
Project AI: Real-time object detection and avoidance for autonomous

Nao Robots performing in the Standard Platform League

Rogier van der Weerd, M.Sc. student (13454242), University of Amsterdam

July 13, 2021

Introduction

Since 2010, the Faculty of Science of the University of Amsterdam hosts the Dutch Nao Team (DNT)1, com-
posed of bachelor and master students, that develops and manages the code base and infrastructure required
to participate in the RoboCup Standard Platform League (RSPL)2. In this league, autonomous Nao-v6 robots
engage in competitive soccer matches. DNT resides in the Intelligent Robotics Lab (IRL)3, an advanced robotics
teaching-and research facility of the University. The RSPL competition provides a unique environment where
a range of technologies and skills are integrated into a fully functioning multi-player robotics platform. Such
technologies include sensing, motion, localization, computer vision, communication, game-play and behavioral
state planning and many more.

DNT’s participation in the 2021 RSPL Obstacle Avoidance challenge4 required the development and imple-
mentation of robust real-time object detection and the capability to navigate though a field of obstacles, while
walking with a ball. This report describes the approach to this implementation, the results of tests to assess
performance as well as potential avenues for further improvement.

A reduced Yolo-v3 model configuration [24] is presented and trained specifically to achieve high performance
on robot and ball detection. A basic deployment of this model on a standard Nao-v6 runs at about 700ms,
which is far too slow for any high fidelity real-time application. However, by implementing ball and robot model
classes that apply Kalman filtering on low-frequency detection signals generated on a separate thread, a stable
representation is achieved. We show that this approach is feasible and sufficient for basic obstacle avoidance.
F1 scores for detection are significantly improved compared to a legacy detector, from ca. 0.2 to ca. 0.8-0.9.
However, we can do better and explore the potential to improve execution time of the detection algorithm.
As for the task of navigating through a field of obstacles, a pathfinding module is developed that uses the
representation of the field based on the detections. This navigation module can be called by the behavioral
engine (a state machine) in any scenario that requires maneuvering through an environment.

1 Starting Point and Objectives

The object avoidance task as formulated in the RSPL challenge4 requires a robot to walk with a ball through
a half-field with up to 5 robots placed as static obstacles and score a goal. The static robots can have different
orientations and stances. In order to achieve object avoidance capability, a number of new functionalities are
required that need to be integrated into the existing DNT framework. A simplified overview of the modules to
be added and their place in the framework is presented in the shaded box in Figure 1.

• First, in order to avoid objects, they will need to be detected with high confidence and projected on
a representation of the environment. The current framework contains a Haar feature based cascaded
classifier for ball detections [28]. The Haar detector is fast (30 FPS), but inaccurate. It suffers from a
high false positive rate and low recall (details are presented in section 3.5), so this needs to be improved.

• Secondly, Ball and Robot models are required, calculated by applying Kalman filters on (potentially noisy)
detection signals, in order to make best estimate predictions of object locations with respect to the robot.

1Dutch Nao Team https://www.dutchnaoteam.nl/en/home
2Robocup Standard Platform League.https://spl.robocup.org/
3Intelligent Robotics Lab, University of Amsterdam https://robolab.science.uva.nl
4https://spl.robocup.org/rc2021/#oac, https://cdn.robocup.org/spl/wp/2021/01/SPL-Rules-2021.pdf

1

https://www.dutchnaoteam.nl/en/home
https://spl.robocup.org/
https://robolab.science.uva.nl
https://spl.robocup.org/rc2021/#oac
https://cdn.robocup.org/spl/wp/2021/01/SPL-Rules-2021.pdf

• Thirdly, a Navigation module is required to plan a feasible and optimal path to a target position. From
that point on, the existing behavior engine can be used to define a behavior that consists of walking with
the ball to the first waypoint in the queue.

This work focuses on object detection and navigation capability. Object modelling was developed in a separate
project. However, the result of integration tests in real-time game-play scenarios will be presented in section
4.5 of this report.

2 Related Work

Figure 1: High-level overview of the DNT frame-
work

Object detection has experienced a tremendous impulse
over the last decade [12, 33, 35], driven by research
interest and a successful evolution from classical and
hand-engineered features to approaches that leverage
deep learning. Detection builds on object classifica-
tion techniques and adds localization of (multiple) ob-
jects by predicting bounding boxes. There are many
successful approaches that can now achieve near per-
fect performance on benchmark datasets [35]. Be-
yond detection lies real-time image segmentation [17]
to predict semantic categories on the level of pixels
which is also widely and successfully applied in many
fields.

Application of deep learning in robotics is widespread and
many successful applications have been reported in vision,
motion, navigation, planning & control using techniques
such as deep convolutional neural nets, reinforcement learn-
ing and transfer learning [14, 20, 25]. Specifically on object
detection and navigation, various teams in the Standard
Platform League have reported innovative applications. A
comparative survey of Neural Network based approaches to
detection from TUHH [13] served as a starting point. Sev-
eral publications scale down detection networks to achieve
acceptable frame rates. [3] introduces xYolo, a scaled down version of Yolo-v3 specifically optimized for ball and
goal-post detection. [27] reverts to binary convolutional networks (XNOR) and tests it on a Jetson TX1 device.
[21] designed JET-Net, a scaled down model that successfully runs using the optimized JIT compiler developed
specifically for the Nao-v6 CPU by the B-Human team from Bremen [29]. [34] reports successful deployment
of Yolo-v4 and reduced models on different platforms, including Nao-V6 and a Coral Edge TPU. Progress is
also made in dataset generation: [9] offers infrastructure for image tagging and dataset sharing. Benchmark
datasets are being developed [8, 19]. An open source generative model for scene generation using Unreal Engine
4 was introduced by [11]. In the area of navigation and path planning, [32] implemented and compares several
options to be considered and favors an A*-based algorithm, as does [2].

3 Developing Object Detection capability

3.1 Starting point and requirements

Given the constraints on computational resources of the robots, most of the current computer vision algorithms
deployed on DNT’s Nao robots are highly optimized for specific tasks and are based on classical methods such as
Canny edge detection and Haar feature-based cascade classifiers. However, these are expected to be insufficient
for the challenge and this provides a good opportunity to migrate to Convolutional Neural Network (CNN)-
based detection. Various teams in the RSPL have moved in this direction and use cases have been presented
at https://2021.robocup.org/symposium. There are clear candidates for well suited modern detection algo-
rithms for this task. However, the main challenge will be to minimize model complexity and trade-off model
performance with speed and feasibility to run on the Nao platform that has no GPU and heavily used threads
on its CPU for normal operation.

The vision modules in the DNT framework have access to 640x480 images in the YUV color space. These images
are taken from an upper and lower camera mounted in the head of the robot and are processed at 30 FPS. The

2

https://2021.robocup.org/symposium

objective is to retrieve bounding boxes of objects on the field, such that their location can be derived. There
are multiple competing aspects to optimize for. These include Speed (low latency for detection), Accuracy (high
precision and recall), Robustness (performance under a wide range of circumstances such as light conditions,
orientation of objects, backgrounds, motion blur), Generalization (ability to detect a variety of classes beyond
balls and robots).

3.2 Survey of methods and method selection

The last 20 years have seen many breakthroughs in object detection techniques, well documented by several
surveys [12, 33, 35]. Detection algorithms can be categorized into two-stage (R-CNNs, SPP, FPN, FCN and
others) and single-stage (SSD, Yolo, Mask R-CNN, RetinaNet and others) models. Two-stage models split
Region of Interest generation from Pooling operations that extract features and specify candidate bounding
boxes. This achieves high localization and recognition accuracy, but at the costs of inference speed. Single-
stage models combine all operations in one convolutional forward pass which leads to faster inference. In
recent years, much effort has been put into developing lightweight networks (examples include SqueezeNet,
MobileNet) that can be deployed in resource constrained environments such as mobile and IoT devices. A key
element of any detector is the backbone network used to extract features on which to base object classification.
These backbones have evolved in complexity and effectiveness and include variants such as AlexNet, VGG,
GoogLeNet/Inception, Residual Networks, DarkNet amongst others. Current state-of-the-art approaches5 are
summarized in Figure 2.

FPS ms
R-CNN 2014 AlexNet 224 59 0,02 50s
SPP-Net 2015 ZF-5 var 59 0,2 5s
Fast R-CNN 2015 VGG-16 var 66 0,4 2,5s
Faster R-CNN 2016 VGG-16 600 67 5 200
R-FCN 2016 ResNet-101 600 53 3 333
FPN 2017 ResNet-101 800 59 5 200
Mask R-CNN 2018 ResNeXt-101-FPN 800 62 5 200
DetectoRS 2020 ResNeXt-101 1.333 72 4 250
YOLO 2015 GoogLeNet 448 58 45 22
SSD 2016 VGG-16 300 41 46 22
YOLOv2 2016 DarkNet-19 352 44 81 12
RetinaNet 2018 ResNet-101-FPN 400 50 12 83
YOLOv3 2018 DarkNet-53 320 52 45 22
CenterNet 2019 Hourglass-104 512 61 8 125
EfficientDet-D2 2020 Efficient-B2 768 62 42 24
YOLOv4 2020 CSPDarkNet-53 512 65 31 32

mAP@0.5
COCO

Image
size

BackboneYearModel
Inference speed

Figure 2: Overview of key detection algorithms[33] Figure 3: Performance envelope[24]

For real-time detection tasks, an optimum is sought between accuracy6 and inference speed, visualized in a
performance envelope, see Figure 3. The Yolo algorithm, since its first formulation in 2016 [22] has consistently
pushed the boundary in this envelope. There are currently five generations of the Yolo algorithm [4, 22, 23, 24],
the details of which are well summarized by [30]. Key aspects and improvements between Yolo generations will
be presented in the next section.
Yolo is a clear candidate of choice as a generic and high performing detection algorithm. It is preferred over
highly optimized algorithms for specific classes given the ability to include additional classes in the future that
can be relevant for the DNT framework such as goal posts, penalty markers, different robot stances, etc. As a
basis for our application, variants of the the third generation Yolo-v3 are considered. The key reason for this is
the maturity of this version, with well established implementation frameworks and portability options. Yolo-v3
contains all critical improvements needed for our purposes.

3.3 Key principles used by Yolo

Bounding box predictions One of the key innovations that the first version Yolo-v1 [22] introduced was
the Convolutional implementation of sliding windows for bounding box prediction using (1x1) kernels. The use
of (1x1) kernels to substitute fully connected layers had already been demonstrated in 2013 (dubbed network-
in-network [16]). [26] introduced Overfeat: instead of running forward propagation on all individual sliding
windows of the input image independently, these windows can be combined into one forward propagation
computation and share the computation in the common regions of the image. An illustration with more details
is provided in Figure 26 (Appendix F.1). Yolo-v1 built on this approach to predict exact bounding boxes. It
splits an image into grid cells (gx�gy), assigns object boxes to specific grid cells based on the center pixel of the

5Care should be taken when interpreting performance metrics as these depend highly on the choice of evaluation dataset and
hardware. Only relative performance will be considered within well executed benchmark studies

6Usually expressed in mean average precision for detection tasks, this will be discussed in the next section

3

box and defines an output vector [pc; bx; by; wx; wy; c1; :::; ck]T , with k number of classes. pc can be interpreted
as the ‘objectness’: the probability that there is an object in the bounding box7. (bx; by) defines the center
of the bounding box, and (wx; wy) its width and height, relative to the grid cell. ci represents the conditional
probability of class i, given that there is an object. Figure 4 shows the end result: a convolutional network with
appropriate architecture can map an image of shape (w � h� 3) to a volume with output vectors for each grid
cell (gx � gy � (5 + k)).

Figure 4: Illustration of transformation from image to Yolo output vector encodings (Image adapted from [18])

Loss function With these definitions, Yolo defines a loss function used for training the network, see Figure
5. The loss consists of four terms representing i) how close is the predicted bounding box to the ground truth,
ii) how close are width and height of the box compared to the ground truth, iii) how close is the objectness
score to the ground truth label (either 0 or 1), and iv) how close is the predicted conditional class probability
to the ground truth class.

Figure 5: Yolo loss function (annotations made on original image from [22])

Non-max suppression When an output volume such as the example in Figure 4 is obtained, it can predict
multiple detections of the same object with mid-points in different grid cells. Non-max suppression is used to
discard all bounding box predictions below a pc (objectness) threshold (this is a hyperparameter, usually set at
0.6). Next, all remaining predictions are processed in decreasing order based on pc. For overlapping bounding
boxes (based on an Intersection-over-Union, or IoU above some threshold, usually set at 0.5), the prediction
with the highest objectness score is kept and all others are discarded (suppressed). Non-max suppression is
performed independently on all predicted classes to avoid any unintended suppression due to interference of
bounding boxes between classes.

Anchor boxes Anchor boxes were introduced in Yolo-v2 [23] and enable detection of multiple objects per
grid cell. Key idea is to pre-define archetype bounding box sizes, let’s say three per grid cell. The output tensor
shown in Figure 4, as well as the ground truth labels, will now contain three vectors of size (7� 1) per grid cell,
resulting in a volume of (gx � gy � b(5 + k)), with k the number of classes and b the number of anchor boxes.
K-means clustering can be used to define anchor boxes (also considered as priors for the class predictions) that
are most suitable to the different classes in the training set. Some technicalities are involved to map network
output to bounding box coordinates relative to the anchor boxes, details can be found in [23].

7Or, alternatively: a prediction of the Intersection-over-Union (IoU) of the bounding box with the ground truth

4

Multi-scale learning Among several incremental improvements in Yolo-v3 [24], scale pyramids were in-
troduced in the Yolo architecture that enable detections at di�erent resolutions by the same network. This is
particularly relevant for our detection task (think of soccer balls that need to be detected at di�erent distances).
In addition, Yolo-v3 changed the backbone of the network to Darknet-53, containing 53 convolutional layers
with residual connections.

Evaluation For the detection task, the most appropriate evaluation metric is Mean Average Precision (mAP),
de�ned using Intersection over Union for all predicted bounding boxes and classes in a given image. mAP is
calculated based on a choice of (a range of) con�dence thresholds, details are provided in Appendix F.2.

Other improvements After Joseph Redmon, who worked on the �rst three generations of Yolo, withdrew
from further development, other researchers have continued the work and have introduced Yolo-v4 and v5.
Improvements were made to the network architecture introducing dense blocks, spatial pyramid pooling blocks,
a path aggregation network and a range of additional `tricks' in Yolo-v4 [4]. Another group ported the Yolo
framework to Pytorch8 and claimed the Yolo-v5 label around the same time, but this has caused some contro-
versy given the limited extent of the improvement and the lack of thorough review and publication of results.

The overall pipeline involved when training and deploying Yolo is shown in Figure 6. Note that images need
to be pre-processed (scaling to �t the input dimensions and optional augmentation during training) and the
network's output requires post-processing (non-max suppression) both for training and inference.

Figure 6: Summary of the pipeline used for training and deploying Yolo

3.4 Training and testing Tiny Yolo-v3/3L

Dataset generation A critical component of obtaining a good detector is availability of a dataset that is
large and diverse enough to enable the network to learn, generalize and ultimately predict detections in new
unseen scenes. The ball and robot classes are very speci�c to the RSPL and therefore, pre-trained models
are not su�cient for this task 9. In 2018, a `Bit-Bots' team from the University of Hamburg released an open
source online platform10 for collaborative image labeling speci�cally for the RoboCup Soccer [9]. A number of
annotated datasets were extracted from this database and added to the training dataset. In addition, new data
was generated by recording live scenes of DNT robots, in order to enrich the train dataset with more diverse
robot poses (in particular crouched robots). A diverse11 set of scenes were recorded to serve as validation data.
Although one could bootstrap an automated annotation tool for the speci�c classes, images were annotated by
hand using the Bit-Bots platform. All extracted annotations were veri�ed. The train and validation datasets
consist of ca. 7,500 and 600 images, respectively. Appendix C presents statistics and example images from the
datasets.

Model selection The Darknet framework12 was used to train and evaluate Yolo v3 and v4 models. For
each version, three con�gurations were considered: the full scale model with prediction on three scales (`Yolo-
vX/3L'), the original reduced model that uses two scales (`Tiny Yolo-vX/2L') and a the reduced model with

8https://github.com/ultralytics/yolov5
9Fine-tuning of pre-trained weights can be used when features extraction is expected to be e�ective on new classes

10 https://imagetagger.bit-bots.de
11 In terms of light conditions, number/location/stance of robots on the �eld, distance of objects, richness of background imagery
12 https://github.com/AlexeyAB , forked from the original framework by Joseph Redmon, maintained by Alexey Bochkovsky

5

	Starting Point and Objectives
	Related Work
	Developing Object Detection capability
	Starting point and requirements
	Survey of methods and method selection
	Key principles used by Yolo
	Training and testing Tiny Yolo-v3/3L
	Deployment of the Yolo detector on the Robot
	Options for acceleration

	Developing Navigation and Pathfinding Capability
	Starting point and requirements
	Survey of methods
	Shortest path implementation using a cost landscape
	Testing
	Deployment on the robot

	Tiny Yolo-v3, 3 layers model specification
	Tiny Yolo-v3, 3 layers model architecture
	Tiny Yolo-v3, 3 layers trainable weights
	Tiny Yolo-v3, 3 layers configuration file using the Darknet standard

	C++ Implementation details
	Darknet model implementation using OpenCV's dnn module
	Graph class used for path finding
	Implementation of Dijkstra's shortest path algorithm

	Datasets
	Datasets - Statistics
	Train Datasets - Image samples
	Validation Datasets - Image samples

	Evaluation of Yolo detection on Robots
	Ball Detection
	Robot Detection

	Navigation module tests
	Offline testing
	Legend of the interface used for integration testing

	Background on techniques used by Yolo
	Applying convolutions to sliding windows over an image
	Evaluation using Mean Average Precision and IoU

