face
the same constraints as the other robot soccer leagues. To apply this method in
the rescue league requires the generation of a test-environment with objects of
relevant colors in known locations. One could imagine quickly collecting relevant
training objects and placing them in fixed locations that can be communicated
to the robot for training purposes. However it remains to be shown that doing
so generalizes to the larger environment, and if so, that it enables a reduction in
manual effort and training time. This is an important area for future research.

The algorithm depends only on the structure inherent in the environment
and a re-mapping of the colors does not prevent the robot from learning them.
Further, the color map can be learnt in several fixed illumination conditions
between a minimum and maximum on the field. The learning can be easily
repeated if a substantial variation in illumination is noticed.

Currently, the color map is learnt from a known fixed starting position without
any prior knowledge of colors. An extension that we are currently working on is
to learn from any given starting position on the field.
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Abstract. A method for kinematics modeling of a six-wheel Rocker-Bogie mo-
bile robot is described in detail. The forward kinematics is derived by using 
wheel Jacobian matrices in conjunction with wheel-ground contact angle esti-
mation. The inverse kinematics is to obtain the wheel velocities and steering 
angles from the desired forward velocity and turning rate of the robot. Traction 
Control is also developed to improve traction by comparing information from 
onboard sensors and wheel velocities to minimize wheel slip. Finally, a simula-
tion of a small robot using rocker-bogie suspension has been performed and 
simulate in two conditions of surfaces including climbing slope and travel over 
a ditch. 

1   Introduction 

In rough terrain, it is critical for mobile robots to maintain maximum traction. Wheel 
slip could cause the robot to lose control and trapped. Traction control for low-speed 
mobile robots on flat terrain has been studied by D.B.Reister, M.A.Unseren [2] using 
pseudo velocity to synchronize the motion of the wheels during rotation about a point. 
Sreenivasan and Wilcox [3] have considered the effects of terrain on traction control 
by assume knowledge of terrain geometry, soil characteristics and real-time meas-
urements of wheel-ground contact forces. However, this information is usually un-
known or difficult to obtain in practice.  Quasi-static force analysis and fuzzy logic 
algorithm have been proposed for a rocker-bogie robot [4]. 

Knowledge of terrain geometry is critical to the traction control. A method for es-
timating wheel-ground contact angles using only simple on-board sensors has been 
proposed [5]. A model of load-traction factor and slip-based traction model has been 
developed [6]. The traveling velocity of the robot is estimated by measure the PWM 
duty ratio driving the wheels. Angular velocities of the wheels are also measured then 
compare with estimated traveling velocity to estimate the slip and perform traction 
control loop. 

In this research, the method to estimate the wheel-ground contact angle and kine-
matics modeling of a six-wheel Rocker-Bogie robot are described. A traction control 
is proposed and integrated with the model then examined by simulation. 
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2   Wheel-Ground Contact Angle Estimation 

Consider the left bogie on uneven terrain, the bogie pitch, 1μ , is defined with respect 

to the horizon. The wheel center velocities 1v  and 2v  parallel to the wheel-ground 

tangent plane. The distance between the wheel centers is BL . 

BL
1μ 1ρ

2ρ

1v

2v

 

Fig. 1. The left bogie on uneven terrain 

The kinematics equations can be written as following 

)cos()cos( 122111 μρμρ −=− vv  
(1) 

1122111 )sin()sin( μμρμρ BLvv =−−−  
(2) 

Define 111 / vLa B μ= , 121 / vvb = , 111 μρδ −=  and 211 ρμε −=  then 

The contact angles of the wheel 1 and 2 are given by 
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Fig. 2. Instantaneous center of rotation of the left bogie 

Velocity of the bogie joint can be written as: 

111
μBB rv =  (5) 

Consider Left Rocker, the rocker pitch, 1τ , is defined with respect to the horizon di-

rection. The distance between rear wheel center and bogie joint is RL . 
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Fig. 3. Left Rocker on uneven terrain 

)]cos()/arccos[( 133 11
τρρ −= BB vv  (6) 

For the right side, the contact angles can be estimated in the same way. 

3   Forward Kinematics 

We define coordinate frames as in Fig. 4. The subscripts for the coordinate frames are 
as follows: O : robot frame, D : Differential joint, iR : Left and Right Rocker 

( 2,1=i ), iB : Left and Right Bogie ( 2,1=i ), iS : Steering of left front, left back, right 

front and right back wheels ( 6,4,3,1=i ) and iA : Axle of all wheels ( 61−=i ).Other 

quantities shown are steering angles iψ  ( 6,4,3,1=i ), rocker angle β , left and right 

bogie angle 1γ  and 2γ . By using the Denavit-Hartenburg parameters [7], the trans-

formation matrix for coordinate i  to j  can be written as follows: 
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Fig. 4. Robot left coordinate frames 
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The transformations from the robot reference frame ( O ) to the wheel axle frames 
( iA ) are obtained by cascading the individual transformations. 

For example, the transformations for wheel 1 are 

1111 ,,,, ASSDDOAO TTTT =  (8) 

To capture the wheel motion, we derive two additional coordinate, contact frame 
and motion frame. Contact frame is obtained by rotating the wheel axle frame ( iA ) 

about the z-axis followed by a 90 degree rotation about the x-axis. The z-axis of the 
contact frame ( iC ) points away from the contact point as shown in Fig. 5. 

iCXiCZ iAY

iAX
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iAY
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Φ

 

Fig. 5. Contact Coordinate Frame 

The transformations for contact frame are derived using Z-X-Y Euler angle 
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(9) 

The wheel motion frame is obtained by translating along the negative z-axis by 
wheel radius ( wR ) and translating along the x-axis for wheel roll ( iwR θ ). 

iCZ

iCX

iMZ

iMX

iθ

 

Fig. 6. Wheel Motion Frame 

The transformation matrices for the front left wheel can be written as (10) and the 
transformation for other wheels can be written in the same way. 

1111111111 ,,,,,,, MCCAASSBBDDOMO TTTTTTT =  (10) 
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To obtain the Jacobian matrices, the robot motion is express in the wheel motion 

frame, by applying the instantaneous transformation OMMOOO ii
,ˆ,ˆ,ˆ TTT =  
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where φ , p , r  = yaw, pitch, row angle of the robot respectively. 

Once the instantaneous transformations are obtained, we can extract a set of equa-

tions relating the robot’s motion in vector form Trpzyx ][ φ  to the joint 

angular rates. The results of the left and right front wheel are found to be 
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The results of wheel 2 and 5 (the left and right middle wheel) are found to be 
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The results of wheel 3 and 6 (the left  and right back wheel) are found to be 

−

=

i

i

i

i

ii

ii

ii

H

G

FE

DC

BA

r

p

z

y

x

ψ
β
θ

φ

00

010

00

0

0

0

  6,3=i  (14) 

The parameters iA  to iK  in the matrices above can be easily derived in terms of 

wheel-ground contact angle ),..,( 61 ρρ  and joint angle ,,( γβ and )ψ .  
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4   Wheel Rolling Velocities 

Consider forward kinematics of the front wheel (12), define dx  as the desired forward 

velocity and dφ  as desired heading angular rate. The 1st and 4th equation give 

iid

iiiiiid

J

CBAx

ψφ
ψγθ

=

++=
  3,1=i  (15) 

The rolling velocities of the front wheels can be written as 
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Similarly, the rolling velocities of the middle and rear wheels can be written as 
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5   Slip Ratio 

In section 3 and 4, we assume that there is no side slip and rolling slip between wheel 
and ground. Then slip must be minimizing to guarantee accuracy of the kinematics 
model. The slip ratio S , of each wheel is defined as follows: 
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 (19) 

where  r  = radius of the wheel 
  wθ  = rotating angle of the wheel 

wrθ  = wheel circumference velocity 

wv  = traveling velocity of the wheel 

S  is positive when the robot is accelerating and negative when decelerating. The 
robot can travel stably when the slip ratio is around 0 and will be stuck when the ratio 
is around 1. By measuring of the wheel angles with information from the accelerome-
ter, we can minimize slip so the traction of the robot is improved. 

In the traction control loop, a desired slip ratio dS  is given as an input command. 

The feedback value Ŝ  is computed from a slip estimator. To complete the estimation 
of the slip, we need the rolling velocity and the traveling velocity of the wheels, ω  
and wv . Rolling velocity of the wheels is easily obtained from encoders which in-

stalled in all wheels. Traveling velocity of the wheel can be computed from robot 
velocity by using data from onboard accelerometer. 
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Fig. 7. Robot Control Schematic 

6   Experiment 

The system was verified in Visual Nastran 4D. In Fig. 8, the robot climbs up a 30-
degree slope, with coefficient of friction 0.5. Without control, the robot move at 55 
mm/s, then the front wheels touched the slope at 5.0=t sec. and begin to climb up. 
Robot velocity reduced to 25 mm/s. But the robot continues to climb until the middle 
wheels touch the slope at 9=t sec. The velocity reduced to nearly zero. With control, 
the sequence was almost the same until 5.0=t sec. Then the velocity reduced to 35 
mm/s when the front wheels touched the slope. The middle wheels touched the slope 
at 6=t sec. and velocity reduced to 28 mm/s. Both back wheels begin to climb up the 
slope at 15=t sec. with velocity approximately 20mm/s. 

In Fig. 9, the robot traversed over a 32mm depth and 73mm width ditch with coef-
ficient of friction about 0.5. The robot move at 55 mm/s, then the front wheels went 
down the ditch at 5.0=t sec. and begin to climb up when front wheels touch the 
 

-15

-5

5

15

25

35

45

55

0 2 4 6 8 10 12 14 16

time (s)

R
o

b
o

t 
V

el
o

ci
ty

 (
m

m
/s

)

w/o traction control

traction control

Traction control

w/o traction control

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

time (s)

S
li

p
 R

at
io

w/o traction control

traction control

Traction control

w/o traction control

 

Fig. 8. Velocity and Slip ratio when climbed up 30 degrees slope 
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Fig. 9. Velocity and Slip ratio when traversed over a ditch 

up-edge of the ditch. But the wheels slipped with the ground and failed to climb up. 
Then the slip ratio went up to 1 ( 1=S ), the robot has stuck at 5.1=t sec. 

With traction control, after the front wheels went down the ditch, the slip ratio was 
increased. Then the controller tried to decelerate to decrease the slip ratio. When the 
slip ratio was around 0.5, the robot continued to climb up. Until 5.4=t sec., both of 
the front wheels went up the ditch completely and the robot velocity increased to the 
55 mm/s as commanded. At 6=t sec., the middle wheels went down the ditch. The 
robot velocity also increased temporary and back to 55 mm/s again when the middle 
wheels went up completely. The last two wheels went down the ditch at 13=t sec. 
and the sequence was repeated in the same way as front and middle wheels. 

8   Conclusion 

In this research, the wheel-ground contact angle estimation has been presented and 
integrated into a kinematics modeling. Unlike the available methods that applicable to 
the robots operating on flat and smooth terrain, the proposed method uses the De-
navit-Hartenburg notation like a serial link robot, due to the rocker-bogie suspension 
characteristics. A traction control is proposed based on the slip ratio. The slip ratio is 
estimated from wheel rolling velocities and the robot velocity. The traction control 
strategy is to minimize this slip ratio. So the robot can traverse over obstacle without 
being stuck. The traction control is verified in the simulation with two conditions. 
Climbing up the slope and moving over a ditch with coefficient of friction 0.5. The 
robot velocity and slip ratio are compared between using traction control and without 
using traction control system. 
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Abstract. In this paper, a recurrent neural network is used to develop
a dynamic controller for mobile robots. The advantage of the control
approach is that no knowledge about the robot model is required. This
property is very useful in practical situations, where the exact knowledge
about the robot parameters is almost unattainable. The proposed ap-
proach has been experimentally tested on an Omnidirectional RoboCup
Player available at the Robotics Lab of the University of Stuttgart.

1 Introduction

Compared with the nonholonomic mobile robots, omnidirectional mobile robots
provide superior manoeuvring capability. The ability to move simultaneously
and independently in translation and rotation makes them widely studied in
dynamic environmental applications. The annual RoboCup competition is an
example where omnidirectional robots are widely used. However, quite few re-
search studies on this type of robots have been reported. Most of them have
been focused on the mechanical design and on the kinematic level control, as-
suming that there is ”perfect” velocity tracking. However, as it is well known,
the control at the kinematic level may be instable if there is errors control at
the dynamic level. Therefore, the velocity control is at least as important as the
position control. Recently, dynamic modelling and some analysis for omnidirec-
tional robots have been addressed in [7, 1, 3]. In contrast with these theoretical
developments, only few experimental works have been presented. In practical sit-
uations, exact knowledge about the dynamic model parameters values is almost
unattainable. To deal with this weakness, there are possible methods, which can
be used, even when the knowledge about the dynamic model is not complete, like
robust adaptive control [4]. Another possible approach is to consider the robot
as a ”Black box”, in order to avoid the estimation of its real parameters. Recur-
rent Neural Networks (RNNs) have a great potential for ”black box” modelling,
and they can give complementary/new solutions for system identification and
control. Recently in [5], we developed a robot velocity control strategy based on
� This work was partially supported by the German Academic Exchange Service

(DAAD).
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a novel RNN called Echo State Network (ESN). More recently in [6], and us-
ing the same strategy we demonstrated the ability of a single fixed-weight ESN
to act as a dynamic controller for several distinct wheeled mobile robots. The
trained controller showed high performances to balance between the variety of
the desired velocity and the variety of the robots.

In this paper, we propose the velocity control based ESN as a new dynamic-
control strategy for our robots. The controller is designed only by learning I/O
data collected from the robot, without knowledge about its dynamic model.

The rest of this paper is organized as follows. Section 2 presents the omnidi-
rectional robot and the problem to solve. A presentation of Echo state network
is outlined in section 3, including its principles and training algorithm. The con-
trol approach is described in Section 4. In section 5, experimental results are
presented. Finally, discussion and conclusion are drawn in section section 6.

(a) (b)

Fig. 1. Omnidirectional robot. a)hardware photo. b) CAD model.

2 Omnidirectional Robot

2.1 Hardware

Experimentations are performed on one omnidirectional robot (Fig. 1) of Soccer-
robots team available at the robotics Lab of University of Stuttgart. The robot
is equipped with 3 omni-wheels equally spaced at 120 degrees from one to an-
other, and driven by three 90W DC motors. A personal computer on board is
used to manage different sensors and tasks. For environment sensing, the robot
is equipped by an omnidirectional vision system, based on a hyperbolic mirror
and a standard IEEE1394 (FireWire) camera (Fig. 2). Omnidirectional vision
provides our robot a very large field of view, which has some useful properties.
For instance, it can facilitate the tracking of robots, the ball, and a set of en-
vironmental features used for self-localization. More hardware specifications of
the robot are listed in Table 1.
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Table 1. Robot Specifications

Max Acceleration 3.5m/s2

Max. Speed 2.5m/s

Wheels Omni-wheels (Swedish)
Host Computer 2,6GHz , RAM 600MB,60 GB HD
Power supply Two 13 V batteries in series
Steering control Interfaces with 3 DC motors
Dimensions 48,5cm wide, 80cm height
Weight 15 kg

Fig. 2. An image from the omnidirectional camera

2.2 Kinematic Model

The geometry of the omnidirectional robot and its coordinate definitions are
shown in Fig. 3. This model is used to transform linear and angular velocities
to wheels speeds. It is chosen as in [3]:

⎛
⎝w1

w2

w3

⎞
⎠ =

⎛
⎝ sin(θ) cos(θ) L
− sin(π

3 − θ) − cos(π
3 − θ) L

sin(π
3 + θ) − cos(π

3 + θ) L

⎞
⎠

⎛
⎝ ẋ

ẏ

θ̇

⎞
⎠ (1)

where wi is the angular speed of wheel i, and x ,y and θ are the pose of the
centre of mass (CM) of the robot. L is the distance of the wheels from the CM,
and R is the radius of each Wheel. In our case: R = 0, 04 and L = 0, 2.

2.3 Control System

The control system is decomposed in two stages. An inner loop, depending on
the robot dynamics and used to control linear and angular velocities, and an
outer loop, which guarantees that the robot follows the desired trajectory. Both
controllers are based on PID control strategy (Fig. 4). In practical situations, the
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Fig. 3. Kinematic geometry

Fig. 4. Kinematic and dynamic control loops

assumption ”perfect” velocity tracking at the dynamic-level is almost unattain-
able by the PID controllers implemented on board. The ability of PID controllers
to cope with some complex properties of the robot such as non-linearities, fric-
tion, and time-varying parameters are known to be very poor. To improve the
velocity control, we propose to use a novel RNN called Echo state network(ESN)
to approximately model the whole dynamics of the robot as a ”black box”. Upon
completion of the training procedure, we expect that the ESN controller will be
capable to minimize reasonably errors between the desired and the actual robots
velocities, without knowledge about the dynamic-model parameters.

3 Echo State Network

Echo state network is a RNN formed by a ”Dynamic Reservoir”(DR), which
contains a large number of sparsely interconnected neurons with non-trainable



Velocity Control of an Omnidirectional RoboCup Player with RNNs 695

Fig. 5. Basic architecture of ESN. Dotted arrows indicate connections that are possible
but not required.

weights. As presented in (Fig. 5), we consider that the network has K inputs,
N internal neurones and L output neurones. Activations of input neurons at
time step n are U(n) = (u1(n), u2(n), . . . , uk(n)), of internal units are X(n) =
(x1(n), . . . , xN (n)), and of output neurons are Y (n) = (y1(n), . . . , yL(n)).
Weights for the input connection in a (NxK) matrix are W in = (win

ij ), for
the internal connection in a (NxN) matrix are W = (wij), and for the connec-
tion to the output neurons in an L x (K + N + L) matrix are W out = (wout

ij ),
and in a (NxL) matrix W back = (wback

ij ) for the connection from the output to
the internal units.

The activation of internal and output units is updated according to:

X(n + 1) = f(W inU(n + 1) + WX(n) + W backY (n + 1)) (2)

where f = (f1, . . . , fN ) are the internal neurons output sigmoid functions. The
outputs are computed according to:

Y (n + 1) = fout(W out(U(n + 1), X(n + 1), Y (n))) (3)

where fout = (fout
1 , . . . , fout

L ) are the output neurons output sigmoid functions.
The term (U(n + 1), X(n+ 1), Y (n)) is the concatenation of the input, internal,
and previous output activation vectors. The idea of this network is that only the
weights connections from the internal neurons to the output (W out) are to be
adjusted.

Here we present briefly an off-line algorithm for the learning procedure:

1. Given I/O training sequence (U(n), D(n))
2. Generate randomly the matrices (W in, W, W back), scaling the weight matrix

W such that its maximum eingenvalue |λmax| ≤ 1.
3. Drive the network using the training I/O training data, by computing

X(n + 1) = f(W inU(n + 1) + WX(n) + W backD(n)) (4)
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4. Collect at each time the state X(n) as a new row into a state collecting
matrix M , and collect similarly at each time the sigmoid-inverted teacher
output tanh−1D(n) into a teacher collection matrix T .

5. Compute the pseudoinverse of M and put

W out = (M−1T )t (5)

t: indicates transpose operation.

The ESN is now trained. For exploitation, the network can be driven by new
input sequences and using the equations (2) and (3). For more details, a complete
tutorial on ESNs can be found in [2].

4 Control Approach

4.1 Controller Training

Training data (PWMs/wheels speeds) are collected by moving the robot ”ar-
bitrarily” with different velocities in different directions. 1000 sequences were
collected from the robot and stored in a file. To train the ESN as a velocity con-
troller, we used the bloc diagram depicted in Fig. 6. Using its training algorithm,
the ESN learned the teacher signals(PWMs), which bring each wheel from an
actual speed at time (n) to a future speed at time (n + 1).

The ESN architecture was chosen as follows. 6 inputs (actual and delayed
wheels speeds), 13 internal neurons and 3 outputs (PWMs duty ratio for each
motor). No back-connection from the output to the DR, and no connections from
the input directly to the output. The input and the internal synaptic connections
weights were randomly initialized from a uniform distribution over [−1, +1]. The
internal weight matrix W has a sparse connectivity of 20% and scaled such that
its maximum eingenvalue |λmax| ≈ 0.3.

Fig. 6. Training of ESN as a dynamic controller for mobile robots
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4.2 Control Procedure

After training procedure has been completed, the network was implemented in
the control system on the host computer on-board (Fig. 7). Desired speeds of the
wheels are first computed from the desired linear and angular velocities (vd, wd),
using equation (1). Using the actual (measured) and desired wheel-speeds, the
ESN send the appropriate PWMs duty via a serial (RS232) connection to an
electronic interface, which produces the correspondent amplified PWMs voltage
to the three motors.

Fig. 7. Structure of the control system

5 Results

During experiments, we had to solve many practical problems. The first problem
was training data. It is technically not possible to use random inputs(PWMs)
to collect training data. The only realistic possibility available was to move the
robot with different smooth ”low” velocities (max 0.5m/s), in order to avoid
slippage of the wheels, and to keep the robot on the field. It is clear that using
this method, training data will be not rich enough to give complete information
about the robot dynamics. Another problem is the nature of the robot. Omnidi-
rectional characteristics are obtained only by using omni-wheels (Swedish wheels
in our case). However, it is known that these wheels are very sensitive to the
road (carpet) condition and their performances are limited, compared with the
conventional wheels. This limitation produces errors in speeds measurements.
Other errors are also produced by the sensors, since they deal only with inte-
gers. Another problem is the network architecture. During preparation of the
network, it was not easy to find its optimum parameters. Using a ”relatively”
large dimension (more than 30 internal neurons) the network lost stability at
many times and exhibited sometimes high-frequency oscillations on smooth ac-
celerations. This is due perhaps of the high degree of freedom of the closed loop
Robot-ESN, and due to the poor training data. With small dimension (say 5-8
internal neurons), we minimize these oscillations, but at many times the network
could not react quickly to the velocity variations, and some errors on the steady
state control are obtained. With 13 internal neurons the ESN showed relatively
an acceptable behavior.
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Aftertraining,severalexperimentaltestsareperformed;twoof themarereported
here.Theycover sometypicalmovementsofaRoboCupplayerduringasoccergame.

5.1 Experiment 1

In this experiment, the objective is to track the constant reference velocity:⎧⎨
⎩

vd(t) = 0.22 m/s
wd(t) = 0 rad/s 0s ≤ t ≤ 10s
ϕ = π

3

(6)

Fig. 8. Results of Experiment 1. Desired velocity(solid) and actual robot velocity
(dashed).
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In this experiment, the robot should move straight a head(no angular velocity).
Therefore, wheel 3 should be blocked. During this experiment, the ESN controller
could bring the robot to the desired velocity, even the presence of high friction
between the carpet and wheel 3, which explains the high frequency in the control
signal delivered by the ESN for this wheel(Fig. 8).

Fig. 9. Results of Experiment 2. Desired velocity(solid) and actual robot velocity
(dashed).
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5.2 Experiment 2

In this experiment, the objective is to track the time varying reference velocity:⎧⎨
⎩

vd(t) = 0.22 m/s
wd(t) = 0 rad/s 0s ≤ t ≤ 7s
ϕ = π

3

(7)

⎧⎨
⎩

vd(t) = 0.22 m/s
wd(t) = 0 rad/s 7s ≤ t ≤ 15s
ϕ = 4π

3

(8)

⎧⎨
⎩

vd(t) = 0 m/s
wd(t) = −2 rad/s 15s ≤ t ≤ 23s
ϕ = 0

(9)

⎧⎨
⎩

vd(t) = 0.25 m/s
wd(t) = −3 rad/s 23s ≤ t ≤ 30s
ϕ = π

3

(10)

As shown in Fig. 9, during [0s, 7s], the robot behaved like in experiment 1. In
[8s, 15s], the same desired linear velocity is given to the controller, but in other
direction (according to the angle ϕ in Fig. 3. At time 8s the controller stopped
the robot, and tried to reach again the same translation velocity in the new
direction (ϕ = 4π

3 ). During [15s, 23s], the robot had to be turned around it self,
since the desired translation velocity is zero, and the desired rotation velocity is-2
rad/s. In this situation, the wheels are more sensitive to the carpet, and exhibit
higher frequency around the reference. In the last time interval [23s, 30s], the
ESN had to control the robot in a curve. During training, the ESN did not
learn this situation. Despite the lack of information, the ESN could successfully
control the robot independently in translation and rotation.

6 Conclusion

This paper has presented a velocity controller for an omnidirectional robot avail-
able at the robotics Lab of university of Stuttgart. The control approach is based
on a novel RNN called ”echo state network”, which is trained in a way that only
the output connections weights will be adjusted. The ESN control approach
requires no prior information about the dynamics of the robot. This property
makes it very useful in practical situation, where the exact knowledge about
the mobile robot parameters is almost unattainable. Despite the ”poor” quality
of training data, and the performance limitation of the omni-wheels, the ESN
controller could achieve acceptable control results. However, we are aware of a
certain degree of arbitrariness in our choice of the controller network parameter
and architecture. Therefore, substantial investigation on ESN architecture and
more experiments on much larger data sets are still needed to improve the results
achieved to date.
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Abstract. To be able to effectively intercept and control a soccer ball
travelling at high speed, it is useful to be able to accurately track the
position of the ball as it approaches the robot. In this paper we present a
method that can calculate the position in two dimensions at thousands
of frames per second using a pair of inexpensive tri-linear CCDs. Each
CCD gathers RGB information, which is then colour segmented. This
data is then fused to calculate the location of the object in 2D. Further,
the amount of processing required to detect these objects is low, and can
be accomplished using inexpensive electronic components.

1 Introduction

The ability to accurately track the position of an approaching soccer ball is
very useful when attempting to intercept and control that ball. Using regular
vision systems running at 30FPS it is possible to track a ball travelling at 10m/s
every 1/3 of a metre. When attempting to intercept a ball with a diameter of
22 centimetres, that is a worst case error of one and a half ball length. For most
ball control devices a few centimetres can be the difference between a ball being
captured or awkwardly reflecting off the capture mechanism. This error can be
reduced by predicting the projection of the ball from the previous frames.

However should a shot be taken close to the goal, the defending robot might
get one or two frames before the ball reaches the back of the net. One solution
is to use cameras with higher frame rates. It is possible to purchase cameras
with 1000FPS or more. A ball travelling at 10m/s can be pictured every 1cm
with such a camera. The cost of purchasing high speed cameras range in the
thousands of dollars, and designing electronics to process the images in real
time is challenging, and expensive.

Area CCDs have a two dimensional array of pixels. There are two ways to
configure a colour CCD, one uses a single CCD with a mosaic of RGB filters
placed over the pixels or the more expensive option of using a camera with three
individual CCDs with a colour filter for the whole CCD. The mosaic filter on
a standard CCD involves the collection of two rows of pixels before the RGB
values can start to be extracted.

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 702–707, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Unlike an area CCD a tri-linear CCD has three one dimensional strings of
pixels. Each one of these strings of pixels has a colour filter. The three colour
pixels are read out in parallel, making the RGB value available immediately.

Tri-linear CCDs are used in a variety of products such as colour scanners. In
a scanner the CCD captures the page it is scanning one line at a time, and it is
then moved to capture the next line. High resolution linear CCDs are also used
in aerial [6] [10] and underwater surveys [4].

There are many linear CCDs on the market, with resolutions ranging from
a few hundred pixels to tens of thousands of pixels. An example of a low cost
tri-linear CCD is the Sony ILX558K [9]. It has 5340x3 pixels, data is transferred
at a rate of 10Mhz and costs less than $US50. This gives this linear CCD a
frame rate just over 1800FPS. At that rate, a ball travelling at 10m/s can be
imaged every 5.5mm. Also, at a pixel rate of 10Mhz the image can be easily
processed using inexpensive electronics. Faster linear CCDs are available such
as the UPD3729 [7] by NEC which has 5000x3 pixels at a pixel rate of 30Mhz
giving a frame rate of 6000FPS.

2 System Overview

The system consists of a pair of linear CCDs fitted with a cylindrical lens with
high numeric aperture so that each CCD can cover a large area. Linear CCDs
are capable of seeing up to a few metres away dependent on lighting and optics.
The effective area of visualisation is the area of overlap between the two sensors.

Three voltages are generated per clock cycle from the CCD. These voltages
are then fed into an application specific Analog to Digital Converter (ADC) that
generates a 24 to 48 bit RGB value every clock cycle, (dependent on the ADC
used). A number of these bits can be masked to reduce processing requirements.

The data is then processed by any of the many colour segmentation techniques
available [5]. Because the data stream is linear, many of these algorithms are
greatly simplified. Noise pixels however cause a problem. Many algorithms use
pixels on the surrounding lines to cancel out noise. However since there are
no surrounding lines in the same frame, these techniques are not applicable.
Ignoring pixels that are out of character is the easiest method for eliminating
noise. However more sophisticated methods using previous frame data could also
be used.

Two streams of colour segmented data can then be merged to find the object.
Object pairs of specific colours can be paired and triangulated.

3 System Constraints

The system is only capable of detecting objects on a fixed plane. There are also
issues with having multiple objects of the same colour in the area of visualisation.
This is less of a problem than when trying to do 3D object detection using two
area CCDs because the area being visualised is small.

In Robocup, where the object of interest is a soccer ball, of which only one
exists and is usually on the ground, this technique is very effective.
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To increase the visualisation area an array of these sensors can be deployed
to cover the area that is required.

4 Experimental Results

To confirm the feasibility of this type of visualisation technique, an Acer Prisa
620s flat bed scanner was used. The first experiment involved finding out the
detection distance of this particular CCD. Figure 1 shows a 60mm x 70mm x
30mm orange box scanned from 2.2 metres away against a green background.
The initial output from the scanner returned a black page, but once the contrast,
brightness and colour balance was increased it was possible to make out the
object.

Fig. 1. Orange box on green background 2.2m away

In the second experiment a clear plastic box was used as an observation area.
The box was placed in front of half the linear CCD. A mirror at 45o to the
observation area was used to reflect the light onto the other half of the linear
CCD as seen in figure 2. Half the linear CCD observed the x axis whilst the
other half observed the y axis of the observation area. A white marble with a
diameter of 16mm was used as a target object, and was flicked around using a
ruler. Black paper was used on the opposite sides of the clear observation area
to mask off the background. The scan was initiated and the results appeared on
the screen as a graph of position versus time.

Figure 3 shows data gathered over 2 seconds. The ball was flicked in the y
direction at a slight angle. The ball hit the wall closest to the linear CCD and
bounced back, indicated by the first inflection of the y axis. The ball continued
at almost the same angle on the x axis. The ball then hit the wall to the right
of the CCD. By this point most of the energy had been absorbed by the walls,
and the ball started to roll to the centre of the plastic box.
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x axis
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Fig. 2. Experimental setup

Fig. 3. Result of 2d imaging over 2 seconds

Viewing area CCD 2

Robot 
Base

Viewing area CCD 1

and CCD 2
Overlap CCD1

Fig. 4. Proposed setup of two of eight linear CCDs on the base of MU-Penguins robot

5 Implementation

In the system planned for MU Penguins mid sized robot team, eight tri-linear
CCDs with a viewing angle of 90o will be placed around the circular base of the
robot. At 5340 pixels covering 90o, the resolution of an object 2 metres away
would be 0.6mm. Each tri-linear CCD will overlap 45o of the previous CCD.

The signals from the eight CCDs are processed by the ADC and then fed
into an FPGA [5] [3] [8] [1] [2]. The FPGA uses a lookup table to do colour
segmentation. Object start points and end points are noted, and the object
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Fig. 5. Proposed processing of data from linear CCDs

table of each CCD is transferred to the robots laptop using USB. The laptop is
responsible for carrying out the triangulation calculations.

6 Conclusion

The system proposed above is a low cost effective way of scanning for objects
appearing on a fixed plane at many thousands of frames per second. Using two
linear CCDs that are positioned such that there is overlap between them, it
is possible to triangulate the position of objects. Further, the amount of pro-
cessing required to detect these objects is low, and can be accomplished using
inexpensive electronic components.
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Abstract. This paper presents a visual based localization mechanism
for a legged robot in indoor office environments. Our proposal is a prob-
abilistic approach which uses partially observable Markov decision pro-
cesses. We use a precompiled topological map where natural landmarks
like doors or ceiling lights are recognized by the robot using its on-board
camera. Experiments have been conducted using the AIBO Sony robotic
dog showing that it is able to deal with noisy sensors like vision and to
approximate world models representing indoor office environments. The
major contributions of this work is the use of an active vision as the main
input and localization in not-engineered environments.

1 Introduction

One of the basic tools for mobile robot operations is the localization capability
[6]. It can be defined as the ability of a robot to determine its position in a map
using its own sensors. Many works [13] have been developed to estimate the
robot location as robot behavior may depend on its position inside the world.

Most of these algorithms, i.e. [11],have been designed for robots equipped with
wheels, where locally accurate odometric information can be achieved and 360o

sensory information is available. These requirement makes these methods unus-
able in legged robots. The solution we present is intended to solve the problem
for a legged robot were odometric information is not reliable, even locally, and
360o sensory information is not available. This typoe of information from sonar
or laser sensors is easier to process than camera images, available in our robot.
The camera swinging in legged robots don’t let a continuous image processing,
making unusable the majority of the wheeled robot techniques for navigation,
for instance.

In the literature, some works face this problem using vision as main sen-
sor [3],[2] and [14], but most of them make their experiments in reduced and
engineered environment (that is, placing ad-hoc landmarks or active beacons),
mainly in the Robocup four legged league. In contrast, our work has been tested
in a large office environment using natural pre-existing landmarks (doors, ceiling
lights, etc). In addition, most of the approaches using vision as the main sensor
for localization are passive, i.e. neither the sensor position, nor orientation are

� This work has been supported by grant DPI2004-07993-C03-01 of Spanish
Government.
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controlled. Our approach is active, as long as it commands the sensor orientation
to get the information we need from the environment.

Another key difference with previous works is that our approximation is topo-
logical and most of the previously works use a metric approach. The office envi-
ronment has been divided into states, where the set of nodes is built depending
on the observations that can be obtained in each place of this environment (flat
corridors and foyers ). Others works using topological localization are, for in-
stance [10], but again, these approaches are used in wheeled robots, where the
information needed for applying these techniques are not available.

Our work is based on Partially Observable Markov Decision Processes [3].
We calculate a probability density (belief) over the entire states space (nodes of
the topological map). These technique is also used in many other works as [1],
[4] and [9], but using ultrasonic or infrared sensors to determine the obstacles
around the robot, and using available odometry information. In [7], a markovian
vision-based method is used, but the information extracted from the images are
histograms and scale-invariant (SIFT) features [8] that are calculated from a
wide set of image obtained in each map location. Our approach do not need
previously taken images, only a 2D map where the landmarks needed for our
model are displayed.

There are other approaches which use sampling algorithms for localization. In
[12] Monte Carlo approximation is used, but in very controlled scenarios, and in
[5] it has been reported that this technique is not effective in noisy environments
as ours. Once again, these works have been tested in reduced and engineered
environments (RoboCup mainly).

Summarizing, the major contributions of this paper are three:

1. The development of a probabilistic localization technique for legged robots.
It has been tested in large environments. Other works previously cited us-
ing same robots are mainly devoted to small engineered spaces (mainly the
Robocup playground).

2. The development of a topological framework for navigation in not-engineered
indoor environments. Majority of works on legged robots localization has
focused on metric localization in engineered environments.

3. The use of the robot on-board camera as the main sensor for existing land-
marks (doors, ceiling lights, etc.) detection in natural indoor scenarios, and
the control of the position of the camera.

Our work has been developed in an AIBO ERS7 robot. This robot is a com-
pletely autonomous robot which incorporates an embedded MIPS processor run-
ning at 576MHz, and 64MB of main memory. It gets information from the en-
vironment through a 350K-pixel color camera and 2 infrared sensors. AIBO
locomotion main characteristic is its dog aspect with four legs.

The remainder of this paper is organized as follows: in section 2 we make a
brief review of the Markov Localization technique used. In section 3 we describe
our model and its components in detail. In section 4 the experiments and results
are shown. Finally, we expose some conclusions and envisioned improvements in
section 5.
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2 Markovian Localization Framework

Localization based on indirect information provided by the robot sensors (sonar,
laser, etc.) has been successfully integrated in the probabilistic framework and
has exhibited good results [13]. In particular, sampling methods that speed up
the estimation[3] are currently the most popular ones [11].

In our work, we have used a partially observable Markov decision processes
(POMDP) where a probability distribution Bel, over all the possible locations
S = {s1, s2, ...} is maintained. Belt(S = s) represents the belief of being in state
s at time t. Depending on the knowledge about the initial position of the robot
Bel0(S), the initial state will be uniformly distributed, if the position is not
known. If the position is known, the distribution wil be centered in the initial
state.

The belief Bel actualization is divided in two atomic steps:

Movement step. Robot actions are modelled by the probability p(s′|s, a) (ac-
tion model). This is the probability of reaching state s′ if an action a is executed
at state s. To obtain the a priori belief for the whole set of states Belt(S′)
bayesian updating is assumed. When an action is executed we apply:

Belt(s′) =
∑
s∈S

p(s′|s, a) ·Belt−1(s), ∀s′ ∈ S (1)

Observation step. To calculate the corrected belief Belt(S) we take p(o|s)
(sensor model) as the probability of getting the observation o being in the state
s and we operate, as it is described in [9]. When a new independent observation
is obtained the belief is updated using (2).

Belt(s) = p(o|s) · Belt(s′), ∀s, s′ ∈ S. (2)

3 Our Model

Summarizing, our localization method needs three components to be described,
and these will be defined in more detail in this section:

1. The map and how it is translated to a set of states.
2. A set of actions that the robot can perform and their probabilistic action

model related to states p(s′|s, a)
3. A set of observations the the robot perceives from the environment, and its

probabilistic model related to states p(o|s).

3.1 The State Space

We name possible locations of the robot as “states”. These states are defined over
an indoor office environment (see Fig. 1) made up by corridors (represented in
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Fig. 1. The set of states is built from the map and its node decomposition

the set of nodes as circles) and rooms (represented as boxes). Nodes are defined
as places with similar sensory characteristics.

Once the set of nodes has been defined, each node has been divided in four
different states, representing the same robot position with four orientations:
north, east, south, and west.

3.2 Action Model

The action primitives we have implemented in this work are: to turn 90o on the
left a{TL}, to turn 90o on the right a{TR}and go forward a{F} until the next state
with the same orientation is reached.

When the robot executes an action primitive, i.e. when the robot moves, it
updates the belief as it is shown in (3). The action model defines p(s′|s, a) as the
probability of to reach state s′, starting at state s and executing the action a:

p(s′|s, a), ∀s ∈ S, ∀a ∈ A = {a{F}, a{TL}, a{TR}} (3)

This probability p(s′|s, a) will represent our action model and it is calculated
a priori, depending on the possible action the robot can perform in that state
space.

3.3 Sensor Model

Our sensor model take three types of sensations from the image taken by the
robot’s camera:

Depth. The main target for this observation is measure how far the robot is
from the wall when it is orientated to the end of the corridor. For this purpose
we detect the number of ceiling lights that the robot perceive. If the number of
ceiling lights is high, the robot is far from the end. If this measure is low, the
robot is near to the end. In Fig. 3.3 we can see the original image and the image
with the ceiling lights and doors detected.
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Fig. 2. Image information extraction results. Detecting 6 ceiling lights and 8 doors.

Doors. Using a color filter, the robot is able to count the number of doors it
can observe ahead.
Near landmark. This observation give us information about which landmarks
are around the robot. We define landmarks as the doors or walls that are situated
in the right, left and front side of robot.

Once the data is collected, we apply the equation (2) to correct the belief.

Belsubsequent(s) = p(o|s) ·Belprevious(s), ∀s ∈ S. (4)

4 Experiments

We have made several experiments in a corridor of our office environment in a
normal daily work. In Fig. 3.3, we can see the corridor that we have used for the
experiment and how we have divided it into nodes. Afterwards we have divided
the set of nodes into states. This office environment is very symmetric and that
is why this scenario entrails much more difficulty for the localization system.

For the experimental results, we have used the error function shown in equa-
tion (5), where statehigh denotes the state with the greatest belief and statecurrent

is the robot actual position. The distance is measured as the number of steps
needed to reach one state from another.

error = ||prob(statehigh − prob(statecurrent))) ·
·distance(statehigh, statecurrent)|| (5)

4.1 Ability to Recover of an Action Error

In the first experiment we want to verify if the system is robust enough to cope
with action errors. The system must be able to detect when the movement was
wrong using its sensors, and recover from this situation.

For this purpose, we have situated the robot in state 15 and we ordered it
to go forward along the corridor. The robot knows its initial position, in other
words, the probability distribution is concentrated in the state 15.

Bel0(s15) = 1

Bel0(si) = 0, ∀si ∈ S, si �= s15
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(a) Initial state for the exper-
iment.

(b) After movement, there is
a couple of states where the
robot could be.

(c) In the next step, the
robot skips the node 3.

(d) In this step the simetry is
broken.

Fig. 3. Experiment done in a corridor. The amount of green in each state represent
the belief in it.

We commanded the robot to perform the actions secuentially. Some of these
actions did not execute correctly. Although in the movement step the belief is
changed in a wrong way, in the observation step the belief is corrected due to
the information obtained from the environment in all the experiments.

4.2 Localization Speed

In this experiment the robot does not know its starting position, so the first time
the location probability distribution is uniform.

Bel0(si) =
1
|S| , ∀si ∈ S (6)

This experiment was realized with a lot of sensor noise because there were a
lot of people walking along the corridor. Despite this difficulty, the robot is able
to be localized with a small error in a few movements and can recovery to sensor
error quickly, as we see in Fig. 3(a)-3(d).

In Fig. 3(a) the robot starts at node one and the distribution (painted in
green) is uniform along all the nodes. For this explanation we will talk about
node instead of states, which is actually what we use in our model, to simplify
this explanation. So, a node will be padded in green depending on the belief of
the state situated in this node, orientated on the right. When the robot moves
forward it reach to the node 2 (Fig. 3(b)) and it takes data from its sensors. With
this data the model evolves and the probability is concentrated in state 2 and 17,
because these two states have almost the same observation properties. The robot
goes forward, but an error occurs and the robot reaches node 4, instead of node
3. This anomaly is observed in the model and it is corrected in the observation
phase, as we see in Fig. 3(c). In the last movement the robot reaches the node 5
and then the simetry is broken, concentrating the probability in the node 5, as
we see in Fig. 3(d).
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5 Conclusions

In this article we have presented the preliminary results for the localization of
legged AIBO robots in not-engineered environments, using the vision as an active
input sensor. We have shown that the robot is able to localize in real time itself
even in environments with noise produced by the human activity in a real office.
It deal with uncertainly in its action and uses perceived natural landmarks of
the environment as the main sensor input.

The data obtained from sensors, mainly the camera, is discriminant enough
and let a fast convergence from an initial unknown state, where the belief over
the set of states has been distributed uniformly. Also we have shown that the
robot can overcome action failures while localizing, and it recovers from them in
a efficient way.

The set of observations we have chosen have been descriptive enough to be
efficient in the localization process. We think that the way we determine the
number of doors and ceiling lights has been the key for the success of the local-
ization system.

We believe that probabilistic navigation techniques hold great promise for
getting legged robots reliable enough to operate in real office environments.
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Abstract. In this paper we present a component-based framework for
rapid prototyping of mobile robots for research, education and appli-
cation. The VolksBot construction kit addresses the rising demand for
reusability in software, electronic hardware and mechanics by offering
open and clearly defined interfaces as well as standardized components
in all three fields. We show the versatility of the concept by applying it
to different domains, particularly RoboCup Middle Size League as well
as the Rescue scenario.

1 Introduction

Participating in RoboCup Middle Size League since 1998, we constructed six
generations of different mobile robot platforms. Like many other teams we faced
several problems related to specialized system development, time-consuming
maintenance and high fluctuation of people combined with loss of knowledge.
With this experience in mind, we started the VolksBot project [1] in September
2002. The goal of the project is to create a scalable, cost-effective and robust
robot construction kit for advanced research experiments, education as well as
for effective prototyping of applications.

Prominent examples of already existing robot construction kits used in ed-
ucation are Lego Mindstorms [2], Fischertechnik Mobile Robots [3], Tetrixx[5]
or the Cube System[4]. Although aspects of modularity are addressed by these
systems, they are limited in complexity since the building blocks are simple and
focus on miniaturization. On the other side, several robot platforms of higher
complexity are usually specialized for a certain field of application like indoor
or outdoor [6][7][8] or do not follow a construction kit approach. An interesting
exception is an approach presented in the MoRob project with a focus on edu-
cational robotics [9]. In this paper, we present the VolksBot concept by showing
its usage in the RoboCup domain.

2 The VolksBot Concept

VolksBot is a flexible and modular mobile robot construction kit. The component-
based approach offers a plug-in architecture with open interfaces in mechanics,

A. Bredenfeld et al. (Eds.): RoboCup 2005, LNAI 4020, pp. 716–723, 2006.
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Fig. 1. Example of an indoor VolksBot platform

electronic hardware and software. Quick integration of own modules combined
with reuse of existing ones foster application-specific but effective system devel-
opment. An example of a VolksBot indoor platform is depicted in Figure 1.

2.1 Mechanical Design

To obtain a high grade of flexibility we set up some design criteria for the robot’s
body construction. Among these are:

– Usage of standardized parts
– Light-weight but rigid construction
– Easy modification
– Quick access and easy exchange of components

Regarding these criteria, we decided to use aluminum machine construction ex-
trusions (x-profile) and proper connectors to build up the robots main frame.
Size and shape of the body can be adjusted individually to the needs by simple
mechanical processing. All sides of the x-profiles can be used to connect to ad-
ditional elements. This enables all hardware components to be connected to the
main frame. Therefore only geometrical dependencies between the component
and the main frame occur, not between the components themselves. Figure 2
shows, how different components, like a battery, a motor-controller and the holo-
nomic drive can be attached to the main frame. The mounting positions of the
components are variable.

2.2 Hardware Components

A set of basic hardware components consisting of processing unit, actuators and
sensors is described here. A standard notebook or an embedded PC is used as
the robot’s central control unit.
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Fig. 2. CAD model of a VolksBot main frame with attached components including
holonomic drive

The motor-controller TMC200 is connected via serial interface to the control
PC. The controller offers odometric data analysis, thermal motor protection,
battery voltage monitoring, PID-control of velocity and current for three DC-
motors up to 200W power. The drive units consist of a DC-motor, a scalable
planetary gear and a shaft encoder being attached to the supported wheel shaft
via a damped coupling. The entire unit is encapsulated in an aluminum block
which can be attached at different positions on the main frame.

The catadioptric vision system AISVision includes an IEEE1394 CCD camera
and a hyperbolic mirror as shown in Figure 1. Before construction, the system
was designed entirely in simulation using ray-tracing software. In an iterative pro-
cess, all relevant geometry parameters of the system were optimized for the use
on a RoboCup Middle Size field. These include height of the mirror with respect
to the camera, height of the entire vision-system above the ground, diameter of
the mirror, focal distance of the camera and especially the two parameters a and
b of the mirrors hyperbolic surface equation

z2

a
− r2

b
= 1 (1)

with r being the radius and z the dimension along the optical axis. The criteria
for this optimization were full visibility of all landmarks from any position in the
field, including goals and corner-posts, and a good visibility of the close region.
The rendered and the real camera image are depicted in Fig. 3. The optimization
can be repeated for any other scenario with the described method.

2.3 Software Framework

Also in software a clear framework concept with well-defined components is being
used. The aim is to provide easy access with a low entry level via an intuitive pro-
gramming interface, similar to systems like Lego Mindstorms and Fischertechnik.
At the same time it should be possible to use native computer languages like
C++ to implement also sophisticated algorithms. Further demands are:

– Direct and stable hardware access
– Library of existing functionality
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Fig. 3. Comparison between simulated (left) and real (right) camera image

– Easy integration of own algorithms
– High performance and real-time capability
– Structured architecture
– Custom GUI building

ICONNECT [10], a professional software framework by Micro-Epsilon special-
ized on signal processing and industrial system automation fulfills these demands
well. Other similar software packages such as Simulink [11] or Labview [12] are vi-
able, but fail in some aspect like real-time capability or hardware independency.
The underlying principle of ICONNECT are signal graphs built up with inter-
connected modules. A simple example of a signal graph used for robot control is
depicted in Figure 4. These graphs provide a well-structured representation for
system control and help to bridge the gap between easy access and high scal-
ability by offering different levels of abstraction, ranging from parametrization
and visual composition of signal graphs to coding of user-specific modules. The
execution of such graphs is handled by ICONNECTs scheduler which provides
real-time capability under Microsoft Windows. Different graphs can be executed
without recompilation, supporting an iterative development process and rapid
prototyping. In Figure 5 the ICONNECT programming environment is depicted,
including an example of an easy to build graphical user interface.

Fig. 4. A simple ICONNECT signal graph for robot control including camera interface,
image visualization, image processing, robot behavior and motor control
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Fig. 5. ICONNECT GUI with signal graph (top), visualization of sensor data (left),a
user cockpit (center) and the module library (right)

Several ways to implement new functionality exist in ICONNECT. Besides
visual composition of modules and building hierarchies by macro modules, com-
pletely new modules can be written in several programming languages ranging
from integrated script code over Visual Basic and Perl up to native C++. Such
a module is an encapsulated software component, having a well-defined interface
specifying the type of in- and outgoing data. Technically it is implemented as
a dynamic library which is loaded and instantiated at runtime, independently
from other modules. In order to emphasize the notion of an independent, en-
capsulated and ready-to-use component, each module is associated with a help
page, example graph and an individual set of parameters. ICONNECT offers
pre-defined modules in a module library, covering areas like signal processing,
image processing or hardware IO. We extended the ICONNECT module library
by providing robot-specific software modules. In such a way integrated function-
ality, even when coming from very different backgrounds and sources, can work
together in one system in a compatible manner. Thus the software framework
acts as a means for standardization.

We already implemented several modules in the domain of robotics, reaching
from simulation based on the ODE engine [13] and Matlab over image processing
with OpenCV [14], interfaces to CAN-bus and IEEE1394 to RoboCup related
behavior. With this method, we constantly add reusable functionality to the
existing module-pool.

3 Volksbot in RoboCup Middle Size League

In the beginning of 2004 an international student-team (AIS/BIT) using Volks-
Bot was built up under guidance from AIS Fraunhofer to participate in RoboCup
Middle Size League. The modular concept of VolksBot supported this interna-
tional collaboration and is elaborated in the following.
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The main demands on Middle Size League robots are quite different from
other scenarios, requiring higher dynamics, superior motion control and real time
color vision. To meet the demands set by this special scenario, the team had to
introduce only a few additional plug-in components to the existing system. Some
of them, like AISVision or our motor-controller TMC200 have even been used
by other Middle Size teams for their own robots. Since the goal keeper has a
different role in the game than the field players, it motivates a special design
with larger main frame and different orientation of the kicking device. Reusing
already existing hardware components, this variant could be build up within
very short time.

All of these modifications in hardware required only minor software changes
due to the component-based structure of ICONNECT. As each hardware compo-
nent is directly related to one module, only the module itself had to be changed,
without affecting the entire system. This also holds true for the behavior archi-
tecture itself, where we focused on the use of Dual Dynamics[15], an architecture
based on dynamical systems. The DD-Designer [16] tool was extended to directly
generate ICONNECT modules, which made the behavior become an easily in-
terchangeable component.

An important aspect of the development process is simulation. A module
incorporating physical simulation of robots based on the ODE engine was devel-
oped. It has the same interfaces as the hardware, so the development of behaviors
can be done without any special treatment, just by replacing the simulator with
the corresponding hardware access modules in the graph. This modular concept
makes it much easier for new students to get an overview of the system and to be-
come productive, as the number of dependencies between modules is minimized
and made explicitly by the module interfaces. This eases also ongoing coopera-
tions with other research groups and universities. After specifying few module
interfaces, the spatially distributed groups could work on different modules with
minimal integration issues. Similar results regarding successful teamwork were
also achieved in RoboCup Real Rescue described in the next section.

4 RoboCup Real Rescue and Outdoor

In 2004, the idea had risen to extend the VolksBot concept, which until then had
been purely used for indoor robots, to fit to the needs of rough terrain including
the Real Rescue scenario and outdoor. As a consequence new demands have to
be set on the system including high payload, mobility, ground clearance and
rigidity. A Universal Drive Unit was developed enabling us to build new variants
of VolksBot for rough terrain, the new VolksBot RT.

Within only 3 weeks, including development of this unit, manufacturing of
parts and final assembly, a six-wheeled version of the VolksBot as depicted in
Figure 6 was ready to use. This is due to the fact that we mainly reused existing
VolksBot components combined with available standard parts. Only four differ-
ent parts had to be machined to build up the Universal Drive Unit. Equipped
with two 150W DC-motors the robot is able to climb a slope of 43 degrees and
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Fig. 6. 6-wheeled and 4-wheeled version of VolksBot RT

has a maximum speed of 1.3m/s. As the motor gears can be exchanged as eas-
ily as for the indoor version, the maximum speed can be adjusted according to
the demands. With little effort different variants in size and wheel configuration
of the VolksBot RT can be built. This 6-wheeled version of VolksBot RT was
used as base platform at the RoboCup Rescue Workshop 2004 in Rome. There,
within 15 hours of lab-activities, two groups of three and six persons - with no
prior experience of the system - worked together to build a functional rescue
robot with autonomous behavior which has been demonstrated at the end of
the workshop. The task of one group was to build up the entire control system
on the robot including signal processing of laser-scanner data, image-processing,
compression and WLAN transmission of the AISVision image stream, interfaces
for tele-operation, autonomous behavior and motor control.

An obstacle-avoidance method was modified to achieve the desired behaviors
like general obstacle avoidance, ”left- and right-wall following” or ”centering
between the aisle”. The task of the other group was to build an interface for
the operator including visualization of the robots state, camera image and laser-
scanner radar. Further on it was required to set the robots state e.g. from manual
to autonomous and build an interface to joystick and throttle for proper tele-
operation.

The two groups worked together well, first defining the interfaces then test-
ing the results iteratively. In summary the VolksBot concept of rapid system
development resulted in a running system within very short time.

5 Conclusion and Future Work

In this paper we have presented our approach to foster re-usability and sys-
tematic construction of hardware and software components for mobile robotic
systems. Since we concentrate on the concept and not on a single platform,
we offer much freedom in the actual design of the robot. This was effectively
demonstrated in RoboCup where the VolksBot concept was put into practice in
Middle Size League as well as in Real Rescue. It supports research by re-use and
exchange of existing components and therefore gives more time and opportuni-
ties to concentrate on innovative development. The already existing VolksBot



VolksBot - A Flexible Component-Based Mobile Robot System 723

module-pool will be further extended and shared with the growing community.
Further on didactic material is being collected, so lecturers can exchange their
course material with others to minimize their preparation time. We will con-
tinue to build up new variants based on this concept and widen the range of
applications, with a special focus on outdoor and navigation.
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Meriçli, Tekin 624
Miene, Andrea 118
Mokhtari, Vahid 488
Mörth, Martin 13
Mousakhani, Morteza 488
Müller, Jürgen 36, 59

Nagahashi, Tomoyuki 408
Nagasaka, Yasunori 428
Nakashima, Tomoharu 616
Nebel, Bernhard 323
Nejad, Leila Pakravan 656
Nia, Hadi Tavakoli 290
Nii, Manabu 616
Nishi, Tomoki 640
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